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Ancient murals embody profound historical, cultural, scientific, and artistic values, yet many are
afflicted with challenges such as pigment shedding or missing parts. While deep learning-based
completion techniques have yielded remarkable results in restoring natural images, their application
to damaged murals has been unsatisfactory due to data shifts and limited modeling efficacy.

This paper proposes a novel progressive reasoning network designed specifically for mural image
completion, inspired by the mural painting process. The proposed network comprises three key
modules: a luminance reasoning module, a sketch reasoning module, and a color fusion module.

The first two modules are based on the double-codec framework, designed to infer missing areas’
luminance and sketch information. The final module then utilizes a paired-associate learning approach
to reconstruct the colorimage. This network utilizes two parallel, complementary pathways to
estimate the luminance and sketch maps of a damaged mural. Subsequently, these two maps are
combined to synthesize a complete colorimage. Experimental results indicate that the proposed
network excels in restoring clearer structures and more vivid colors, surpassing current state-of-the-
art methods in both quantitative and qualitative assessments for repairing damaged images. Our code
and results will be publicly accessible at https://github.com/albestobe/PRN.
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Ancient murals, as invaluable cultural relics, provide crucial supplementary insights into historical documents.
However, due to natural and man-made destruction, these artworks are often subjected to various forms of
degradation, including pigment shedding, cracking, mildew, and mud pollution. Such damage significantly
impedes people’s comprehension and appreciation of these murals, diminishing their sense of understanding,
enjoyment, and contentment. Conventionally, cultural relic restorers engage in the laborious and inefficient
task of manually repairing mural paintings. This traditional approach falls short of meeting the demands of
large-scale mural restoration and permanent preservation. In contrast, digital completion presents a potentially
viable solution for virtual restoration. This technique enables the filling of missing areas in damaged mural
images without physically altering the murals themselves, offering a promising alternative for preserving and
appreciating these ancient artworks.

Over the past decade, deep learning-based completion methods'~ have attracted significant attention due to
their remarkable results in restoring natural images. These methods, primarily based on the codec framework,
utilize an encoder to extract compact underlying features from damaged images and a decoder to reconstruct
the entire image. Nevertheless, when applied to mural images, they often yield unsatisfactory outcomes due to
data shifts and limited modeling efficacy. In their previous study, Zhang et al.* proposed a content-constrained
convolutional network for completing mural images by integrating dual-domain partial convolution and a space-
varying activation function. However, they neglected the crucial aspect of the mural painting process, which
typically commences with sketching and then proceeds to color. In this paper, we propose a novel progressive
reasoning network (PRN) for restoring images of ancient murals by considering the mural painting process.
The proposed network integrates two recursive double-codec modules and a paired-associate learning module.
This network first estimates luminance and sketch maps from a damaged mural image and then merges them to
restore the complete color image. We implemented and evaluated our PRN, comparing it with baseline methods
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on benchmark datasets. The experiments reveal that our PRN achieves superior repair results, outperforming
baseline methods both qualitatively and quantitatively. The key contributions of this paper are threefold: (1) A
novel progressive reasoning network is designed for mural image completion; (2) Two complementary double-
codec modules are constructed to infer luminance and sketch maps, respectively; and (3) A paired-associate
learning module is developed to synthesize the complete color image.

Related work

Early methods

Image completion, which dates back to the 2000s, aims to restore damaged or missing parts of an image to
construct a visually complete image. Early image completion methods are broadly classified into two catego-
ries: diffusion-based and example-based approaches. Diffusion-based approaches™® rely on neighboring pixels
surrounding the missing areas to propagate information inward to fill the holes. However, they are usually
constrained to small or narrowly defined areas because of their inherent gradual pixel diffusion nature. In con-
trast, example-based methods”® search for similar image blocks either within the damaged image itself or in an
external database to repair the damaged areas. While these approaches offer more flexibility, they rely heavily
on the availability of matching image blocks, which can be challenging for complex structures and patterns. As
a result, they may not be suitable for all types of damage, especially those with intricate details.

Contemporary methods
Unlike early methods, contemporary image completion methods use neural networks to capture semantic
information, facilitating the restoration of damaged or missing image areas. Recent advancements in computer
hardware and computing power have spurred the development of numerous deep learning-based completion
methods. Pathak et al.? introduced a context encoder network that incorporates both an encoder-decoder frame-
work and adversarial learning for image completion. However, this approach only enforces constraints on filled
areas through adversarial loss, neglecting global consistency, which can lead to distorted boundaries. To enhance
the overall realism of repaired images, lizuka et al.!* integrated a global discriminator into the context encoder
network, albeit with limitations in restoring intricate textures and details. To suppress blur and visual artifacts
in repaired areas, Yang et al.!! presented a multi-scale neural patch synthesis method that optimizes both image
content and texture constraints. Song et al.'? presented a two-step context-based neural network that separates
the image completion task into inference and translation, ensuring visually coherent completion.
Conventionally, convolutional neural networks treat both damaged and intact areas identically, which can
result in blurring artifacts and color aberrations in repaired images. To address this issue, Liu et al.'* proposed
a partial convolutional network (PCN), which utilizes an automatic mask updating mechanism to constrain
convolution operations to valid pixels. Zhang et al.'* decomposed image completion into multiple sub-tasks
connected through a long short-term memory (LSTM) framework'®, enabling step-by-step repairs from the
boundaries of missing areas towards the interior. Shen et al.'® presented a densely connected generative net-
work designed for single-shot semantic image completion. Hong et al.'” integrated feature fusion blocks into
the decoding path of U-Net, ensuring smoother transitions at the boundaries of filled areas. To address holes
overlapping or touching foreground objects, Xiong et al.'® proposed a foreground-aware image completion
technique that explicitly disentangles structure inference and content completion. Recognizing that missing
areas may encompass multiple semantic categories, Liao et al.'” introduced a joint optimization framework for
image segmentation and completion, leveraging coherent priors between semantics and textures. Shin et al.?
introduced a lightweight and efficient semantic completion network that utilizes parallel extended-decoder
paths to improve completion performance and reduce hardware costs. To address large holes in complex scenes,
Zhou et al.?! introduced a reference-guided image completion method that integrates multi-homography, deep
warping, and color harmonization. Kang et al.** developed a completion neural network capable of generating
3D images from sparsely sampled 2D images. To minimize structural distortions and texture blurring artifacts
in repaired images, Zeng et al.?> proposed an aggregated contextual transformation method specifically designed
for high-resolution image completion. To synthesize visually coherent content for missing regions, Shamsol-
moali et al.** presented a context-adaptive transformer for image completion. Shao et al.”® proposed a damage
attention graph module to estimate the damage degree of mural images. A series of loss functions are used to
adaptively select repair strategies based on the diversity of damage. To balance long-range modeling capabilities
with computational efficiency, Huang et al.?® introduced a sparse self-attention transformer tailored for image
completion tasks. Seeking to eliminate the need for domain-specific training while maintaining fast inference
speeds, Corneanu et al.?” presented a diffusion model that incorporates forward-backward fusion in latent space
for image completion. Xu et al.?® proposes a united image completion method by integrating the UNet framework
and the diffusion model, which first detects cracks in murals and then repairs them. Wei et al.”® presented a two-
stage restoration model for mural images under low light and defective conditions. Although these methods have
achieved impressive results on natural images, they often yield unsatisfactory outcomes when applied to mural
images due to data shifts and model inefficiencies. Mural images are characterized by abundant lines and smooth
colors, exhibiting distinct patterns different from those found in natural images. Furthermore, the availability of
mural images is limited in practice. As a result, these methods tend to produce unnatural repair appearances and
severe artifacts, especially in the cases of large missing areas. In this study, we will present an efficient progres-
sive reasoning network for completing mural images. This network infers image luminance, sketch, and color to
facilitate comprehensive image restoration.
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Method

In this section, we introduce the PRN model specifically designed for completing mural images. This model first
infers a pair of luminance and sketch maps and then merges them to restore the complete color image. We will
elaborate on the network architecture, the loss function, and other relevant details.

Network architecture

Figure 1 depicts the architecture of our PRN, which consists of two stages comprising three modules: a luminance
reasoning module, a sketch reasoning module, and a color fusion module. In the first stage, both the luminance
and sketch reasoning modules are constructed using the cyclic double-codec framework. The luminance rea-
soning module receives a damaged image along with its corresponding luminance image as inputs, ultimately
generating a repaired luminance map as the output. Concurrently, the sketch reasoning module processes the
damaged image and its corresponding sketch image, resulting in a repaired sketch map as the output. These
luminance and sketch images are derived from the true-color damaged image by converting it to a luminance
image and applying bilateral filtering® to the original image, respectively. The luminance image represents light
intensity, revealing the reflectance properties of mural surfaces, while the sketch image emphasizes image edges
and partial color information. In the second stage, the color fusion module, grounded in the paired-associate
learning framework, integrates the original damaged image with its luminance and sketch maps to produce the
repaired image as the final output. In the upcoming subsections, we will delve deeper into the specifics of these
three modules.

Luminance and sketch reasoning modules

The first stage of the PRN includes luminance and sketch reasoning modules. Both modules share an identi-
cal cyclic double-codec framework. However, they serve distinct purposes: one infers luminance information
for missing areas, while the other infers sketch details. For the luminance reasoning module, the label is the
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Fig. 1. Network architecture of our PRN.
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ground-truth luminance map, while the inputs consist of the damaged image and its corresponding luminance
image. Conversely, the sketch reasoning module uses the ground-truth sketch map as the label, with the dam-
aged image and its corresponding sketch image as the inputs. Inferring luminance and sketch maps separately
proves simpler than attempting to directly deduce all information from the complete true-color image. Each
module estimates image data from the outside to the inside of the missing areas. This process involves feature
inference and feature fusion blocks, corresponding to the former and latter codecs, respectively. More precisely,
feature inference operates iteratively. It first employs partial convolution to identify a ring-shaped region at the
boundaries of each missing area and then fills this ring during each iteration until all missing areas are completed.
Meanwhile, feature fusion combines all iteration outputs from the previous codec and then feeds them into the
subsequent codec to generate either the luminance or sketch map.

Feature inference. The feature inference block adopts a cyclic U-shaped codec structure that operates itera-
tively until all missing areas are filled. The first two layers of this former codec consist of partial convolutional
layers, which aim to fill the ring-shaped regions on the boundaries of the missing areas during each iteration.
These partial convolutional layers not only operate on valid regions of feature maps but also dynamically update
the corresponding binary mask. Let Wy and b represent the weights for the k-th channel of the convolution filter
and its bias, respectively. Within the current sliding convolution window, both X;; and M; ; represent the input
feature (or pixel values) and the corresponding binary mask, respectively. The output feature value generated by
the partial convolutional layer at location (i, j, k) can be formulated as:

W (X;;0M;j)S(1) b S
ST =TT 4 b, §(M;) > 0
Xijk = { son,) 0 S(Mi)

0, S(M;j) =0 @

where T denotes the transpose operation, © represents the element-wise multiplication, 1 is the all-ones matrix of

the same size as M; j, and S (Mi ,j) calculates the sum of all elements in the hole mask M; ;. Following each partial
convolution, the mask M; is updated as follows:

;L S(M,‘,j) >0
o= a0 @
where m ; represents the updated pixel value at location (i, j) in the mask.

Within the bottleneck of the U-shaped codec, we introduce an attention layer to model the visual saliency
of images. This attention layer leverages the complementarity of similar features to fill in missing areas with
realistic textures. Specifically, we first measure the similarity between any two distinct vectors x;; and x; 7 in

feature maps at the t-th iteration:
T _ Xi,j Xi' i
51,],1/,]/ < HX,JH > HXi/’jf >> (3)

where ||-|| denotes the Euclidean norm, and (-) indicates the cosine similarity measure. Then we average the
similarity values in a square neighborhood centered at location (3, j) in this formula:

1
5 = S
Wi = (r 4 1)2 p’qeg’m’” i+p,j+q.' (4)

where 2r + 1is the side length of the square neighborhood. Next, we normalize these similarity values to com-
pute the attention score:

<T
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Qijiry = G (5)
7e(l, - Whie{l, .1} 7

where W and H are the width and height of the feature maps, respectively. Since the feature maps pass through

the attention layer at each iteration, for a pixel located in valid regions (i.e., with a mask value of 1) at the (z — 1)

-th iteration, we calculate the weighted score by considering two consecutive iterations:

AT—1

T _gaT .
ai’j,ilaj/ - Aai,j,i/,j/ + (1 - A)ai,j,i’,j” (6)

where / € [0, 1]is a weighting parameter. For invalid areas, we use the attention score solely from the current
iteration:

T __ AT
ai,j)i,)j, = al‘)j’i/,jl. (7)

Finally, we use the weighted scores to compute the feature value at location (i, ) as follows:

5T T T
=Y ©
i'e{l, ,W}hj'e{l,- H}
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We collect these feature values to construct attention-corrected feature maps X7, and then feed both X” and X”
into the subsequent convolutional layer in the decoder of the codec.

Throughout the iterative process of feature inference, the mask is continuously updated until all its values
become 1, indicating that the feature maps have been fully generated without any missing areas.

Feature fusion. ~ The feature fusion block is another U-shaped codec designed to aggregate all outputs from fea-
ture inference for accurate luminance or sketch map estimations. To mitigate the influence of invalid values, we
utilize the element-wise product of the output feature maps and their corresponding masks derived from feature
inference as the inputs for feature fusion. The output Y of feature fusion can be formulated as:

Y=g¢p, (X'OM;, -, X"OM;,- -, XN OMy), (9)

where X* and M; denote the output feature maps and their corresponding masks generated during feature
inference at the 7-th iteration, N designates the preset number of iterations, and ¢, is the mapping function of
feature fusion.

Color fusion

With the estimated luminance and sketch maps available, the color fusion module serves as the second stage
of the PRN to synthesize the complete true-color image. This module is based on a paired-associate learning
framework, incorporating blocks of both differential reinforcement (DR) and residual attention (RA) blocks. The
DR block utilizes two interactive complementary streams to extract deep features from the estimated luminance
and sketch maps, respectively. Meanwhile, the RA block merges the combined features to generate a realistically
repaired image.

Given the presence of invalid areas with zero-value pixels and human visual saliency in damaged images, the
DR block is designed using gated convolution®! and spatial attention®. It consists of five pairs of gated convo-
lutional layers, three butterfly-shaped sections, and a concatenation layer. Unlike standard convolution treating
both valid and invalid pixels equally, gated convolution dynamically selects features across all pixels at spatial
channel locations. Let Y and Yo represent the input and output of gated convolution, respectively. The output
can be expressed as follows:

Yo = ¢(Bg * Y1) © o (Bf % Y1), (10)

where * denotes the convolution operator, O represents the element-wise multiplication operator, B and By are
two distinct convolving kernels, ¢ () is the activation function, and o (-) is the sigmoid function.

Each stream in the DR block utilizes two cascaded gated convolutional layers to extract features from a pair of
damaged images and the estimated luminance (or sketch) map. Subsequently, three cascaded pairs of butterfly-
shaped sections and gated convolutional layers facilitate interactive communication and coordination of feature
representation. For each butterfly-shaped section, let Fyymi and Fsyetch represent its input luminance and sketch
features, respectively. Then its outputs are given by:

F/Lumi=‘P5P+ (Fsketch — FLumi) + Frumi (1 1)
and

F sietch=¢sp— (FLumi — Fsketch) + Fsketchs (12)

where gspt (-) and gsp_ () denote two paired spatial attention layers that recalibrate features in the spatial domain
to model visual saliency of images. Figure 2 illustrates the internal structure of the spatial attention layer.
Given an input feature map Fpig € RFT*WXC the output Fsp of the spatial attention layer is

Fsa = Asp O Fpifr (13)
with the spatial attention score Agp defined as
Asp = p (gConv ( [gAvg(FDiff)§ 8Max (FDiff)} ) ) > (14)

where gavg(-) and gmax (+) represent average pooling and maximum pooling along the channel direction, respec-
tively. gcony(+) is a convolution operation with a kernel size of[7, 7]. p(-) denotes the sigmoid activation function.

Spatlal attention

AV;DPOOI
Conv
Max Pool
@ Sigmoid activation ~ ® Element-wise multiplication

Fig. 2. Internal structure of spatial attention layer.
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After passing through two interactive streams in the DR block, the concatenated deep feature maps are fed into
the subsequent RA block. To synthesize a realistic complete image, the RA block incorporates residual learning®
and channel attention®*. It consists of five standard convolutional layers, three-channel attention layers, and
three residual skip connections. Channel attention complements spatial attention in modeling visual saliency
by adaptively selecting and adjusting features in the channel domain. Figure 3 depicts the internal structure of
the channel attention layer.

Given an input feature map Fr, € RE*WxC

, the output Fca of the channel attention layer is expressed as
Fca = Acu O Fiy (15)

with the channel attention map Acy defined as
Act = p(gvrp (gavg(Fin)) + gumrp (§vax (F1n))), (16)

where gavg(-) and guMax (-) represent average pooling and maximum pooling in the spatial domain, respectively.
guvrp(+) denotes a multi-layer perceptron composed of two fully connected layers. p(-) is the sigmoid activation
function.

Loss functions

We incorporate both perceptual and style losses into the respective loss functions of the luminance reason-
ing, sketch reasoning, and color fusion modules. These losses effectively measure the deep feature discrep-
ancies between the predicted and ground-truth maps. Typically, the pre-trained VGG-16 model™® is used to
extract relevant deep features for constructing loss functions. Let ®p,, represent the output feature maps of size
Hpy X Wy, x Cy, from the m-th pooling layer of VGG-16. The perceptual loss is then formulated as follows:

N

1
Lpercept = Z Ho WG Hq’g,f - op

’ 17)

n=1
where||-||; denotes the £; norm, and d>£fned and d>1§: represent the deep features extracted from the predicted and
ground-truth maps, respectively. Similarly, the style loss is defined as:

N

1 1
L = X
stle = D Cm X Cm ~ HpWpCom
=l (18)

T T
GT GT Pred Pred
x || (cbpm) — b (cbpjf )

1

Furthermore, we incorporate the £; loss on valid areas (abbreviated as Ly,liq) and damaged areas (abbreviated
as Lyole). The total loss for the luminance reasoning module is:

77 Lumi Lumi Lumi ; 7 7Lumi
Lyumi=/1 LPercept + }'ZLStyle + ;”3LValid +A4Lpgle s (19)
where 4, A2, 43 and A4 are the weighting parameters, L{“,‘;ﬁ‘c{ is the £1 loss on the valid areas, and L]}“I‘gl‘y is the £; loss
on the damaged areas. Analogously, the total loss for the sketch reasoning module is:

71 Sketch Sketch Sketch | 5 7Sketch
Lketch :ASLPeScfept+;“6LSt;le +/‘L7LVaeii§1 +/“8LHoele > (20)

where 45, A6, A7 and /g are the weighting parameters, Lg;ehtgh is the £1loss on the valid areas, and LSHk(flfh is the £1

loss on the damaged areas.
Lastly, the total loss for the color fusion module is defined as:

Col Col Col Col
Leolor =Tt Lpercept + T2Lsiyte. +73Lvaiid +T4Liile » (1)

where 11, 72, T3 and 74 are the weighting parameters. This loss function construction aims to restore missing
regions by learning color information from valid areas in damaged images.

[ AvgPool Channel attention

S . P —
MaxPool
0

®Addition @Sigmoid activation ®Element-wise multiplication

Fig. 3. Internal structure of channel attention layer.
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Experiments

Datasets

Mural image restoration requires a large amount of high-quality training data, but only a few mural images are
available in practice. Some deep learning methods may perform poorly in image completion due to small mural
data. Therefore, we select a large number of natural images as auxiliary data to train the network models because
natural images are somewhat similar to mural images. We collected two distinct image datasets to train and evalu-
ate the proposed PRN model. One was the widely used Places2* dataset, comprising 1.8 million training images
from 365 scenario categories, with 50 validation images and 900 testing images per category. The resolution of
each image in the Places2 dataset is 256x256. The other dataset was our self-made dataset ‘Murals2’ divided into
300 images for training, 100 images for validation, and 100 images for testing. Each image of the Murals2 dataset
was cropped to a resolution of 256x256. To produce realistic missing areas, we used NVIDIA’ irregular mask
dataset!® to simulate various missing shapes. This mask dataset contains 55116 masks for training, 6000 masks
for validation, and 6000 masks for testing. According to the proportion of missing areas in a mask, the testing
masks were further categorized into six subsets of the same size, located in the respective intervals (0.01,0.1],
(0.1,0.2], (0.2,0.3], (0.3,0.4], (0.4,0.5], and (0.5,0.6]. During the training and validation phases, for each image
(regarded as the ground-truth image) selected from the respective image dataset, we randomly chose a mask
from the mask dataset. We then applied an element-wise product between the image and the mask to simulate
a damaged image. Figure 4 exemplifies four samples from NVIDIA’s irregular mask dataset. As indicated in
Fig. 4, white regions in the masks represent missing areas of the images, whereas black regions represent the
valid portions. Given the scarcity of mural images, we adopted transfer learning to train all network models
for fair comparisons. Specifically, we first trained each model using cross-validation on the Places2 dataset and
then fine-tuned it on the Murals2 dataset. Both the initially trained and fine-tuned models were evaluated on
the testing images to validate their efficacy.

Experimental settings

We introduced hyper-parameters in our model, specifically the weighting parameters in Eqgs. (6), (19), (20) and
(21). In Eq. (6), we employed 4 € [0, 1] to strike a balance between the effects of consecutive iterations. During
the training phase, we incrementally adjusted 4 from 0 to 1 in increments of 0.1, while keeping all other hyper-
parameters fixed. Our observations indicated that the optimal performance and the fastest convergence were
achieved when 4 = 0.5. In Eq. (19), we adjusted the values of 41, 42, 43 and A4 to find the ideal balance among the
four components of the total loss function. The model exhibited convergence when all weighted terms aligned
closely. Through rigorous testing and adjustment, we settled on the following values: 2; = 0.05, 2, = 120,43 =1
and /4 = 6. Likewise, for Eqgs. (20) and (21), we determined the optimal hyper-parameters to be 45 = 0.05,
Ae = 120,17 = 1,13 = 6,71 = 0.05,7, = 100,73 = land 74 = 5.

The parameters of the bilateral filter were configured as follows: a neighborhood diameter of d = 9, a color
space filter sigma of o¢olor = 60, and a coordinate space filter sigma of ocoorg = 9. We adopted the adaptive
moment estimation (Adam) optimizer®’ for training our PRN model with a batch size of 6 by transfer learning.
The hyper-parameters of Adam were setase = 1078, 81 = 0.9and 8, = 0.999. For transfer learning, the training
process consisted of two stages. Initially, the model was trained on the Places2 dataset with successive learning
rates of 2 x 10™* and 5 x 107°. Subsequently, the model underwent fine-tuning on the Murals2 dataset using
learning rates of 1 x 10~#and 2 x 107>, Our PRN was implemented with PyTorch, and its three modules were
trained on separate NVIDIA TITAN Xp GPUs. The luminance, sketch reasoning, and color fusion modules were
trained for 10, 4, and 2 days on the Places2 dataset, followed by fine-tuning for 2, 1, and 1 days on the Murals2
dataset, respectively. The final, well-trained model was selected through cross-validation for testing.

Ablation study

To validate the effectiveness of each component within our PRN, we rearranged its three modules into three
distinct models for our ablation study. The first model variant (named PRN-C) eliminates the color fusion module
and relies solely on the luminance and sketch reasoning modules to estimate the complete true-color images. The
second variant (named PRN-A) retains all other components but replaces the second codec with an averaging
operation across all cyclic double-codec structures. The last variant (named PRN-D) is constructed by removing
the differential reinforcement block from the color fusion module. We conducted a comparative analysis of our
PRN against these three variants using testing images from both the Places2 and Murals2 datasets.

Fig. 4. Examples of NVIDIAs irregular mask dataset.
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Figures 5 and 6 show a visual comparison between the repaired images obtained by our PRN and its variants,
using two testing images randomly selected from the respective Places2 and Murals2 datasets. PRN-C produces
significant distortion in the repaired images. Both PRN-A and PRN-D cause abundant artifacts and blurred
regions within the repaired images. In contrast, our PRN recovers more accurate colors and clearer image details
than its three variants.

Table 1 shows the peak signal-to-noise ratio (PSNR, measured in dB), structural similarity index measure
(SSIM), and mean ¢ error values for the repaired images. These images were obtained by our PRN and its three
variants on testing images corrupted with various mask ratios. As Table 1 demonstrates, our PRN consistently
outperforms its variants across all three metrics: PSNR, SSIM, and mean ¢; norm. This strongly suggests that
the color fusion module, double-codec components, and the differential reinforcement block are all crucial and
advantageous elements of our PRN.

Baseline methods

To evaluate the performance of the proposed model, we selected milestone or popular methods as baseline
methods. They include CR-Fill*, TFill*, LGNet*, AOT-GAN?%, SCAT*!, CMT*}, M2S* and HINT*. For a fair
comparison, we utilized the experimental results either reported in the papers or reproduced from the source
codes released by the authors. All baseline methods were fine-tuned based on the publicly available pre-trained
weights. Both subjective and objective evaluations were conducted to compare the proposed model and baseline
methods.

Method evaluation

We compared the proposed PRN with various state-of-the-art methods, including CR-Fill*®, TFill*’, LGNet*,
AOT-GAN?Z, SCAT*!, CMT*?, M2S* and HINT*. This comparison was conducted both qualitatively and quan-
titatively on the widely used Places2 and our customized Murals2 datasets. For the evaluation, we used the source
codes provided by the authors of these baseline methods. To ensure a fair comparison, all methods underwent
training and testing on the same image datasets. The hyperparameter settings for the comparison methods fol-
lowed those specified by their respective authors. If a pre-trained model was available, we performed transfer
learning based on that model, fine-tuning it on the Murals2 dataset.

| i i ™ i i | i i 1 i i ]
Input PRN-C PRN-A PRN-D PRN
Fig. 5. Visual comparison of repaired images obtained by our PRN and its variants for a testing image
randomly selected from the Places2 dataset.

Ground truth

Input PRN-C PRN-A PRN-D PRN Ground truth

Fig. 6. Visual comparison of repaired images obtained by our PRN and its variants for a testing image
randomly selected from the Murals2 dataset.
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Mask ratio (0.1,0.2] (0.3,0.4] (0.5,0.6]

Dataset Places2 | Murals2 | Places2 | Murals2 | Places2 | Murals2
PRN-C 28.32 27.08 22.99 22.18 20.37 19.80

PSNR 1 PRN-A 28.62 27.40 23.47 22.61 20.76 20.15

PRN-D 28.70 27.44 23.42 22.68 20.97 20.24
Our PRN | 28.77 27.56 23.58 22.79 21.06 20.35
PRN-C 0.9392 0.9206 0.8208 0.7950 0.5883 0.5671
PRN-A 0.9432 0.9235 0.8256 0.8028 0.6110 0.5815

SSIM ¢
PRN-D 0.9439 0.9238 0.8269 0.8046 0.6126 | 0.5877
Our PRN | 0.9451 | 0.9258 0.8293 | 0.8061 0.6156 | 0.5905
PRN-C 1.12 1.54 2.73 3.15 6.11 7.16
PRN-A 1.05 1.46 2.57 3.03 5.91 6.92
Mean ¢; |,
PRN-D 1.03 1.41 2.50 291 5.80 6.87
Our PRN | 1.01 1.36 2.42 2.86 5.71 6.78

Table 1. Quantitative evaluation values of repaired images obtained by our PRN and its variants for testing
images from both the Places2 and Murals2 datasets. + Higher is better. | Lower is better. The best results are
highlighted in bold.

Figures 7 and 8 show a visual comparison of the repaired images produced by baseline methods*>**-** and
the proposed PRN for the simulated testing images. These images were randomly chosen from the Places2 and
Murals2 datasets, respectively. As depicted in the figures, CR-Fill*® tends to introduce excessive smoothness,
resulting in a loss of details. TFill*?, LGNet*’ and AOT-GAN? exhibit some local blurring and structural inac-
curacies, while SCAT*! and HINT* also produce blurry details. Although M2S*? produces better repair results
than other comparison methods, the sketches in its repaired images are still blurred. For example, the lines of
tree trunks are blurred, and the lines on the lower left corner of the flag are missing. In contrast, our PRN con-
sistently demonstrates superior repair results, delivering clear structures and realistic colors, thereby enhancing
visual comfort compared to baseline methods.

We also compared our PRN with baseline methods quantitatively. For testing images from the Places2 and
Murals2 datasets, Table 2 presents PSNR (dB), SSIM, mean ¢; error, and learned perceptual image patch similarity
(LPIPS) values for the repaired images obtained by our PRN and baseline methods. The mask ratio denotes the
proportion of missing areas relative to the entire image. As shown in Table 2, for the small mask ratio (0.1, 0.2],
our PRN achieves lower PSNR/SSIM but lower mean ¢; and LPIPS than M2S** and HINT* on the Places2 dataset.
In contrast, our PRN achieves higher PSNR/mean ¢, but lower SSIM than M2S* and HINT*. Additionally, our
PRN has lower LPIPS than HINT*, but higher LPIPS than M2S* on the Murals2 dataset. Furthermore, for the
large mask ratio (0.5, 0.6], our PRN has higher LPIPS than HINT* on the Places2 dataset. Therefore, our PRN
generally outperforms baseline methods across all four metrics.

In addition to evaluating simulated damaged images, we also assessed the performance of our PRN on real
damaged mural images. Figure 9 offers a visual comparison between the repaired images obtained by baseline
methods and our PRN for these real damaged murals. It is evident from Fig. 9 that our PRN excels in restoring
both small and large missing areas, demonstrating remarkable robustness and consistency across diverse scenes.

Computational complexity

In addition to qualitative and quantitative performance evaluations, we conducted a comprehensive analysis
of the computational complexity of our PRN compared to baseline methods. Our PRN comprises luminance,
sketch, and color fusion modules. Both luminance and sketch reasoning modules share a cyclic double-codec
structure. Each codec has 18 convolutional layers, with the former codec incorporating an attention layer at
its bottleneck and 4 partial convolutional layers at the encoder’s front end. The former codec of each cyclic
double-codec structure performs 6 iterations, generating 6 pairs of initial luminance and sketch maps. These are
then fused by the latter codec to produce a final pair of luminance and sketch maps. The color fusion module
includes 10 gated convolutional layers, 5 convolutional layers, 6 spatial attention layers, and 3 channel attention
layers. Therefore, the total computational complexity of PRN, measured in floating point operations (FLOPs),
is approximated by the following equation:

Time ~ o(9.7HW x 10°), (22)

where H and W are the height and width of the input image, respectively.

To evaluate the practical performance of our PRN, We conducted tests on an NVIDIA RTX 2060 GPU (12GB)
using Python 3.9 under the Windows 11 operating system, powered by an Intel Core i5-12400 chip (16GB RAM,
512GB SSD). Table 3 compares the computation time of each module within our PRN for two randomly selected
testing images of respective sizes 256 x 256 x 3and 512 x 512 x 3.

Furthermore, Table 4 presents a comparison of computation times between our PRN and various baseline
methods. While our unoptimized PRN takes longer than CR-Fill*}, LGNet*, AOT-GAN?, SCAT*!, CMT*, M2§*
and HINT#, it still outperforms TFill*? in terms of computation time. Similar results were observed for other
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Mask Ratio (0.1,0.2] (0.3,0.4] (0.5,0.6]
Dataset Places2 | Murals2 | Places2 | Murals2 | Places2 | Murals2
CR-Fill [2021] 28.39 27.16 23.08 22.32 20.56 19.97
TFill [2022] 28.57 27.25 23.33 22.57 20.77 20.10
LGNet [2022] 28.28 27.03 2294 22.21 20.42 19.88
AOT-GAN [2023] |28.21 26.91 22.82 22.14 20.30 19.79
PSNR 4 SCAT [2023] 28.62 27.14 23.19 22.47 20.65 19.64
CMT [2023] 28.75 27.35 23.25 22.53 20.73 19.72
M2S [2024] 2891 27.44 23.49 22.61 20.94 19.95
HINT [2024] 29.01 27.52 23.53 22.71 20.89 19.96
PRN 28.77 27.56 23.58 22.79 21.06 20.35
CR-Fill [2021] 0.9419 0.9215 0.8234 0.7984 0.6009 0.5782
TFill [2022] 0.9430 0.9231 0.8257 0.8021 0.6056 0.5668
LGNet [2022] 0.9411 0.9211 0.8219 0.7963 0.5944 0.5596
AOT-GAN [2023] | 0.9395 0.9198 0.8191 0.7940 0.5831 0.5502
SSIM ¢ SCAT [2023] 0.9353 0.9115 0.8199 0.8045 0.6054 0.5849
CMT [2023] 0.9375 0.9263 0.8247 0.7936 0.6073 0.5732
M2S [2024] 0.9531 0.9379 0.8288 0.8042 0.6145 0.5875
HINT [2024] 0.9535 0.9342 0.8276 0.7859 0.6038 0.5810
PRN 0.9451 0.9258 0.8293 0.8061 0.6156 | 0.5905
CR-Fill [2021] 1.08 1.45 2.60 3.04 5.94 7.03
TFill [2022] 1.04 1.41 2.52 2.98 591 6.90
LGNet [2022] 1.11 1.49 2.65 3.10 6.11 7.06
AOT-GAN [2023] |1.13 1.52 2.71 3.14 6.19 7.17
Mean ¢ SCAT [2023] 1.06 1.47 2.54 3.11 6.02 7.11
CMT [2023] 1.10 1.31 2.51 2.97 5.94 6.54
M2S [2024] 1.05 1.24 2.36 291 5.84 6.39
HINT [2024] 1.07 1.23 2.68 3.01 5.80 6.78
PRN 1.01 1.36 2.42 2.86 5.71 6.01
CR-Fill [2021] 0.0896 0.0811 0.1821 0.1796 0.2907 0.3214
TFill [2022] 0.0897 0.0826 0.1815 0.1874 0.2913 0.3319
LGNet [2022] 0.0872 0.0839 0.1784 0.1857 0.2965 0.3461
AOT-GAN [2023] |0.0843 0.0813 0.1771 0.1831 0.2943 0.3076
LPIPS | SCAT [2023] 0.0824 0.0828 0.1779 0.1822 0.2944 0.3151
CMT [2023] 0.0819 0.0783 0.1754 0.1804 0.2931 0.3102
M2S [2024] 0.0796 0.0765 0.1637 0.1722 0.2849 0.3075
HINT [2024] 0.0794 0.0794 0.1644 0.1737 0.2804 | 0.3084
PRN 0.0782 0.0772 0.1602 0.1709 0.2816 0.3064

Table 2. Quantitative evaluation values of repaired images obtained by our PRN and baseline methods for
testing images from the Places2 and Murals2 datasets. 1 Higher is better. | Lower is better. The best results are
highlighted in bold.

testing images. These findings demonstrate the computational efficiency of our PRN relative to some baseline
methods, highlighting its potential for practical applications despite its complexity.

Discussion

We decomposed the complex image completion problem into three progressive subtasks rather than treating it
as a whole optimization task. This can make it easier to train the model, execute the task, and improve the per-
formance of image completion. Figures 5 and 6 and Tables 1 and 2 demonstrate the rationality and effectiveness
of our PRN model. From Figs. 7, 8 and 9, our PRN produces visually pleasing repaired images and demonstrates
better repair results than CR-Fill*®, TFill*’, LGNet*, AOT-GAN?%, SCAT* and CMT*2. However, our PRN may
generate more blurry lines and artifacts in some cases than M2S** and HINT*. This could be due to model
forecast errors in missing data estimation. Moreover, our PRN often achieves superior repair results compared
to baseline methods, albeit with increased computational complexity, as illustrated in Table 4. Through the
experiments, we discovered that the consistency between the estimated luminance and sketch maps is crucial for
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Input CREFill TFill LGNet AOT-GAN SCAT CMT M2S HINT PRN  Ground truth

Fig. 7. Visual comparison of repaired images obtained by CR-Fill*®, TFill*’, LGNet*, AOT-GAN®, SCAT*!,
CMT*;, M2S*, HINT* and our PRN for three testing images randomly selected from the Places2 dataset.

)

PRN  Ground ruth

A

Fig. 8. Visual comparison of repaired images obtained by CR-Fill*, TFill*’, LGNet*, AOT-GAN®, SCAT*,
CMT*, M2S*, HINT* and our PRN for three testing images randomly selected from the Murals2 dataset.

achieving high-quality image completion. To ensure this consistency, we utilized a unified network architecture
and datasets in our methodology. Considering the trade-off between computational complexity and performance,
our PRN shows great potential for applications in the field of digital art preservation and restoration.

Conclusion

In this paper, we present a novel mural image completion model based on the progressive reasoning network.
This model incorporates luminance and sketch reasoning modules, both constructed on the same cyclic double-
codec frameworks, aimed at estimating a matching pair of luminance and sketch maps. Additionally, we designed
a color fusion module that utilizes differential reinforcement and residual attention blocks to reconstruct the
complete true-color image. By employing transfer learning, the model is trained on both publicly available and
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o 4 S oS | S e A « = 3
Input Mask CR-Fill TFill LGNet AOT-GAN SCAT CMT M2S HINT PRN

Fig. 9. Visual comparison of repaired images obtained by CR-Fill*®, TFill*’, LGNet*, AOT-GAN®, SCAT*!,
CMT*, M2S* and HINT* and our PRN for real damaged mural images.

256 x 256 x 3 0.88 0.88 0.73 2.49
512 x 512 x 3 1.34 1.34 0.81 3.49

Table 3. Computation time of each module in our PRN (unit: seconds).

256 x 256 x 3 1.54 295 ]0.07 0.84 0.29 0.96 1.36 | 047 2.49
512 x 512 x 3 1.62 4.61 0.36 1.17 0.31 1.73 248 |0.62 3.49

Table 4. Comparison of computation time between our PRN and baseline methods (unit: seconds).

customized datasets. Experimental results reveal that our proposed model not only produces realistic repaired
images but also outperforms the state-of-the-art methods, both qualitatively and quantitatively. To further
enhance image completion performance, we intend to conduct comprehensive research on repairing issues
such as pigment shedding and other diseases affecting digitized images of ancient murals.

Data availability
The Places2 dataset is available from: http://places2.csail. mit.edu. The Murals2 dataset used and analyzed during
the current study is available from the corresponding author upon reasonable request.
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