Table 1 Topological descriptors derivation formula from \(\mathcal {RR_D\,M}\)-polynomial.
Topological index | Derived formula |
---|---|
\(\mathcal {RR_D}M_1\) | \((\mathcal {D}_l+\mathcal {D}_m)(\mathcal {RR_D\,M}(\mathcal {G}))\big |_{l=m=1}\) |
\(\mathcal {RR_D} M_2\) | \((\mathcal {D}_l\mathcal {D}_m)(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}F\) | \((\mathcal {D}^2_l+\mathcal {D}^2_m)(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}HM_1\) | \((\mathcal {D}_l+\mathcal {D}_m)^2(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}HM_2\) | \((\mathcal {D}_l\mathcal {D}_m)^2(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}\sigma\) | \((\mathcal {D}_l-\mathcal {D}_m)^2(\mathcal {RR_D\,M}(\mathcal {G}))\big |_{l=m=1}\) |
\(\mathcal {RR_D}^mM_2\) | \((\mathcal {I}_l\mathcal {I}_m)(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D} ReZG_3\) | \((\mathcal {D}_l\mathcal {D}_m)(\mathcal {D}_l+\mathcal {D}_m)(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}SDD\) | \((\mathcal {D}_l\mathcal {I}_m+\mathcal {I}_l\mathcal {D}_m)(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}H\) | \(2J\mathcal {I}_l(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}I\) | \(\mathcal {I}_lJ\mathcal {D}_l\mathcal {D}_m(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |
\(\mathcal {RR_D}A\) | \(I^3_lQ_{-2}J\mathcal {D}^3_l\mathcal {D}^3_m(\mathcal {RR_D\,M}(\mathcal {G})\big |_{l=m=1}\) |