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Collaborative weighting in
federated graph neural networks
for disease classification with the
human-in-the-loop

Christian Hausleitner!, Heimo Mueller', Andreas Holzinger*%3* & Bastian Pfeifer!

The authors introduce a novel framework that integrates federated learning with Graph Neural
Networks (GNNs) to classify diseases, incorporating Human-in-the-Loop methodologies. This
advanced framework innovatively employs collaborative voting mechanisms on subgraphs within

a Protein-Protein Interaction (PPI) network, situated in a federated ensemble-based deep learning
context. This methodological approach marks a significant stride in the development of explainable
and privacy-aware Artificial Intelligence, significantly contributing to the progression of personalized
digital medicine in a responsible and transparent manner.

Graph Neural Networks (GNNs) play a crucial role in biology, especially in biomedicine, by effectively
capturing complex relationships within biological systems represented as graphs!. Their ability to model
interconnected networks is valuable for integrating diverse biological data types, aiding in the understanding
of molecular mechanisms, disease pathways, and potential therapeutic targets and they facilitate the discovery
of new structural classes, particularly in heterogeneous information networks>™, highly relevant e.g. in drug
repositioning to discover new indicators of drugs®. The capacity of graph neural networks to represent interlinked
networks proves beneficial for amalgamating various types of biological data. This assists in comprehending
molecular mechanisms, disease pathways, and potential therapeutic targets. Additionally, they play a crucial
role in identifying new structural categories, such as in the development of antibiotics®, or to predict core gene
candidates for complex diseases’, to give only a few examples.

Network Medicine leverages network science to elucidate disease mechanisms, employing a variety of
analytical methods to construct molecular networks such as protein-protein interactions and gene regulatory
networks, and applies these to Omics Big Data for advancements in diagnosis, prognosis, and treatment of
complex diseases®!!. GNNs have shown great promise in predicting interactions, identifying disease subtypes,
and leveraging large-scale, multi-modal data in biomedicine!*-">.

At the same time, Federated Learning (FL) enhances collaborative model training by enabling decentralized
learning without sharing any critical data. However, FL can not only support diagnostic data protection, but also
has other advantages, namely improving the reproducibility and reliability of AI models outside the domain
and potentially optimising results'®!”. In combination with GNNs this holds great promise for advancing
personalized medicine, disease understanding, and drug discovery on a large scale'®. Due to the fact that most
existing medical data is not fully utilized because it is hoarded in data silos due to privacy concerns'’, federated
learning may offer a solution for the future of digital health?.

Incorporating the Human-in-the-Loop (HITL) in federated learning introduces a critical dimension of
human oversight and interaction, enhancing the model’s interpretability, reliability, and adaptability. The benefit
of bringing the human into the algorithmic loop has been shown in a wide range of studies?!~>*. This integration
is particularly pivotal in domains requiring nuanced decision-making, such as healthcare and personalized
services, where human expertise and ethical considerations play a significant role. Integrating a human expert
into federated learning with GNNs adds an extra layer of refinement and interpretability.

In this work we delineate a novel approach for disease classification employing federated Graph Neural
Networks (GNNs) augmented with collaborative weighting, which innovatively incorporates the expertise of
human domain professional knowledge directly into the deep learning process. The foundational work of Pfeifer
et al.>>?¢ utilized a Protein-Protein Interaction (PPI) network as the underlying structure for the GNNs. In
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this model, each patient is represented as a unique PPI network, with nodes augmented by specific molecular
markers derived from gene expression and DNA methylation data. This modeling approach results in a graph
classification problem and can be applied to any binary outcome class, such as distinguishing between healthy
patients and those with a specific disease.

In a significant advancement we employed explainable AI (xAI) methods to dissect the PPT knowledge graph
into several subgraphs®>2°. These subgraphs then serve as the foundation for constructing an ensemble classifier.
The predictive model functions through a majority voting mechanism based on insights gleaned from these
subgraphs, thereby enhancing the robustness and accuracy of disease classification. This enables the experts to
gain deeper insights into the underlying explanatory factors and thus strengthen conceptual understanding and
trust?.

Here, we introduce an advanced collaborative and interactive framework that seamlessly integrates human
expertise into the aforementioned algorithmic process, a paradigm shift in the realm of machine learning.
This integration enables a more nuanced exploration of the ensemble classifier, providing human experts with
the capability to adjust the predictive model by experimenting with varying weights assigned to the ensemble
subgraphs.

Crucially, this framework empowers experts to delve into the significance of specific proteins and genes
within the Protein-Protein Interaction (PPI) knowledge graph. Leveraging the principles of explainable Al, it
facilitates a deeper understanding of molecular interactions and their implications in disease pathology. This
approach is particularly transformative as it allows the infusion of external expert knowledge into the network,
knowledge that may not be inherently present in the training dataset. Such an inclusion of expert insight,
especially regarding the nuances of gene functions and interactions, can significantly enhance the model’s
predictive accuracy and reliability. This synergy between algorithmic robustness and human expertise stands
to make substantial contributions to the field of digital medicine generally and biomedical research specifically.

Our framework has been operationalized as an application within the FeatureCloud platform?. This platform
is architecturally composed of a global frontend, backend, and a localized controller. It employs Docker, a pivotal
technology, to segregate local computational components from sensitive data infrastructures, thus maintaining
data integrity. FeatureCloud streamlines the complexities inherent in distributed systems, offering a robust and
scalable infrastructure for conducting Federated Learning analyses across multiple institutions. Moreover, it
supports efficient algorithm implementation. A significant aspect of FeatureCloud is its integrated artificial
intelligence store, which serves as a nexus for the communal exchange of federated algorithms, enhancing
collaborative scientific efforts. Central to FeatureCloud’s design is its commitment to data privacy. The platform
incorporates privacy-enhancing technologies that safeguard locally shared models, ensuring compliance with
the European General Data Protection Regulation (GDPR)?, thereby fortifying trust in its data management
practices.

Materials and methods

The FeatureCloud framework

Our approach has been seamlessly integrated into the FeatureCloud platform?3. FeatureCloud is a Python
framework that enables developers to create multi participant workflows, without having to deal with any
backend implementation or hosting services. It provides a server that coordinates data distribution between
the clients, which is hosted by themselves. The framework is intended to be used with a clients/coordinator
structure. Both use the same code, but the framework provides data to separate them at runtime.

The workflows are separated into states, for code encapsulation and better progress overview. Each state
should represent a workflow part. It also features a command line interface. Each FeatureCloud app is a Docker
container, which needs to use the FeatureCloud package and expose the port of the control web server, so the
app implementation can communicate with the FeatureCloud Controller. A second port can be exposed to host
a web application as UL Other than that, the developer is free to implement everything else he needs inside the
docker container. FeatureCloud also provides a convenient way to show a UT to the user. It will be rendered
either as an embedded iFrame in their workflow overview or can be detached to run in a separate Browser tab.
It has to be noted, that the web application is rerouted through the FeatureCloud controller, which puts some
limitations on the way it can be rendered. Especially with XSS policies. For end users, they only have to install
docker and the featurecloud pip package, which starts the Docker container with the controller, and participate
in a workflow. The rest is handled by the app implementation and the FeatureCloud web UI.

FeatureCloud app for interactive and federated deep learning

The implemented algorithm is based on previous work [cite]. With the herein presented work, however, we have
made it fully actionable for federated computing incorporating human-in-the-loop principles. Essentially, the
algorithm expects gene expression data in tabular form, plus a Protein-Protein interaction network specifying
the biological dependencies between the studied markers. Each patient is represented as a PPI network and
the nodes are enriched using the patient-specific gene expression values. This modelling process, detailed in
Fig. 1, results in a graph classification problem fully processable by GNNs. Not only it can be processed; due
to the vast amount of explainable AI algorithms for GNNS, it is also possible to verify parts of the PPI network
which were most relevant for the predictions. Based on these verified subnetworks an ensemble classifier is
constructed. As can be seen from Fig. 1 each ensemble member consists of a different PPI subnetwork and
topology. These are shared with the other clients and are concatenated to a global federated classifier without
sharing any patient-specific data (see Fig. 2). Breaking down the model into smaller components enhances
the domain expert’s understanding of the model behavior. Within our developed GUI the domain-expert
can inspect these networks, track the performance and the relevant parts of the nodes and edges relevant for
prediction. Furthermore, the weighted majority vote of the obtained ensemble can now be influenced by the
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Figure 1. Illustration of the implemented ensemble Graph Neural Network. Explainable Al identifies the
relevant subgraphs that are used to train a GNN classifier, with each trained model becoming a member of an

ensemble.

domain-expert in an collaborative and federated manner. The core idea is that multiple experts can contribute
their knowledge to the federated ensemble classifier without the necessity to share any patient data. The domain-
expert is able to inspect the different subnetworks and can assign weights to it based on his knowledge e.g about
the biological relevance of the associated proteins. Ultimately, the expert shares the weights with the participants
of the federated collaborative workflow. The specified weights effect the majority vote and will finally converge
to a collaborative consensus voting. The interactive GUI is presented and discussed in the results and discussion

section.

The system is implemented as a state machine with 9 states (8 working states + Terminal state). The possible
transitions are shown in Fig. 3 and explained in the next part. The design of a state machine was recommended

by the FeatureCloud framework.
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Figure 2. Construction strategy of the federated ensemble classifier. The topology of each local ensemble
member is shared and concatenated to a global federated ensemble classifier®.

State 1—Initial (Coordinator/Client)

When the machine is the coordinator, the number of clients is stored, and it transitions to the “Global model
aggregation state”. If the machine is a participant, the config file is loaded from the input directory. The file paths
of the input data and the UI Mode flag are stored on the client side.

State 2—Local training (Client only)

The stored paths of the input files are loaded again and the data is copied to the output directory. The files passed
to the algorithm to initialize the GNN. The loaded input data gets split up into a train-, test- and validation
dataset. The GNN is trained on the training data. To start the global aggregation, the ensemble classifiers are
detached from the input data and send to the coordinator. The detachment ensures, that only the trained network
is distributed, without any user data. After successful distribution of the classifiers, the performance of the model
is tested on the validation and test set and stored.

State 3—Global model aggregation (Coordinator only)

The number of clients is loaded, and the coordinator waits until all clients have sent their data. When completed,
all client models are combined to a aggregated global model. This is done by appending the trained ensemble
classifiers from all clients to the global model?®. Before transitioning to the next state, the coordinator broadcasts
the global model to all clients.

State 4— Waiting for global model (Client only)

The client waits the model from the coordinator. After receiving, the model is stored as global model on the
client. The global model is tested on the local validation and test set data of the client. If the UI mode flag is not
set, the workflow is complete. The performance of the local and global model is stored to a file in the output
directory, the coordinator is notified that the client is finished and the client terminates. If the UI mode flag is
set, the client transitions to the “Web controlled” state.

State 5—Web controlled (Client only)
The purpose of this state is to keep the app running and ready for any user action. The user can interact with the
API for the following actions:
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Figure 3. The states of our workflow. Green: client and coordinator states, Blue: client only states, Yellow:
coordinator only states.

o Terminate the client

« Change the weights of the local model and get the new performance statistics

« Weight global model—Change the weights of the global model and get the new performance statistics

o Send the weights of the global model to the coordinator, to get an average of the weighting from all clients.
This creates a transition to the “Distribute weights” state.

State 6—Distribute weights (Client only)

The client sends the weights to the coordinator. The weights consist of an ordered list of values, which are
defaulted to 1 in case no change is made. To ensure a client only sends one weight configuration, the sending
action is blocked in the UT until the aggregation is complete.

State 7— Waiting for clients to finish (Coordinator only)

The coordinator waits for the data from each client. This can either be a notification that the client terminates
or a list of weights for the global weight aggregation. In the case of the terminal notification, the coordinator
stores the decreased number of active clients. If no clients are active anymore, the coordinator terminates. If
some clients send a list of weights, the weight configurations are stored and the workflow transitions to state 8.

State 8—Global weight aggregation (Coordinator only)

The previously stored weights are loaded, and a safety check is executed. In case a weight configuration has
missing values, it is truncated with weight 1. After this, the weights are averaged to get a single list of values,
where each value is the average of all values at the same index from all the input lists. Finally, the aggregated
weight configuration is broadcasted to all clients.

State 9— Waiting for global weights (Client only)
The client waits until it received the weights from the coordinator. They are stored as the global federated weight
configuration and the client transitions back to state 5.

Wrapping up

The states describe two state machines: The coordinator as a single instance and the clients, which can be multiple
instances. All clients can be individual, but they have to synchronize for certain actions like weight aggregation
or model aggregation (which is handled by the coordinator).
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Figure 4. The main view of our UL The status bar on the left and the model containers for the local and the
global model on the right side are displayed. The gene names of a specific subgraphs and the performance of
the associated classifiers; for the ensemble classifier as well as for each member of the ensemble.

Results and discussions

In our pursuit of advancing user-centric methodologies in artificial intelligence, we have developed a sophisticated
Graphical User Interface (GUI) for the interactive analysis and manipulation of graph-based deep learning
models. Recognizing the growing significance of human-centered design approaches in scenarios where a
human-in-the-loop plays a pivotal role in the efficacy of learning algorithms, our GUI aligns with contemporary
research trends®*2. The criticality of user interfaces in the realm of explainable Al is increasingly acknowledged,
necessitating focused academic inquiry?>.

To ensure maximal intuitiveness and user engagement, the GUT’s design is rooted in Google’s Material Design
principles. This design philosophy draws inspiration from the tangible world, particularly in how materials such
as paper and ink interact with light and cast shadows, thereby creating a user experience that feels natural and
grounded in reality. By emulating these physical properties, the GUI offers an accessible and visually coherent
interface, essential for facilitating effective user interaction with complex graph-based deep learning systems.

The UI can be separated into three main components: The sidebar, the model container and the model
popup. The sidebar is the fixed container displayed on the left side of Fig. 4. It displays the current state, the
loading status of the training process and a button to terminate the client. It also displays error messages and
additional information banners. The model container is used for the local and global model. The statistics
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Figure 5. Data visualization of a single model. (a) Shows the performance after testing on the validation

and test set. (b) A list of ensemble classifiers with their individual performance and a list of their genes are
displayed. In (c) we see the collaborative actions which can be done on the global model, which are handled by
states 6-9 (see Fig. 3).

from both the validation and test sets are presented here, providing a clear comparison and insight into the
performance metrics across these distinct data subsets (see Figs. 5 and 4).

Every change of the weights is send to the server, which re-calculates the performance of the updated model
based on the validation set.

Below the statistics section, the global model features the weighting overview. Here the user can reset all
weights to 1 (neutral), distribute his engineered weights to the global weight distribution process, and/or apply
the global aggregated weights, if available. Also, a sortable list of the ensemble classifiers including their metadata
is shown (see Figs. 5 and 4). By clicking, the model popup opens. The model popup has additional three tabs:
The graph rendering, the data table and the weighting menu.

Figure 6 shows the graph rendering and the data table sections, enabling the user to inspect the data from
an ensemble subgraph. The weighting menu features the weighting of the ensemble classifier (see Fig. 7). The
weights can be changed by the user and the resulting performance of the classifier is displayed.
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Figure 6. (a) The topology of the associated knowledge graph, that can be zoomed and panned. (b) The
relevant components of the classification are reflected by the thickness of the edges and the size of the nodes
using explainable AI techniques; with greater importance being denoted by increased thickness and larger
node size. (c) The edge and node/gene importance values from (a) are displayed as tables.
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Figure 7. Collaborative ensemble weighting. The ensemble weights as part of the majority vote can be
modified and shared with the other participants. The resulting performance of the federated model including
the aggregated weights are calculated on an independent validation set after each weight change.

Code availability
The code is available via https://github.com/pievos101/fc-ensemble-gnn The App is available via the Feature-
Cloud App-Store: https://featurecloud.ai/app/ensemble-gnn.
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