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PRN: progressive reasoning 
network and its image completion 
applications
Yongqin Zhang 1*, Xiaoyu Wang 2, Panpan Zhu 2, Xuan Lu 3, Jinsheng Xiao 4, Wei Zhou 2, 
Zhan Li 2 & Xianlin Peng 5

Ancient murals embody profound historical, cultural, scientific, and artistic values, yet many are 
afflicted with challenges such as pigment shedding or missing parts. While deep learning-based 
completion techniques have yielded remarkable results in restoring natural images, their application 
to damaged murals has been unsatisfactory due to data shifts and limited modeling efficacy. 
This paper proposes a novel progressive reasoning network designed specifically for mural image 
completion, inspired by the mural painting process. The proposed network comprises three key 
modules: a luminance reasoning module, a sketch reasoning module, and a color fusion module. 
The first two modules are based on the double-codec framework, designed to infer missing areas’ 
luminance and sketch information. The final module then utilizes a paired-associate learning approach 
to reconstruct the color image. This network utilizes two parallel, complementary pathways to 
estimate the luminance and sketch maps of a damaged mural. Subsequently, these two maps are 
combined to synthesize a complete color image. Experimental results indicate that the proposed 
network excels in restoring clearer structures and more vivid colors, surpassing current state-of-the-
art methods in both quantitative and qualitative assessments for repairing damaged images. Our code 
and results will be publicly accessible at https://​github.​com/​albes​tobe/​PRN.
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Ancient murals, as invaluable cultural relics, provide crucial supplementary insights into historical documents. 
However, due to natural and man-made destruction, these artworks are often subjected to various forms of 
degradation, including pigment shedding, cracking, mildew, and mud pollution. Such damage significantly 
impedes people’s comprehension and appreciation of these murals, diminishing their sense of understanding, 
enjoyment, and contentment. Conventionally, cultural relic restorers engage in the laborious and inefficient 
task of manually repairing mural paintings. This traditional approach falls short of meeting the demands of 
large-scale mural restoration and permanent preservation. In contrast, digital completion presents a potentially 
viable solution for virtual restoration. This technique enables the filling of missing areas in damaged mural 
images without physically altering the murals themselves, offering a promising alternative for preserving and 
appreciating these ancient artworks.

Over the past decade, deep learning-based completion methods1–3 have attracted significant attention due to 
their remarkable results in restoring natural images. These methods, primarily based on the codec framework, 
utilize an encoder to extract compact underlying features from damaged images and a decoder to reconstruct 
the entire image. Nevertheless, when applied to mural images, they often yield unsatisfactory outcomes due to 
data shifts and limited modeling efficacy. In their previous study, Zhang et al.4 proposed a content-constrained 
convolutional network for completing mural images by integrating dual-domain partial convolution and a space-
varying activation function. However, they neglected the crucial aspect of the mural painting process, which 
typically commences with sketching and then proceeds to color. In this paper, we propose a novel progressive 
reasoning network (PRN) for restoring images of ancient murals by considering the mural painting process. 
The proposed network integrates two recursive double-codec modules and a paired-associate learning module. 
This network first estimates luminance and sketch maps from a damaged mural image and then merges them to 
restore the complete color image. We implemented and evaluated our PRN, comparing it with baseline methods 
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on benchmark datasets. The experiments reveal that our PRN achieves superior repair results, outperforming 
baseline methods both qualitatively and quantitatively. The key contributions of this paper are threefold: (1) A 
novel progressive reasoning network is designed for mural image completion; (2) Two complementary double-
codec modules are constructed to infer luminance and sketch maps, respectively; and (3) A paired-associate 
learning module is developed to synthesize the complete color image.

Related work
Early methods
Image completion, which dates back to the 2000s, aims to restore damaged or missing parts of an image to 
construct a visually complete image. Early image completion methods are broadly classified into two catego-
ries: diffusion-based and example-based approaches. Diffusion-based approaches5,6 rely on neighboring pixels 
surrounding the missing areas to propagate information inward to fill the holes. However, they are usually 
constrained to small or narrowly defined areas because of their inherent gradual pixel diffusion nature. In con-
trast, example-based methods7,8 search for similar image blocks either within the damaged image itself or in an 
external database to repair the damaged areas. While these approaches offer more flexibility, they rely heavily 
on the availability of matching image blocks, which can be challenging for complex structures and patterns. As 
a result, they may not be suitable for all types of damage, especially those with intricate details.

Contemporary methods
Unlike early methods, contemporary image completion methods use neural networks to capture semantic 
information, facilitating the restoration of damaged or missing image areas. Recent advancements in computer 
hardware and computing power have spurred the development of numerous deep learning-based completion 
methods. Pathak et al.9 introduced a context encoder network that incorporates both an encoder-decoder frame-
work and adversarial learning for image completion. However, this approach only enforces constraints on filled 
areas through adversarial loss, neglecting global consistency, which can lead to distorted boundaries. To enhance 
the overall realism of repaired images, Iizuka et al.10 integrated a global discriminator into the context encoder 
network, albeit with limitations in restoring intricate textures and details. To suppress blur and visual artifacts 
in repaired areas, Yang et al.11 presented a multi-scale neural patch synthesis method that optimizes both image 
content and texture constraints. Song et al.12 presented a two-step context-based neural network that separates 
the image completion task into inference and translation, ensuring visually coherent completion.

Conventionally, convolutional neural networks treat both damaged and intact areas identically, which can 
result in blurring artifacts and color aberrations in repaired images. To address this issue, Liu et al.13 proposed 
a partial convolutional network (PCN), which utilizes an automatic mask updating mechanism to constrain 
convolution operations to valid pixels. Zhang et al.14 decomposed image completion into multiple sub-tasks 
connected through a long short-term memory (LSTM) framework15, enabling step-by-step repairs from the 
boundaries of missing areas towards the interior. Shen et al.16 presented a densely connected generative net-
work designed for single-shot semantic image completion. Hong et al.17 integrated feature fusion blocks into 
the decoding path of U-Net, ensuring smoother transitions at the boundaries of filled areas. To address holes 
overlapping or touching foreground objects, Xiong et al.18 proposed a foreground-aware image completion 
technique that explicitly disentangles structure inference and content completion. Recognizing that missing 
areas may encompass multiple semantic categories, Liao et al.19 introduced a joint optimization framework for 
image segmentation and completion, leveraging coherent priors between semantics and textures. Shin et al.20 
introduced a lightweight and efficient semantic completion network that utilizes parallel extended-decoder 
paths to improve completion performance and reduce hardware costs. To address large holes in complex scenes, 
Zhou et al.21 introduced a reference-guided image completion method that integrates multi-homography, deep 
warping, and color harmonization. Kang et al.22 developed a completion neural network capable of generating 
3D images from sparsely sampled 2D images. To minimize structural distortions and texture blurring artifacts 
in repaired images, Zeng et al.23 proposed an aggregated contextual transformation method specifically designed 
for high-resolution image completion. To synthesize visually coherent content for missing regions, Shamsol-
moali et al.24 presented a context-adaptive transformer for image completion. Shao et al.25 proposed a damage 
attention graph module to estimate the damage degree of mural images. A series of loss functions are used to 
adaptively select repair strategies based on the diversity of damage. To balance long-range modeling capabilities 
with computational efficiency, Huang et al.26 introduced a sparse self-attention transformer tailored for image 
completion tasks. Seeking to eliminate the need for domain-specific training while maintaining fast inference 
speeds, Corneanu et al.27 presented a diffusion model that incorporates forward-backward fusion in latent space 
for image completion. Xu et al.28 proposes a united image completion method by integrating the UNet framework 
and the diffusion model, which first detects cracks in murals and then repairs them. Wei et al.29 presented a two-
stage restoration model for mural images under low light and defective conditions. Although these methods have 
achieved impressive results on natural images, they often yield unsatisfactory outcomes when applied to mural 
images due to data shifts and model inefficiencies. Mural images are characterized by abundant lines and smooth 
colors, exhibiting distinct patterns different from those found in natural images. Furthermore, the availability of 
mural images is limited in practice. As a result, these methods tend to produce unnatural repair appearances and 
severe artifacts, especially in the cases of large missing areas. In this study, we will present an efficient progres-
sive reasoning network for completing mural images. This network infers image luminance, sketch, and color to 
facilitate comprehensive image restoration.
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Method
In this section, we introduce the PRN model specifically designed for completing mural images. This model first 
infers a pair of luminance and sketch maps and then merges them to restore the complete color image. We will 
elaborate on the network architecture, the loss function, and other relevant details.

Network architecture
Figure 1 depicts the architecture of our PRN, which consists of two stages comprising three modules: a luminance 
reasoning module, a sketch reasoning module, and a color fusion module. In the first stage, both the luminance 
and sketch reasoning modules are constructed using the cyclic double-codec framework. The luminance rea-
soning module receives a damaged image along with its corresponding luminance image as inputs, ultimately 
generating a repaired luminance map as the output. Concurrently, the sketch reasoning module processes the 
damaged image and its corresponding sketch image, resulting in a repaired sketch map as the output. These 
luminance and sketch images are derived from the true-color damaged image by converting it to a luminance 
image and applying bilateral filtering30 to the original image, respectively. The luminance image represents light 
intensity, revealing the reflectance properties of mural surfaces, while the sketch image emphasizes image edges 
and partial color information. In the second stage, the color fusion module, grounded in the paired-associate 
learning framework, integrates the original damaged image with its luminance and sketch maps to produce the 
repaired image as the final output. In the upcoming subsections, we will delve deeper into the specifics of these 
three modules.

Luminance and sketch reasoning modules
The first stage of the PRN includes luminance and sketch reasoning modules. Both modules share an identi-
cal cyclic double-codec framework. However, they serve distinct purposes: one infers luminance information 
for missing areas, while the other infers sketch details. For the luminance reasoning module, the label is the 
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Fig. 1.   Network architecture of our PRN.
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ground-truth luminance map, while the inputs consist of the damaged image and its corresponding luminance 
image. Conversely, the sketch reasoning module uses the ground-truth sketch map as the label, with the dam-
aged image and its corresponding sketch image as the inputs. Inferring luminance and sketch maps separately 
proves simpler than attempting to directly deduce all information from the complete true-color image. Each 
module estimates image data from the outside to the inside of the missing areas. This process involves feature 
inference and feature fusion blocks, corresponding to the former and latter codecs, respectively. More precisely, 
feature inference operates iteratively. It first employs partial convolution to identify a ring-shaped region at the 
boundaries of each missing area and then fills this ring during each iteration until all missing areas are completed. 
Meanwhile, feature fusion combines all iteration outputs from the previous codec and then feeds them into the 
subsequent codec to generate either the luminance or sketch map.

Feature inference.  The feature inference block adopts a cyclic U-shaped codec structure that operates itera-
tively until all missing areas are filled. The first two layers of this former codec consist of partial convolutional 
layers, which aim to fill the ring-shaped regions on the boundaries of the missing areas during each iteration. 
These partial convolutional layers not only operate on valid regions of feature maps but also dynamically update 
the corresponding binary mask. Let Wk and b represent the weights for the k-th channel of the convolution filter 
and its bias, respectively. Within the current sliding convolution window, both Xi,j and Mi,j represent the input 
feature (or pixel values) and the corresponding binary mask, respectively. The output feature value generated by 
the partial convolutional layer at location (i, j, k) can be formulated as:

where T denotes the transpose operation, ⊙ represents the element-wise multiplication, 1 is the all-ones matrix of 
the same size as Mi,j , and S

(

Mi,j

)

 calculates the sum of all elements in the hole mask Mi,j . Following each partial 
convolution, the mask Mi,j is updated as follows:

where m′
i,j represents the updated pixel value at location (i, j) in the mask.

Within the bottleneck of the U-shaped codec, we introduce an attention layer to model the visual saliency 
of images. This attention layer leverages the complementarity of similar features to fill in missing areas with 
realistic textures. Specifically, we first measure the similarity between any two distinct vectors xi,j and xi′ ,j′ in 
feature maps at the τ-th iteration:

where �·� denotes the Euclidean norm, and �·� indicates the cosine similarity measure. Then we average the 
similarity values in a square neighborhood centered at location (i, j) in this formula:

where 2r + 1 is the side length of the square neighborhood. Next, we normalize these similarity values to com-
pute the attention score:

where W and H are the width and height of the feature maps, respectively. Since the feature maps pass through 
the attention layer at each iteration, for a pixel located in valid regions (i.e., with a mask value of 1) at the (τ − 1)
-th iteration, we calculate the weighted score by considering two consecutive iterations:

where � ∈ [0, 1] is a weighting parameter. For invalid areas, we use the attention score solely from the current 
iteration:

Finally, we use the weighted scores to compute the feature value at location 
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We collect these feature values to construct attention-corrected feature maps X̂τ , and then feed both X̂τ and Xτ 
into the subsequent convolutional layer in the decoder of the codec.

Throughout the iterative process of feature inference, the mask is continuously updated until all its values 
become 1, indicating that the feature maps have been fully generated without any missing areas.

Feature fusion.   The feature fusion block is another U-shaped codec designed to aggregate all outputs from fea-
ture inference for accurate luminance or sketch map estimations. To mitigate the influence of invalid values, we 
utilize the element-wise product of the output feature maps and their corresponding masks derived from feature 
inference as the inputs for feature fusion. The output Y of feature fusion can be formulated as:

where Xτ and Mτ denote the output feature maps and their corresponding masks generated during feature 
inference at the τ-th iteration, N designates the preset number of iterations, and ϕF2 is the mapping function of 
feature fusion.

Color fusion
With the estimated luminance and sketch maps available, the color fusion module serves as the second stage 
of the PRN to synthesize the complete true-color image. This module is based on a paired-associate learning 
framework, incorporating blocks of both differential reinforcement (DR) and residual attention (RA) blocks. The 
DR block utilizes two interactive complementary streams to extract deep features from the estimated luminance 
and sketch maps, respectively. Meanwhile, the RA block merges the combined features to generate a realistically 
repaired image.

Given the presence of invalid areas with zero-value pixels and human visual saliency in damaged images, the 
DR block is designed using gated convolution31 and spatial attention32. It consists of five pairs of gated convo-
lutional layers, three butterfly-shaped sections, and a concatenation layer. Unlike standard convolution treating 
both valid and invalid pixels equally, gated convolution dynamically selects features across all pixels at spatial 
channel locations. Let YI and YO represent the input and output of gated convolution, respectively. The output 
can be expressed as follows:

where ∗ denotes the convolution operator, ⊙ represents the element-wise multiplication operator, Bg and Bf  are 
two distinct convolving kernels, φ(·) is the activation function, and σ(·) is the sigmoid function.

Each stream in the DR block utilizes two cascaded gated convolutional layers to extract features from a pair of 
damaged images and the estimated luminance (or sketch) map. Subsequently, three cascaded pairs of butterfly-
shaped sections and gated convolutional layers facilitate interactive communication and coordination of feature 
representation. For each butterfly-shaped section, let FLumi and FSketch represent its input luminance and sketch 
features, respectively. Then its outputs are given by:

and

where ϕSP+(·) and ϕSP−(·) denote two paired spatial attention layers that recalibrate features in the spatial domain 
to model visual saliency of images. Figure 2 illustrates the internal structure of the spatial attention layer.

Given an input feature map FDiff ∈ R
H×W×C , the output FSA of the spatial attention layer is

with the spatial attention score ASP defined as

where gAvg(·) and gMax(·) represent average pooling and maximum pooling along the channel direction, respec-
tively. gConv(·) is a convolution operation with a kernel size of [7, 7] . ρ(·) denotes the sigmoid activation function.
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)
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Fig. 2.   Internal structure of spatial attention layer.
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After passing through two interactive streams in the DR block, the concatenated deep feature maps are fed into 
the subsequent RA block. To synthesize a realistic complete image, the RA block incorporates residual learning33 
and channel attention34. It consists of five standard convolutional layers, three-channel attention layers, and 
three residual skip connections. Channel attention complements spatial attention in modeling visual saliency 
by adaptively selecting and adjusting features in the channel domain. Figure 3 depicts the internal structure of 
the channel attention layer.

Given an input feature map FIn ∈ R
H×W×C , the output FCA of the channel attention layer is expressed as

with the channel attention map ACH defined as

where gAvg(·) and gMax(·) represent average pooling and maximum pooling in the spatial domain, respectively. 
gMLP(·) denotes a multi-layer perceptron composed of two fully connected layers. ρ(·) is the sigmoid activation 
function.

Loss functions
We incorporate both perceptual and style losses into the respective loss functions of the luminance reason-
ing, sketch reasoning, and color fusion modules. These losses effectively measure the deep feature discrep-
ancies between the predicted and ground-truth maps. Typically, the pre-trained VGG-16 model35 is used to 
extract relevant deep features for constructing loss functions. Let �Pm represent the output feature maps of size 
Hm ×Wm × Cm from the m-th pooling layer of VGG-16. The perceptual loss is then formulated as follows:

where �·�1 denotes the ℓ1 norm, and �Pred
Pm

 and �GT
Pm

 represent the deep features extracted from the predicted and 
ground-truth maps, respectively. Similarly, the style loss is defined as:

Furthermore, we incorporate the ℓ1 loss on valid areas (abbreviated as LValid ) and damaged areas (abbreviated 
as LHole ). The total loss for the luminance reasoning module is:

where �1 , �2 , �3 and �4 are the weighting parameters, LLumi
Valid is the ℓ1 loss on the valid areas, and LLumi

Hole  is the ℓ1 loss 
on the damaged areas. Analogously, the total loss for the sketch reasoning module is:

where �5 , �6 , �7 and �8 are the weighting parameters, LSketchValid  is the ℓ1 loss on the valid areas, and LSketchHole  is the ℓ1 
loss on the damaged areas.

Lastly, the total loss for the color fusion module is defined as:

where τ1, τ2, τ3 and τ4 are the weighting parameters. This loss function construction aims to restore missing 
regions by learning color information from valid areas in damaged images.
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Fig. 3.   Internal structure of channel attention layer.
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Experiments
Datasets
Mural image restoration requires a large amount of high-quality training data, but only a few mural images are 
available in practice. Some deep learning methods may perform poorly in image completion due to small mural 
data. Therefore, we select a large number of natural images as auxiliary data to train the network models because 
natural images are somewhat similar to mural images. We collected two distinct image datasets to train and evalu-
ate the proposed PRN model. One was the widely used Places236 dataset, comprising 1.8 million training images 
from 365 scenario categories, with 50 validation images and 900 testing images per category. The resolution of 
each image in the Places2 dataset is 256×256. The other dataset was our self-made dataset ‘Murals2’ divided into 
300 images for training, 100 images for validation, and 100 images for testing. Each image of the Murals2 dataset 
was cropped to a resolution of 256×256. To produce realistic missing areas, we used NVIDIA’s irregular mask 
dataset13 to simulate various missing shapes. This mask dataset contains 55116 masks for training, 6000 masks 
for validation, and 6000 masks for testing. According to the proportion of missing areas in a mask, the testing 
masks were further categorized into six subsets of the same size, located in the respective intervals (0.01,0.1], 
(0.1,0.2], (0.2,0.3], (0.3,0.4], (0.4,0.5], and (0.5,0.6]. During the training and validation phases, for each image 
(regarded as the ground-truth image) selected from the respective image dataset, we randomly chose a mask 
from the mask dataset. We then applied an element-wise product between the image and the mask to simulate 
a damaged image. Figure 4 exemplifies four samples from NVIDIA’s irregular mask dataset. As indicated in 
Fig. 4, white regions in the masks represent missing areas of the images, whereas black regions represent the 
valid portions. Given the scarcity of mural images, we adopted transfer learning to train all network models 
for fair comparisons. Specifically, we first trained each model using cross-validation on the Places2 dataset and 
then fine-tuned it on the Murals2 dataset. Both the initially trained and fine-tuned models were evaluated on 
the testing images to validate their efficacy.

Experimental settings
We introduced hyper-parameters in our model, specifically the weighting parameters in Eqs. (6), (19), (20) and 
(21). In Eq. (6), we employed � ∈ [0, 1] to strike a balance between the effects of consecutive iterations. During 
the training phase, we incrementally adjusted � from 0 to 1 in increments of 0.1, while keeping all other hyper-
parameters fixed. Our observations indicated that the optimal performance and the fastest convergence were 
achieved when � = 0.5 . In Eq. (19), we adjusted the values of �1 , �2 , �3 and �4 to find the ideal balance among the 
four components of the total loss function. The model exhibited convergence when all weighted terms aligned 
closely. Through rigorous testing and adjustment, we settled on the following values: �1 = 0.05 , �2 = 120 , �3 = 1 
and �4 = 6 . Likewise, for Eqs. (20) and (21), we determined the optimal hyper-parameters to be �5 = 0.05 , 
�6 = 120 , �7 = 1 , �8 = 6 , τ1 = 0.05 , τ2 = 100 , τ3 = 1 and τ4 = 5.

The parameters of the bilateral filter were configured as follows: a neighborhood diameter of d = 9 , a color 
space filter sigma of σColor = 60 , and a coordinate space filter sigma of σCoord = 9 . We adopted the adaptive 
moment estimation (Adam) optimizer37 for training our PRN model with a batch size of 6 by transfer learning. 
The hyper-parameters of Adam were set as ε = 10−8 , β1 = 0.9 and β2 = 0.999 . For transfer learning, the training 
process consisted of two stages. Initially, the model was trained on the Places2 dataset with successive learning 
rates of 2× 10−4 and 5× 10−5 . Subsequently, the model underwent fine-tuning on the Murals2 dataset using 
learning rates of 1× 10−4 and 2× 10−5 . Our PRN was implemented with PyTorch, and its three modules were 
trained on separate NVIDIA TITAN Xp GPUs. The luminance, sketch reasoning, and color fusion modules were 
trained for 10, 4, and 2 days on the Places2 dataset, followed by fine-tuning for 2, 1, and 1 days on the Murals2 
dataset, respectively. The final, well-trained model was selected through cross-validation for testing.

Ablation study
To validate the effectiveness of each component within our PRN, we rearranged its three modules into three 
distinct models for our ablation study. The first model variant (named PRN-C) eliminates the color fusion module 
and relies solely on the luminance and sketch reasoning modules to estimate the complete true-color images. The 
second variant (named PRN-A) retains all other components but replaces the second codec with an averaging 
operation across all cyclic double-codec structures. The last variant (named PRN-D) is constructed by removing 
the differential reinforcement block from the color fusion module. We conducted a comparative analysis of our 
PRN against these three variants using testing images from both the Places2 and Murals2 datasets.

Fig. 4.   Examples of NVIDIA’s irregular mask dataset.
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Figures 5 and 6 show a visual comparison between the repaired images obtained by our PRN and its variants, 
using two testing images randomly selected from the respective Places2 and Murals2 datasets. PRN-C produces 
significant distortion in the repaired images. Both PRN-A and PRN-D cause abundant artifacts and blurred 
regions within the repaired images. In contrast, our PRN recovers more accurate colors and clearer image details 
than its three variants.

Table 1 shows the peak signal-to-noise ratio (PSNR, measured in dB), structural similarity index measure 
(SSIM), and mean ℓ1 error values for the repaired images. These images were obtained by our PRN and its three 
variants on testing images corrupted with various mask ratios. As Table 1 demonstrates, our PRN consistently 
outperforms its variants across all three metrics: PSNR, SSIM, and mean ℓ1 norm. This strongly suggests that 
the color fusion module, double-codec components, and the differential reinforcement block are all crucial and 
advantageous elements of our PRN.

Baseline methods
To evaluate the performance of the proposed model, we selected milestone or popular methods as baseline 
methods. They include CR-Fill38, TFill39, LGNet40, AOT-GAN23, SCAT​41, CMT42, M2S43 and HINT44. For a fair 
comparison, we utilized the experimental results either reported in the papers or reproduced from the source 
codes released by the authors. All baseline methods were fine-tuned based on the publicly available pre-trained 
weights. Both subjective and objective evaluations were conducted to compare the proposed model and baseline 
methods.

Method evaluation
We compared the proposed PRN with various state-of-the-art methods, including CR-Fill38, TFill39, LGNet40, 
AOT-GAN23, SCAT​41, CMT42, M2S43 and HINT44. This comparison was conducted both qualitatively and quan-
titatively on the widely used Places2 and our customized Murals2 datasets. For the evaluation, we used the source 
codes provided by the authors of these baseline methods. To ensure a fair comparison, all methods underwent 
training and testing on the same image datasets. The hyperparameter settings for the comparison methods fol-
lowed those specified by their respective authors. If a pre-trained model was available, we performed transfer 
learning based on that model, fine-tuning it on the Murals2 dataset.

Input PRN-C PRN-A PRN-D PRN Ground truth

Fig. 5.   Visual comparison of repaired images obtained by our PRN and its variants for a testing image 
randomly selected from the Places2 dataset.

Input PRN-C PRN-A PRN-D PRN Ground truth

Fig. 6.   Visual comparison of repaired images obtained by our PRN and its variants for a testing image 
randomly selected from the Murals2 dataset.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:23519  | https://doi.org/10.1038/s41598-024-72368-1

www.nature.com/scientificreports/

Figures 7 and 8 show a visual comparison of the repaired images produced by baseline methods23,38–44 and 
the proposed PRN for the simulated testing images. These images were randomly chosen from the Places2 and 
Murals2 datasets, respectively. As depicted in the figures, CR-Fill38 tends to introduce excessive smoothness, 
resulting in a loss of details. TFill39, LGNet40 and AOT-GAN23 exhibit some local blurring and structural inac-
curacies, while SCAT​41 and HINT44 also produce blurry details. Although M2S42 produces better repair results 
than other comparison methods, the sketches in its repaired images are still blurred. For example, the lines of 
tree trunks are blurred, and the lines on the lower left corner of the flag are missing. In contrast, our PRN con-
sistently demonstrates superior repair results, delivering clear structures and realistic colors, thereby enhancing 
visual comfort compared to baseline methods.

We also compared our PRN with baseline methods quantitatively. For testing images from the Places2 and 
Murals2 datasets, Table 2 presents PSNR (dB), SSIM, mean ℓ1 error, and learned perceptual image patch similarity 
(LPIPS) values for the repaired images obtained by our PRN and baseline methods. The mask ratio denotes the 
proportion of missing areas relative to the entire image. As shown in Table 2, for the small mask ratio (0.1, 0.2], 
our PRN achieves lower PSNR/SSIM but lower mean ℓ1 and LPIPS than M2S43 and HINT44 on the Places2 dataset. 
In contrast, our PRN achieves higher PSNR/mean ℓ1 but lower SSIM than M2S43 and HINT44. Additionally, our 
PRN has lower LPIPS than HINT44, but higher LPIPS than M2S43 on the Murals2 dataset. Furthermore, for the 
large mask ratio (0.5, 0.6], our PRN has higher LPIPS than HINT44 on the Places2 dataset. Therefore, our PRN 
generally outperforms baseline methods across all four metrics.

In addition to evaluating simulated damaged images, we also assessed the performance of our PRN on real 
damaged mural images. Figure 9 offers a visual comparison between the repaired images obtained by baseline 
methods and our PRN for these real damaged murals. It is evident from Fig. 9 that our PRN excels in restoring 
both small and large missing areas, demonstrating remarkable robustness and consistency across diverse scenes.

Computational complexity
In addition to qualitative and quantitative performance evaluations, we conducted a comprehensive analysis 
of the computational complexity of our PRN compared to baseline methods. Our PRN comprises luminance, 
sketch, and color fusion modules. Both luminance and sketch reasoning modules share a cyclic double-codec 
structure. Each codec has 18 convolutional layers, with the former codec incorporating an attention layer at 
its bottleneck and 4 partial convolutional layers at the encoder’s front end. The former codec of each cyclic 
double-codec structure performs 6 iterations, generating 6 pairs of initial luminance and sketch maps. These are 
then fused by the latter codec to produce a final pair of luminance and sketch maps. The color fusion module 
includes 10 gated convolutional layers, 5 convolutional layers, 6 spatial attention layers, and 3 channel attention 
layers. Therefore, the total computational complexity of PRN, measured in floating point operations (FLOPs), 
is approximated by the following equation:

where H and W are the height and width of the input image, respectively.
To evaluate the practical performance of our PRN, We conducted tests on an NVIDIA RTX 2060 GPU (12GB) 

using Python 3.9 under the Windows 11 operating system, powered by an Intel Core i5-12400 chip (16GB RAM, 
512GB SSD). Table 3 compares the computation time of each module within our PRN for two randomly selected 
testing images of respective sizes 256× 256× 3 and 512× 512× 3.

Furthermore, Table 4 presents a comparison of computation times between our PRN and various baseline 
methods. While our unoptimized PRN takes longer than CR-Fill38, LGNet40, AOT-GAN23, SCAT​41, CMT42, M2S43 
and HINT44, it still outperforms TFill39 in terms of computation time. Similar results were observed for other 

(22)Time ∼ o
(

9.7HW × 106
)

,

Table 1.   Quantitative evaluation values of repaired images obtained by our PRN and its variants for testing 
images from both the Places2 and Murals2 datasets. ↑ Higher is better. ↓ Lower is better. The best results are 
highlighted in bold.

Mask ratio (0.1, 0.2] (0.3, 0.4] (0.5, 0.6]

Dataset Places2 Murals2 Places2 Murals2 Places2 Murals2

 PSNR ↑

PRN-C 28.32 27.08 22.99 22.18 20.37 19.80

PRN-A 28.62 27.40 23.47 22.61 20.76 20.15

PRN-D 28.70 27.44 23.42 22.68 20.97 20.24

Our PRN 28.77 27.56 23.58 22.79 21.06 20.35

SSIM ↑

PRN-C 0.9392 0.9206 0.8208 0.7950 0.5883 0.5671

PRN-A 0.9432 0.9235 0.8256 0.8028 0.6110 0.5815

PRN-D 0.9439 0.9238 0.8269 0.8046 0.6126 0.5877

Our PRN 0.9451 0.9258 0.8293 0.8061 0.6156 0.5905

Mean ℓ1 ↓

PRN-C 1.12 1.54 2.73 3.15 6.11 7.16

PRN-A 1.05 1.46 2.57 3.03 5.91 6.92

PRN-D 1.03 1.41 2.50 2.91 5.80 6.87

Our PRN 1.01 1.36 2.42 2.86 5.71 6.78



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:23519  | https://doi.org/10.1038/s41598-024-72368-1

www.nature.com/scientificreports/

testing images. These findings demonstrate the computational efficiency of our PRN relative to some baseline 
methods, highlighting its potential for practical applications despite its complexity.

Discussion
We decomposed the complex image completion problem into three progressive subtasks rather than treating it 
as a whole optimization task. This can make it easier to train the model, execute the task, and improve the per-
formance of image completion. Figures 5 and 6 and Tables 1 and 2 demonstrate the rationality and effectiveness 
of our PRN model. From Figs. 7, 8 and 9, our PRN produces visually pleasing repaired images and demonstrates 
better repair results than CR-Fill38, TFill39, LGNet40, AOT-GAN23, SCAT​41 and CMT42. However, our PRN may 
generate more blurry lines and artifacts in some cases than M2S43 and HINT44. This could be due to model 
forecast errors in missing data estimation. Moreover, our PRN often achieves superior repair results compared 
to baseline methods, albeit with increased computational complexity, as illustrated in Table 4. Through the 
experiments, we discovered that the consistency between the estimated luminance and sketch maps is crucial for 

Table 2.   Quantitative evaluation values of repaired images obtained by our PRN and baseline methods for 
testing images from the Places2 and Murals2 datasets. ↑ Higher is better. ↓ Lower is better. The best results are 
highlighted in bold.

Mask Ratio (0.1, 0.2] (0.3, 0.4] (0.5, 0.6]

Dataset Places2 Murals2 Places2 Murals2 Places2 Murals2

PSNR ↑

CR-Fill [2021] 28.39 27.16 23.08 22.32 20.56 19.97

TFill [2022] 28.57 27.25 23.33 22.57 20.77 20.10

LGNet [2022] 28.28 27.03 22.94 22.21 20.42 19.88

AOT-GAN [2023] 28.21 26.91 22.82 22.14 20.30 19.79

SCAT [2023] 28.62 27.14 23.19 22.47 20.65 19.64

CMT [2023] 28.75 27.35 23.25 22.53 20.73 19.72

M2S [2024] 28.91 27.44 23.49 22.61 20.94 19.95

HINT [2024] 29.01 27.52 23.53 22.71 20.89 19.96

PRN 28.77 27.56 23.58 22.79 21.06 20.35

SSIM ↑

CR-Fill [2021] 0.9419 0.9215 0.8234 0.7984 0.6009 0.5782

TFill [2022] 0.9430 0.9231 0.8257 0.8021 0.6056 0.5668

LGNet [2022] 0.9411 0.9211 0.8219 0.7963 0.5944 0.5596

AOT-GAN [2023] 0.9395 0.9198 0.8191 0.7940 0.5831 0.5502

SCAT [2023] 0.9353 0.9115 0.8199 0.8045 0.6054 0.5849

CMT [2023] 0.9375 0.9263 0.8247 0.7936 0.6073 0.5732

M2S [2024] 0.9531 0.9379 0.8288 0.8042 0.6145 0.5875

HINT [2024] 0.9535 0.9342 0.8276 0.7859 0.6038 0.5810

PRN 0.9451 0.9258 0.8293 0.8061 0.6156 0.5905

Mean ℓ1 ↓

CR-Fill [2021] 1.08 1.45 2.60 3.04 5.94 7.03

TFill [2022] 1.04 1.41 2.52 2.98 5.91 6.90

LGNet [2022] 1.11 1.49 2.65 3.10 6.11 7.06

AOT-GAN [2023] 1.13 1.52 2.71 3.14 6.19 7.17

SCAT [2023] 1.06 1.47 2.54 3.11 6.02 7.11

CMT [2023] 1.10 1.31 2.51 2.97 5.94 6.54

M2S [2024] 1.05 1.24 2.36 2.91 5.84 6.39

HINT [2024] 1.07 1.23 2.68 3.01 5.80 6.78

PRN 1.01 1.36 2.42 2.86 5.71 6.01

LPIPS ↓

CR-Fill [2021] 0.0896 0.0811 0.1821 0.1796 0.2907 0.3214

TFill [2022] 0.0897 0.0826 0.1815 0.1874 0.2913 0.3319

LGNet [2022] 0.0872 0.0839 0.1784 0.1857 0.2965 0.3461

AOT-GAN [2023] 0.0843 0.0813 0.1771 0.1831 0.2943 0.3076

SCAT [2023] 0.0824 0.0828 0.1779 0.1822 0.2944 0.3151

CMT [2023] 0.0819 0.0783 0.1754 0.1804 0.2931 0.3102

M2S [2024] 0.0796 0.0765 0.1637 0.1722 0.2849 0.3075

HINT [2024] 0.0794 0.0794 0.1644 0.1737 0.2804 0.3084

PRN 0.0782 0.0772 0.1602 0.1709 0.2816 0.3064
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achieving high-quality image completion. To ensure this consistency, we utilized a unified network architecture 
and datasets in our methodology. Considering the trade-off between computational complexity and performance, 
our PRN shows great potential for applications in the field of digital art preservation and restoration.

Conclusion
In this paper, we present a novel mural image completion model based on the progressive reasoning network. 
This model incorporates luminance and sketch reasoning modules, both constructed on the same cyclic double-
codec frameworks, aimed at estimating a matching pair of luminance and sketch maps. Additionally, we designed 
a color fusion module that utilizes differential reinforcement and residual attention blocks to reconstruct the 
complete true-color image. By employing transfer learning, the model is trained on both publicly available and 

Input CRFill TFill LGNet AOT-GAN PRN Ground truthSCAT HINTM2SCMT

Fig. 7.   Visual comparison of repaired images obtained by CR-Fill38, TFill39, LGNet40, AOT-GAN23, SCAT​41, 
CMT42, M2S43, HINT44 and our PRN for three testing images randomly selected from the Places2 dataset.

Input CRFill TFill LGNet AOT-GAN PRN Ground truthSCAT HINTCMT M2S

Fig. 8.   Visual comparison of repaired images obtained by CR-Fill38, TFill39, LGNet40, AOT-GAN23, SCAT​41, 
CMT42, M2S43, HINT44 and our PRN for three testing images randomly selected from the Murals2 dataset.
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customized datasets. Experimental results reveal that our proposed model not only produces realistic repaired 
images but also outperforms the state-of-the-art methods, both qualitatively and quantitatively. To further 
enhance image completion performance, we intend to conduct comprehensive research on repairing issues 
such as pigment shedding and other diseases affecting digitized images of ancient murals.

Data availability
The Places2 dataset is available from: http://​place​s2.​csail.​mit.​edu. The Murals2 dataset used and analyzed during 
the current study is available from the corresponding author upon reasonable request.
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