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Disquisition on convergence,
stability, and data dependence for
a new fast iterative process

A. Murali & K. Muthunagai™

This paper introduces a novel fast iterative process designed for approximating fixed points of
contraction and weak contraction mappings. The study presents strong convergence results for this
newly proposed iterative process, and proving its efficiency. Analytical and numerical evidences

are provided to establish that the proposed iterative method converges more rapidly than several
existing processes. Furthermore, stability results and dependence analysis are presented for the newly
developed iterative process, enhancing its practical applicability and robustness.
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Fixed point theory is a crucial concept in mathematics and various sciences. It involves expressing problems as
equations involving operators and finding solutions by identifying the fixed points of these operators. This theory
combines functional analysis, topological theory, and geometry to simplify real-world or theoretical problems
into fixed-point problems. Fixed point theory is especially useful in determining whether or not solutions to
differential and integral equations exist because these equations govern the behavior of a variety of real-world
problems, and the presence of a solution is critical. A fixed point of a mapping is a value that remains unchanged
when the mapping is applied to it. In other words, if F is a function, a fixed point x satisfies F'(z) = z.

Banach proved a fixed point theorem known as the contraction mapping principle in 1922}, which guarantees
the presence and uniqueness of a fixed point on a complete metric space. We assume that D is a nonempty subset
of a Banach space X. Let F be a self-mapping on D. If there exists y € [0, 1) such that

HFhl —FhQH SMth _h2H7 vh17h2 eDCX.

F is called a contraction condition. Numerous articles have been published to enhance the fundamental principle
above, leading to its generalization. The majority of these contributions have focused on generalizing the
contraction condition within metric spaces. However, once the occurrence of a fixed point for a given mapping
is established, determining that fixed point becomes a challenging task. Addressing this challenge effectively
involves the utilization of iterative strategies. Therefore, the endeavor to approximate fixed points under diverse
contraction conditions is of both theoretical and practical significance. Developing an iterative process with
a high convergence rate is crucial for approximating solutions to nonlinear equations. Over the years, many
researchers have dedicated their efforts to establishing iterative processes with accelerated convergence rates,
specifically within real-valued metric and Banach spaces. We have listed below some one-step iterative processes,
namely Picard?, Krasnoselskii®, and Mann*, respectively.

K1 =K E D, kpy1 = Fry,n € N. (1)
hl =he D7 th»l = (1 - ’y)h’n + ’}/Fh,", n € N. (2)
s1=8€ D, 8,11 =(1—ay)s, +a,F'sy,n €N, (3)

where {a,} & v are in (0, 1). Two-step iterative processes named Ishikawa®, S-iterative®, Picard Mann hybrid
(PMH), and Picard Krasnoselskii hybrid (PKH)® are detailed below.

q1=4q €& D’(In+l = (1 - an)qn + anFﬁna Rp = (1 - bn>qn + an(JHan e N. (4)

pL=pec D>p71+l = <1 - an>Fpn + anF/{na/{n = (1 - bn)pn + anpmn €N (5)
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w =u € DUyt = Frp, by = (1 — ap)un + apFuy,n € N (6)

nN=ve D7Url,+1 = F:“{",H" = (1 - 7)”7} +fyF’Un,7n € Nv (7)

where {a,}, {b,} & 7 are in (0, 1). In 2009, Agarwal et al.® defined the S-iterative method, which approaches
faster than Picard, Krasnoselskii, Mann, and Ishikawa iterative methods. In 2013, Khan’ defined the PMH
iterative process and also proved that the iterative scheme which tends toward faster than all of the Picard, Mann,
and Ishikawa processes in the sense of Berinde® for contraction mapping. In®, authors proved that the PKH
iterative process converges quicker than Picard, Mann, Krasnoselskii, and Ishikawa iterative methods. Next, we
give the following three-step iterative process, namely the Picard-Ishikawa hybrid (PTH) whcih is defined in'°.

w=weD,

W1 = Fog,

Up = (1 - an)“n + anFuna

Up = (1 = by)wy + by Fwy,n € N,

(8)

where {a,} & {b,} are in (0, 1). In'%, the author proved that his iterative method converges faster than
widely recognized methods such as Picard, Mann, Ishikawa, Krasnoselskii, Picard Mann hybrid, and Picard
Krasnoselskii hybrid iterations, as per the criteria outlined by Berinde’. Likewise, in!! Faik Gursoy et al.
introduced the three-step iterative process named Picard-S hybrid (PSH) method that converges faster than
the other iteration methods in the literature existing. In'2, Julee Srivastava used the three-step iterative process
namely Picard-S hybrid (PSH), establishing its quicker convergence compared to various other iterative methods
like Picard, Mann, Krasnoselskii, Ishikawa, S-iterate, PMH, PKH, and PIH for contraction conditions on real-
valued normed linear spaces, for {z,,} on real-valued normed linear space, and it is

ry=x €D,

Tnp1 = Fzy,

zp = (1 —ay)Fx, + ap,Fky,
kn = (1 = by)xy, + b, Fxy,

)

where {a, } & {b, } are sequences of real numbers in (0, 1). Austine Efut Ofem et al. introduced the three steps A**
iteration method in'3, which is a more efficient method for approximating the fixed points of almost contraction
mappings and generalized a-nonexpansive mappings. For another type of three steps iteration method, see'*.
The authors of'® provided the AH iterative scheme, a four-step iterative scheme for approximating fixed points
of contractive-like mappings, and Reich-Suzuki-type nonexpansive mappings. For additional information
regarding four-step iterative schemes, please refer to!®!”.

Wasfi Shatanawi et al.!® introduced the four-step iterative process, namely S BT, and proved numerically that
the iterative process converges faster than Sintunavarat et al.', Agarwal et al., Mann, and Ishikawa iterative
processes.

n=y € D7
Yn+1 = (1 - dn)Fxn + anZm
Zn = (1 - an)FIn, + a, Fky, (10)

T = (1 - C/l)yn, + Cnkn,
Kn = <1 - bn)yn + anyn;

where {a,},{b.}, {¢.} and {d,} are sequences of real numbers in [a,1 —a],[b,1 =], [c,1—¢],[d,1 —d]
respectively. Hammad et al.?’ introduced the four-step iterative process named HR, which converges faster than
the K* iterative process?!, S iterative process, Picard-S$ iterative process, and Thakur iterative process.

zn=z2€D,
Znel = Fyn-,
Un = F<<1 - Cn>In + CnF<xn)>7 (11)

Ty = F((l - bn,)"fn + an<K/n>>
Ry = (1 - an)zn + anFZ717

where {a,}, {b,} and {c,}C [0, 1]. Recently, Hammad et al.?* introduced another four-step iterative process
named H R* and proved analytically that their iterative processes converge faster than existing iterative processes
named JK in?3.
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op=0€D,
Ont+1 = (1 - Cn)zn, + anzn,v
Zn = F<F<Tn))7 (12)

Tn = F((1 = by)kn + b, F (k)
kn = (1 —ay)on, + a,Fop,

where {a,,}, {b,} and {c, } are sequences of real numbers in (0, 1). In the diverse landscape of pure and applied
sciences, spanning domains such as biology, physics, and computer science, the exploration of metric spaces
has emerged as a pivotal focus. In 2011, Azam et al.?, defined the concept of complex valued metric spaces. His
novel concept has assisted researchers in overcoming the disadvantage of being unable to define rational form in
cone metric spaces, and it can be used to create complex valued normed spaces as well as complex valued inner
product spaces, both of which provide a wealth of potential research topics. More results on complex valued metric
spaces have been discussed in*?°. However, a conspicuous gap persists in understanding the approximation of
fixed points of nonlinear mappings within real-valued metric spaces and real-valued Banach spaces®*->!. To
bridge this void, Okeke, in*?, introduced the concept of complex valued Banach spaces. Leveraging the iterative
techniques proposed by®!?, Okeke successfully approximated the fixed points of contraction conditions within
these complex valued Banach spaces. Moreover, the PMH iteration and the PKH iteration have been shown to
have the same rate of convergence both analytically and numerically.

Motivated by these authors, we propose a new iterative process to approximate fixed points for contraction
and weak contraction conditions on complex-valued Banach spaces. We show that the new iterative process
converges faster than other iterative processes named S-iterative, Picard Mann hybrid, Picard Krasnoselskii
hybrid iterative, Picard Ishikawa hybrid, Picard-S hybrid, HR-iterative, and H R*-iterative processes. Also, we
prove that the new iterative process is strongly convergent on complex-valued Banach spaces. The obtained
results are proven both analytically and numerically with examples and visualized for the speed of convergence
using Matlab tools for contraction and weak contraction conditions. We prove a small result for nonexpansive
mapping using our new iterative process. We discuss the stability of our novel iterative technique and its impact
on data dependence for contraction.

Lemmas and definitions

The purpose of this section is to provide the reader with certain definitions and lemmas that will ensure that they
have a better comprehension of our content and will be beneficial in the subsequent section. Let A be a linear
space over a field K, where K = Ror K = C.

Lemma 2.1 32 Let (4, ||.||) be a complex valued Banach space, and let {p, } be a sequence in A. Then {p, } con-
verges to p if and only if |||p,, — p||| = 0 asn — oo.

Lemma 2.2 ¥ Let (4, ||.||) be a complex valued Banach space and {p, } be a sequence in A. Then {p,} is a
Cauchy sequence if and only if |||p, — pyym||| = 0asn — oo.

Definition 2.1 ° Let {/,,}, {m,} be two sequences of positive numbers that converge to ¢ and m, respectively.

l,— ¢
Suppose that 3 a constant ¢ such that lim e, =4l =cIf
n—o0 ||my, — ml|

1. ¢ =0, then {/,} converges to / faster than {m,} to m.
2. 0 < ¢ < oo, then {£,}>°and {m,,}22, have the same rate of convergence.

For more details on the following, one can refer to®33-3%.

Definition 2.2 Let F, F' be two self operators on B C A. We define Fasan approximate operator of F if, for any
a € B and a given fixed € > 0, the condition ||Fa — Fa|| < €holds.

Definition 2.3 Let B C A and S be self-mapping on B. Assume that p; € B and p,41 = f(S, p,) defines an
iterative process that produces a sequence {p,} C B and {p,} converges strongly to a € F'(S) # () where F(S) is
the set of all the fixed points of S. Let {g, } be any sequence of bounded in B, and choose €, = ||g,+1 — f(5, ¢,)||
. Then

1. The iterative process {p,}°°, defined by p,11 = f(S,py,) is said to be S-stable on B if lim,, , €, =0, =
hnlnﬁoo qn = Q.
o0
2. The iterative process {p,}>2, defined by p,+1 = f(S, p,) is said to be at-most S-stable on B if Z €, < 00,

n=1
= lim,, 00 ¢ = a.
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Lemma 2.3 ° Let o be a real number in the range 0 < ¢ < 1, and consider a sequence of positive numbers
{en}2 such that lim €, = 0. Then, for the sequence of positive numbers {p,}3° satisfying the condition
n—o0

Pug1 < opy + €, for all n > 0, we have lim,, .o, p, = 0.

Lemma 2.4 % Let {gs} and {p,} be non-negative real sequences satisfying q¢,11 < (1 — p1,,)q, + pn,» where
iy € (0,1),¥n > ny, i, = oo and ,pli — 0asn — oo, then lim ¢, = 0.
n n—00
n=1

Lemma 2.5 “* Let {¢,}°°, denote a non-negative real sequence that adheres to the inequality:

dn+1 S (1 - Vn)Qn + Vn(sm
where v, € (0,1)¥n € N, > 1, = 0o,and §,, > 0Vn € N. Given that there exists ny € Nsuch thatn > ng

n=1

, it follows that 0 < lim sup ¢,, < lim sup 6.
Let (A, ||.|]) bea comgl_é())(ovalued Banach space, and F be a self-mapping on B C A.If 3u € (0, 1) such that

||Fh1—Fh2||juHh1—h2H,Vhl,h2€B§A7 (13)
Fis called a contraction condition. On a complete metric space, weak contraction type conditions are discussed

in*142, Here we define the weak contraction on a complex valued Banach space. If there exists 1 € (0, 1) and
v > 0 such that

[[Fhy — Fho|| 2 pl|hy — ho|| +v|[hi — Fhy]], (14)

forall Ay, ho € B C A, Fis called a weak contraction or almost weak contraction condition.

Main results
In this section, we propose the following new iterative process for a sequence {¢, } such that:

tLL=0eB,
£n+1 = F((l - an)un + anFun)7
Up = FUm (15)

Up = F(<1 - bn)wn + anwn)7
wy, = F((1 = ¢p)l, + ¢y FL,),¥n € N,

where {a, }, {b,} and {c, } are sequences in [0, 1]. This iterative process given by (15) can be called the M-Fast
iterative process. In this main result, we first discuss the rate of convergence of a new iterative process named
M-Fast for contraction and weak contraction conditions on complex valued metric spaces. Then we prove
analytically and with numerical examples that our new four-step iterative method converges faster than other
three-step iterative methods (named S-iterative, PMH, PKH, PIH, and Picard-S hybrid) and four-step iterative
methods (named HR-iterative and H R*-iterative). Furthermore, the stability of our new iterative method and
the data dependence found for contraction conditions by employing our new iterative method are also discussed.

Convergence analysis

Strong convergence results for our new iterative process

We initiate this section with the subsequent convergence result of the M-Fast iterative method for contraction
conditions on a complex valued Banach space.

Theorem 3.1 Let B be a nonempty closed convex subset of a complex-valued Banach space (4, ||.||). Suppose F
is a self-mapping on B satisfying the condition (13) and possessing a fixed point. Consider the iterative sequence
{¢,} generated by (15), where the sequences {a,}, {b,}, {c,} are real and lie within the closed interval [0, 1]
such that 3> | a,, = co. Then, the sequence {{, } converges strongly to a unique fixed point 5 of the mapping F.

Proof Let s be a unique fixed point of the mapping F. Using (13) and (15), we have

[w, — 2| = [|F((1 = )l + cuF,) — ]|
< (1 = cn)||ln — 5| + pen||FL, — ||
= (L = e[|y — || + el |6y — 5|
= p(1 = e+ pe)||6n — 5|

(16)
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o = sl| = [|[F((1 = bn)wy + by F'wy) — 5|
= (1 = b))l |wn — ]| + paby| Fwy, — 5|

. (17)
= (1 = b)) ||wy — 5| + p?by|Jwy, — ||
= ,LL(l - bn + ,LLb”)Hw” - %H
[t — 3|| = || F(va) — 3| 2 pal|on — 5¢]|. (18)
Using (16), (17) and (18), we have
(o1 — 2| = [|F((1 — an)uy + anFu,) — 5|
=l = an)l|un — 3| + pag|[Fu, — |
jﬂ(lfanmun*%||+N2an”un*%” (19)

= u(l = ap + pay)||u, — ||
= M2<1 —ap + /mn)H'Un - %H
< pt (1 — ap + pay) (1 — b, + pby) (1 — ey 4 pey)||ln — |

Since 0 < o < 1and b, and ¢, € [0,1]¥Vn > 1,(1 — b,(1 — u))(1 — ¢,(1 — p))< 1. Thus the above equation (19)
reduces to

b1 = 2| = (1 = @y + pan)|| €0 = 5], (20)

where (1 — a,(1 — p)) isin (0, 1). As p1 € (0, 1) and a,€ [0, 1] for all n > 1, we obtain

[[€n1 — 5] = .“’4<1 — @y + pay)| |6, — 5|
||£n - %H j H4(1 — Qp—1 +Man71>”€n,—l - %H

162 = 2| = p*(1 = a1 + pay)|[6; — ]|

Therefore we have
n
Wesr = 52| =160 = sl D T](1 = ar(1 = ). 1)
k=1

Using the classical result, 1 — z < e™* for all € [0, 1] in the above inequality, we get

Y (n+1) /¢ (n+1)
nir — 5| < %and lim [[[r — ||| < % 5 0asn — oo.
— Zn — %gd k) n—00 e 0] k=1 )
O

Using the aforementioned theorem technique, we provide the following result for the weak contraction condition.

Theorem 3.2 Let (4, ||.||) be a complex-valued Banach space. Given a nonempty closed convex subset B C A
, consider a self-mapping F' : B — B that satisfies condition (14). Let ¢,, be an iterative sequence generated by
(15), with real sequences {a, }, {0, }, {¢,} in [0, 1] such that >_>° | a,, = cc. Then, the sequence {/,} converges
strongly to a unique fixed point s of the mapping F.

Speed of convergence of our iterative process with other two- and three-step iterative processes
The following theorem shows that our new iterative process converges faster than the S-iterative, PMH, PKH ,
PIH, and Picard-S hybrid iterative processes.

Theorem 3.3 Let (4, ||.||) be a complex-valued normed space with B being a nonempty closed convex subset.
Consider a self-mapping F': B — B satisfying condition (13). Assume that each iterative process defined by
equations (5), (6), (7), (8), (9), and (15) converges to the same fixed point s of F. Here, the sequences {a,}, {b,}
,and {¢,} arereal with 0 < p <, a,, by, ¢, < 1foralln € N. Then, the M-Fast iterative process (15) exhibits a
faster convergence rate compared to all other iterative processes mentioned.

Proof Let F'(3r) = 5. Use S-iterative process (5) in the contraction condition (13), by usual technique we have,
([0 — || 2 (1= ba)llpn — 5[ + buptl[pn — |l

Thus
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[[Pat1 = | = [|[(1 = an) F'py + anF'iy — 5|
(1= an)|[Fpp — 2| + an|[Frn — 5|
(L= an)pllpn — || + appl[rn — ||
= (L= an)pllpn — || + anp((1 = by)|[pn — 5| + bupel [P — 5]1)

A TA

= p(l — (1 = pab n)HPn_%H

< (1 = (1= @)p*)|lpn — #l.
pns1 = 2| = p(1 = (1= @)p)||pn — 2l[... <" 11— (1= p)p*)"Hp1 — | We
Ay = (1= (1= @)p)Mlpr — ]|

From Picard Mann hybrid process (6) and contraction condition (13), we have
s — Il = || Fr — 5|
= pllrn — ||
= pl|(1 = ap)u, + anFu, — ||

= (1 = an)lun — sel| + pan|| Fu, — 5|
2 p(l = ap)||uy — 5| +,u2an,||u,1, — |
= (1 = (1= ) — ]
Sl —(1— U)/72>Hun — x|

= [Jun1 = sl| 2 (u(1 = (1= p)p?))" | — 5| Let By = (p(1 — (1 — p)p*)"Mur — |-
From Picard Krasnoselskii hybrid iterative (7) and (13), we have

a1 = sl| = || Frn — 5|
= pllsn — |
= :“'H(l - )Un JFVF'Un - %H
= (1= y)lfon = 5| + py || Fon — ||

= (1 =)oy — sl + pP o, — 5|
=p(l -7+ M'Y)an |
Sl —(1—pp )HUn_%H-

Since ||vn41 — 2| < (1 — (1 — w)p?)| vy — s|| = oo 2 "1 = (1 — @) p®)" vy — 5.

Let C, = (u(1 — (1 — w)p?))" vy — 5]
From Picard Ishikawa hybrid (8) and (13),
[[vn = s¢|] 2 (1 — an)l|wn — | + pay|lu, — 5|].

||u,, - ”’H =(1- bn)Hwn - %H ""anH‘*’n - %H
Thus

llwn1 = 2| = |[Fo, — ]
=l v — 5]
= (1 = ag)lJwn — sl + pPan((1 = by)lJwn — 32l + pba)|wn — |
= (1= (1= )ay||wn — ]
Sp(l—(1— U)p2>HWn — x|

We  have [lwns — sl < (1 — (L= p)pAllwn — #l] = oo < (L = (1= )2 oy — 56] .

Dy = (1 = (1= p)p*))" H|wor — 5.
From Picard-S hybrid iterative process (9) and the condition (13),

H"‘fn - %H =(1- bn)HT/n - %H +.Uan$n - %H
|z — 2| 2 p(1 = an)l|zn — 5[] + pan| | — 5||.

Therefore,

let

Let
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[Zns1 = 2| = [|Fzn — |
= pllzn — ||
= (L = an)||n = 52| + pan| |k — 5])
2 (L = an)| |z — || + pan((1 = ba)|[zn — 32|| + pbn| |2, — #[[))
= 12 (1 = (1= paybn))lan — ||
< 21— (1= )2 — .

[ = ] < 21— (1= p)pP)l|n — oel] < oo 2 2001 = (1= p)p?))"+ |y — se] . So Let
E, = ’u2(71+1)(1 —(1- ,u)pz)”“Hxl _ %H

For M-Fast iterative process (15) and the contraction condition (13), it follows from the equation (20)
et — Il = (1 = @+ )16 — |
= (L= (L= w)p?)| | — 5|
bt = ll = (1 = (1= @A)l — sell % oo % (1= (1= )22y — 5]
Let F, = (u'(1 — (1 — )" |61 — .

Now we show that rate of convergence. Since (1(1 — (1 — p)p?)) < land p € (0, 1),
we observe the following,

Fo_ (0= 0= wp)" Ml = sl _ sy [l = >l
An o (p(1 = (1= p@)p?)HIpy — | llpr = |

Letting n — 00, we have lim,,_,, % = 0. Thus M-Fast iterative process (15) converges to s faster than S-iterative

process (5).

Fo  (p 1= —mp?)" M=ol gy [ — ]

By (1= (L= pw)p?) Mlur — 5| [l = 5[

Asn — oo, we have lim,,_,, % = (. Thus M-Fast iterative process (15) converges to s faster than Picard Mann

hybrid process (6).

Ey (w0 (L= )" N =] el = ]
G~ (T = (1= W) ller — | o=l

Letting n — oo, we have lim,_, % = 0. Thus M-Fast iterative process (15) converges to s faster Picard

Krasnoselskii hybrid iterative (7).

Fo _ (1= Q=) M =] s 10— ]|
Dy (1 = (1 = p)p?))HHw — | [y — 5][.

As n — 00, we have lim,,_,~ 1FT: = 0. Thus M-Fast iterative process (15) converges to s faster Picard Ishikawa
hybrid iterative (8).

Fo (W= A=) N =l g I — ]

By (21— (1= p)p?)Hwy — | ||zt — 5|

Letting n — oo, we have lim,_, % = 0. Thus M-Fast iterative process (15) converges to s faster Picard-S

hybrid (PSH) iterative process (9). Therefore {¢,} converges faster than {p,}, {u,}, {v,}{w,} and {z,}. That
is the M-Fast iterative process (15) exhibits a faster convergence rate compared to all other iterative processes
mentioned. J

Based on the technique mentioned earlier, we prove the following theorem under the condition of weak
contraction.

Theorem 3.4 Let (A4, ||.||) a complex valued normed space and B be a nonempty closed convex subset of (4, ||.||)-
Let F be a mapping from B to B satisfying condition (14). Assume that each iterative process in (5), (6), (7),
(8), (9) and (15) converges to the same fixed point s of F where {a,}, {b,} and {c, } are the real sequences in
0 < p <7,an, by, c, <1Vn € N. Then M-Fast iterative process (15) exhibits a faster convergence rate compared
to all other iterative processes mentioned.

Here we provide the following example to ensure that the analytical proof in the above theorem is valid.

Example 1 Let A = Rand B = [1,10]. Let F': [1,10] — [1, 10] be a self operator which is defined by

Scientific Reports|  (2024)14:22712 | https://doi.org/10.1038/s41598-024-73261-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Step | M-Fast Iterative Picard-S-Hybrid Picard-Ishikawa-Hybrid | Picard-Mann-Hybrid | Picard-Krasnoselskii Hybrid | S-Iteration

0 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 5.0000000000000000 | 5.0000000000000000 5.0000000000000000
1 2.0011261867836319 | 2.0793059134079650 | 2.2912488865942713 2.3030358186374400 | 2.3030358186374400 2.3846807665985503
2 2.0000005834225019 | 2.0030110496598703 | 2.0350206591613547 2.0389097369451790 | 2.0389097369451790 2.0641149195728792
3 2.0000000003022937 | 2.0001158794067488 | 2.0043246344827916 2.0051608040420277 | 2.0051608040420277 2.0111783140030237
4 2.0000000000001563 | 2.0000044619078006 | 2.0005358084723226 2.0006874802484398 | 2.0006874802484398 2.0019643560533171
5 2.0000000000000000 | 2.0000001718080949 | 2.0000664121678637 2.0000916335015981 | 2.0000916335015981 2.0003456740638228
6 2.0000000000000000 | 2.0000000066155659 | 2.0000082320460413 2.0000122146724939 | 2.0000122146724939 2.0000608442374688
7 2.0000000000000000 | 2.0000000002547358 | 2.0000010204004890 2.0000016282228121 | 2.0000016282228121 2.0000107100323050
8 2.0000000000000000 | 2.0000000000098086 | 2.0000001264834970 2.0000002170433273 | 2.0000002170433273 2.0000018852345725
9 2.0000000000000000 | 2.0000000000003775 | 2.0000000156782329 2.0000000289320443 | 2.0000000289320443 2.0000003318490576
10 2.0000000000000000 | 2.0000000000000147 | 2.0000000019433917 2.0000000038566639 | 2.0000000038566639 2.0000000584138569
11 2.0000000000000000 | 2.0000000000000004 | 2.0000000002408926 2.0000000005140963 | 2.0000000005140963 2.0000000102823217
12 2.0000000000000000 | 2.0000000000000000 | 2.0000000000298597 2.0000000000685292 | 2.0000000000685292 2.0000000018099495
13 2.0000000000000000 | 2.0000000000000000 | 2.0000000000037010 2.0000000000091349 | 2.0000000000091349 2.0000000003185967
14 2.0000000000000000 | 2.0000000000000000 | 2.0000000000004587 2.0000000000012177 | 2.0000000000012177 2.0000000000560814
15 2.0000000000000000 | 2.0000000000000000 | 2.0000000000000568 2.0000000000001621 | 2.0000000000001621 2.0000000000098717
16 2.0000000000000000 | 2.0000000000000000 | 2.0000000000000071 2.0000000000000213 | 2.0000000000000213 2.0000000000017373
17 2.0000000000000000 | 2.0000000000000000 | 2.0000000000000009 2.0000000000000027 | 2.0000000000000027 2.0000000000003055
18 2.0000000000000000 | 2.0000000000000000 | 2.0000000000000000 2.0000000000000004 | 2.0000000000000004 2.0000000000000533
19 2.0000000000000000 | 2.0000000000000000 | 2.0000000000000000 2.0000000000000000 | 2.0000000000000000 2.0000000000000093
20 2.0000000000000000 | 2.0000000000000000 | 2.0000000000000000 2.0000000000000000 | 2.0000000000000000 2.0000000000000013

Table 1. Comparison of the speed of convergence of the M-Fast iterative process with the other two and three
step iterative processes.
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Fig. 1. Comparison of the speed of convergence of M-Fast iteration process with the other two- and three-
step iterative processes.

F(z) = Tz +2,Vx € B.

Takingy =a, =b, = ¢, = % for n € N, with initial values x, = 5, it satisfies condition (13) for i = %2 and

7

also condition (14) when v = 0. Therefore, it has a unique fixed point > = 2. From Table 1 and Fig. 1, we can see
that the M-Fast iterative process (15) exhibits a faster convergence rate compared to all other iterative processes
mentioned.

Speed of convergence of M-Fast iterative process with other four- step iterative processes
Now, we prove that the new iterative process converges faster than the other four-step iterative processes, namely
HR and H R*, on a complex valued normed space.
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Theorem 3.5 Let F be a self-mapping on a nonempty closed convex subset B of a complex valued normed space
(A, ||.|]) that satisfies the condition (13). Assume that each iterative process in (11), (12), and (15) converges to
the same fixed point s of F, where {a,}, {b,}, and {¢,} are the real sequences with 0 < p < a,, by, ¢, < 1V
n € N. Then the M-Fast iterative process (15) exhibits a faster convergence rate compared to all other iterative
processes mentioned.

Proof For M-Fast iterative process (15) and the contraction condition (13), it follows from the equation (21)
together with0 < p <a, <1,n €N,

n

[€psr — || < |01 — s2|| "+ H<1 _ 1= )
k=1
= ||K1 _ %Huq(nﬂ)(l —p(1— M))/l(n+1)

Let F, = (p*(1 — (1= p)p))" |6y — 5]|.
For HR iterative process (11) and the contraction condition (13),

160 — 2|l = |(1 — an)zn + anFz, — 5|
=2 (1= an)l|zn — [ + an||[F(20) — ]
= (1= an)llzn — 2| + pan| |z, — ||
=

(1= an + pay)||z, — ||

Similarly, we have ||y, — s|| = p(1 — ¢, + pey)| e, — |||z — 2| < (1 = b, + pby)||kyn — 5||. Thus

Hznﬂ — x| = HFyn — x|
= NHyn - %H
= NQ(I = ¢+ ez, — || (22)

=< ug(l — Cp 4 pen)(1 = by + pby)||n — 5|
=< /ﬁ(l — ap + pan)(1 = by + puby) (1 — ¢, + pey)||zn — 5]

Since pin (0, 1) and by, ¢, are in [0, 1] Vn € N, we get (1 — b,(1 — p))(1 — ¢,(1 — p))< 1. Thus above inequality
(22) reduces to

21— 2| 2 (1 = an + pay)||2, — |, (23)

where (1 — a,(1 — p)) isin (0, 1). Since p € (0,1) and a,,€ [0, 1] for all n € N, we obtain

n
21 — s| < llzn = sl [ T (1 = an(@ = ). (24)
k=1
It follows from equation (24) together with 0 < p < a,, < 1Vn € N,

n

llzmin = s| < lzn = 2ol [ D T [ (1 = p(1 = )
k=1
= [z — 5| [P TI(1 = p(1 — pr))3+Y)
Let Gy = (41— (1 = )™ [|21 — .

For H R* iterative process (12) and the contraction condition (13), we got||x, — || < (1 — a, + pay)||o, — ||
and |z, — s|| = (1 = by + uby)||kn — ||

|20 = 2| = [|F(F(z0)) — |

= e — .

Thus
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[lon — 5| = [|(1 — ¢n)zn + cnF'z — 5|

(1= ca)llzn — 5|| + cul[F'(20) — 5]

(1= cn)llzn = 5| + pcal |20 — ||

(1—cp+ MCn)HZn - %H

31— o+ pca)(1 = by + piby)|| ki — 5|

3(1 = pen)(1 = by + pby)(1 — @y + pan)||on, — ||
V(L= a4 pag)llon — o)

IATA T T LA A
SRS

where (1 — a,(1 — p)) isin (0, 1). As 4 € (0, 1) and a,, € [0,1]Vn € N, we find

n
lloni1 — 2l = [Jor = 5| |[* ™ V][ (1 = ar(1 = p)). (25)
k=1
It follows from the equation (25) together with 0 < p < a,, < 1Vn € N,

n

llosr = 5l = [lor = 5[ [*™ D T [ (1 = p(1 = p))
k=1

= |lo; — %H/.L3<”+1)(1 —p(1— M))S(yurl)'

Let H, = (¢*(1 — (1 — p)p))""t||o1 — 5||. While checking the rate of convergence, we observe the following,

Fo (A== pwp))" Mo — sl gy 11— 5]
Gn (1= (1= p)p))"+|z1 — =] Iz = I
since (p(1 — (1 — p)p)) < land p € (0,1) Letting n — oo, we have lim,,_,, g—’; = 0. Similarly,
Fo (A=A —pwp)"™ M — sl 1l — ]
Hy (31— (L= p)p) oy — | lloy — |

Letting n — oo, we have lim,, 1% = 0. Thus M-Fast iterative process (15) converges to s faster than HR-

iterative process (11) and H R*-iterative process (12). ]
The following theorem, which pertains to the condition of the weak contraction, has been proved by us, using
the technique that has been discussed earlier.

Theorem 3.6 Let (4, ||.||) be a complex-valued normed space with B as a nonempty closed convex subset.
Consider a self-mapping F' : B — B satisfying condition (14). Suppose that every iterative process defined by
equations (11), (12), and (15) converges to the same fixed point s of F, where {a,}, {b,}, and {c, } are real se-
quences such that 0 < p < a,, b,, ¢, < 1¥n € N. Then, the M-Fast iterative process (15) achieves a faster rate of
convergence compared to all other iterations.

In order to show the validity of the analytical proof presented in the above Theorem, we provide a numerical
illustration as follows.

Example 2 Let A=R and B =[1,50]. Let F:[1,50] = [1,50] be a self operator which is defined by
F(z) = Va? — 8z + 40, Va € B. Taking a, = b, = ¢, = % for n € N, with initial values xy = 50, it satisfies
condition (13) and also (14) condition when v = (). Therefore, it has a unique fixed point ¢ = 5. From Table 2
and Fig. 2, we can see that the M-Fast iterative process (15) converges faster than all the other iterations.

Next, we provide a small result of nonexpansive mapping for the M-Fast iterative process on a complex valued
banach space.

Theorem 3.7 Let F be a nonexpansive self-mapping from a nonempty closed convex subset of a complex val-
ued Banach space (A, ||.||) to itself. Assume that {¢, }°°, is generated by process(15), then lim ||¢,, — 5| exist
n—oo

Vi € F(F).

Proof Suppose » € F(F).
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Step | M-Fast iteration H R iteration HR iteration S BT, iteration

0 50.0000000000000000 | 50.0000000000000000 | 50.0000000000000000 | 50.0000000000000000
1 29.7983219777272730 | 33.3923263795198508 | 33.3904475851243419 | 43.2444875224078089
2 11.7418515288816714 | 17.8112141702975144 | 17.7997315173083202 | 36.5781382065469671
3 5.0322485948855791 | 6.4758736098510514 | 6.3988545945311150 | 30.0377438189666250
4 5.0000112969950772 | 5.0043238443811520 | 5.0038977070800321 | 23.6868656427377005
5 5.0000000039042600 | 5.0000074826778516 | 5.0000067439454190 | 17.6468208208834980
6 5.0000000000013491 | 5.0000000129301005 | 5.0000000116535634 | 12.1787126296530488
7 5.0000000000000000 | 5.0000000000223430 | 5.0000000000201377 | 7.8808153287967073
8 5.0000000000000000 | 5.0000000000000382 | 5.0000000000000346 | 5.6284225798452923
9 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0751181454845957
10 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0072852038527920
11 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0006869105740304
12 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000645882705879
13 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000060714625523
14 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000005707189388
15 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000536475930
16 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000050428746
17 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000004740306
18 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000445590
19 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000041886
20 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000000000 | 5.0000000000003944

Table 2. Comparison of the speed of convergence of the M-Fast iterative process with the other 4-step iterative

processes.
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Fig. 2. Comparison of the speed of convergence of M-Fast iterative process with the other 4-step iterative
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llwn = sl | = [[F((1 = cu)ln + cnFln) — =]
(1= eallltn — | + call Ft — 5
(1= e)||bn — 5|| + cnl|ln — 5|
|16 — ]

[[on = 3[| = [|F((1 = by)wy + b Fw,) — 5|

IATA A

2 (1= b)[|wy — 52| + by [ Fw, — |
= (1 = bp)||wn — || + bu||wy, — 5|
= lwn — 5.

|[un = 2| = ||F(vn) = 2[| 2 [Jvn — 2.

Thus

||£n+1 - %H = HF(<1 - an)“n + CL,,,FU,,,) - %H

1 — ap)||un — || + an| | Fu, — 5|

[PNEPNEIN

(
(1 — an)||uy — 2¢|| + an|u, — 5|
|

Jun = sl 2 {[on = 22| 2 |fwn = ]| 2|60 — 5]

Take , = £, — scforalln € N, as ||S,1]| < [|Sull> lgn |[€, — 5|| exist V> € F(F).O
n—oo

Stability results for our new iterative process in complex valued banach spaces
In this part, we prove the stability of the M-Fast iteration procedures for contraction mapping on a complex-
valued Banach space.

Theorem 3.8 Let (A, ||.||) be a complex valued Banach space and F': B C A — B be a mapping that satisfies
the contraction condition (13). Assume that there exists s in F(F) and the sequence {/,,} of (15) converges to s

o0

with Z a,, = oo and real sequences 0 < p < a,, b,, ¢, < 1 for all n € N. Then the M-Fast iterative process is

=1
F-stable and almost F-stable.

Proof Suppose {¢,}5°, in B is a bounded sequence and put €, = ||{,,+1 — f(F, £,)]||, where

En+1 = F((l - an)un + (l"FU"),
Uy = va
v, = F((1 = by)w, + b, Fw,),
wy, = F((1 = eyl + ¢ Fly).
Let hm = 0. Using (13) and (15), we have

H€n+1 - %” = H€n+1 - <F7 ﬂn)” + Hf(F7 gn) - %H
j €n + HF<(1 - an)un + anFun) - %”

=6+ (1 — an)l|un — || + pan||Fu, — ||

= ey + (1 — an + pay)|lu, — ||

=ep + pu(l — a, + pay)||Fo, — =]

< en+ 121 — ay, + pay)|jv, — ||

= e + 121 = ap + pay)||[F((1 = by)w, + b, Fw,) — ||

< e+ 0= an -+ jaan)((1 = bl — 1| + bl P — el
i Ms(l — @y + puay)((1 = by) Hwn - %H + l‘anwn - %H)

=€+ 131 = ap + pay) (1= by 4+ ub)||F((1 = )by + caFl,) — ||
e+ /1'3(1 — @ + pan)(1 = by + pby) (L = c)|[€n — 5| + :UQCnHén —x])
<en+ptl—a,+ ,uan)(l by, + b)) (1 — ¢ + pen)| 16, — ||

=< 6,L+IJ (1 —p+pp) Hén — .

lni1 — 2|l 2 e+ pf 1= p+pp) Hgn_%H (26)

By our assumption, we have 1 — (1 — p)p < 1. From Lemma 2.3, lim ¢, = 5. And then conversely
n—oo
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€n = Hén+1 - f<F7 Z”)H
= [nr — ol + |22 — f(E, 4]
S lnsa — z2l| + (1L = an)|Jun — 5| + pag||Fu, — ||
= HZHH - %H + (1 —a, + Nan)Hun - %H
= [[lns1 — 3l + (1 = an + pan) || Fop — 5||
= g — || +N2<1 — ay + pay)| v, — |
= |[lp i1 — || + 121 = an + pay)||F((1 = by)w, + b, Fw,) — ||
< e — ol + 1801 = -+ pn)(1 = b + ) — ]
= [[lpy1 — 2| + /13 L= ay + pan)(1 = by + pbp)|[[F((1 = cn)ly + c, Fly) — ||
Sl = sl + (= an o+ pan) (1= by + ) (1= e+ pcy) [ — .

en = luer = sl + (1= @ + pan) (1= by + pby)(1 = ¢ + pcy)[[ €y — 5] (27)
Therefore lim €, = 0, so the M-Fast iterative process is F-stable . We find that the process is almost F-stable.
n—o0

Suppose Z €, < 00. Using (26) we have

n=1

[€nr = sll = e+ p*(1 = p+ pup)*|[€, — 5]|.
By Lemma (2.1) and (2.4), we get £,, — > asn — o0.
Conversely, suppose that lim ¢, = s. From (27), we have
n—0o0

€n j HZIHI - %” + /1/4(1 — Qp + ,uan)u - bn + ,Ubn)(l — Cp + lllcnﬂlgn - %H
we obtain, ¢, — 0 as n — co. Hence the proof.
a

Example 3 Let ' : [0, 1] — [0, 1] be a self mapping defined by ||z — y|| = 4[|z — y|| such that F'(z) = 7. It can

be checked that the condition (13) is satisfied for s =  and 3¢ = (. Suppose ¢, = 1 with a,, = b, = ¢, = %
Using (26), we have
€041 = 52l < el + |1 (1 = p+ pp)* [, — 5]
1, 111 41
= V(] — — 4 (D) —)3 = —
] +13)'0 = 75 + ()75l =l
leal + 1311 = == + 32t — 0] = 0asn = oo
=le - — — 4 (=)—=)%|— — as .
" 2 V2 22 n
Using (27),
€n j ”EnJrl - %H +ﬂ4(1 — Gy +ﬂan)(1 - bn +an><1 7cn+ﬂcn>||£n - %H
1 1., 1 1 1
< |||T+1 - %”' + |<§)4<1 —ap + Eﬂ/n)(l —b, + §bn><1 —Cp+ 5@7)”671 - %|H
| A T L S 0 L ST 10 L S 10 N [ DY
i - - ——t-—)l-—=4+ =) - —=+-——=)i|— — as n 0.
~ 'n+1 2 V2 242 V2 242 V2 22 '

lim €, = 0. Therefore, the M-Fast iterative process is F-stable and also almost F-stable.
n—oo

In the same line, we prove the stability of the M-Fast iteration procedures for weak contraction mapping on a
complex-valued Banach space.

Theorem 3.9 Let (A, ||.||) be a complex valued Banach space and F': B C A — B be a mapping that satisfies
the contraction condition (14). Assume that 3¢ in F(F), such that the sequence {/,,} of (15) converges to > with

Z a,, = oo and real sequences 0 < p < a,, by, ¢, < 1¥n € N, then the M-Fast iterative process is F-stable and

n=1
almost F-stable.

Data dependence result for our new iterative process in complex valued banach spaces
In this section, we prove the data dependence result of M- Fast iterative process for contraction mapping on a
complex valued banach space.
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Theorem 3.10 Let F be an approximate operator on B for a map F satisfying condition (13). Suppose {¢, } gen-
erated by (15) for F and {¢,} is defined as

t,=0eB
£n+1 ((1 - an)un + a,,Fu,,),
un = FU,L, (28)

= F((l -b )wn + anwn)
= F((l — (n)/n + (,lFé ),

with real sequences {a,}, {b,} and {c,} € [0, 1] satisfying Z a, = oo and % < a,. If Fsc= s and ;7;{ =

n=1

~ ~ ~ 13¢
such that lim ¢, = s, then we have ’||% — %H’ < —— where ¢ is fixed.
n—00 1— 12

Proof Using (13), (15) and (28), we got,

<1 - c,,)ﬁ,, + CnFen> - ((1 - Cn)£n + CnF6n>H
CII>€II + Canu) - ((1 - Cn,>£n, + Cann)”

lwn+1 — 172,,,+1H = ||F(
= F((1
FIFL = ) bn+ caFly) — F((1— cn)ln + caF L)
< (1 = )l = Cull + peal Fly — FUL|| + ¢
(L= e)[ln = Lull + peal|[Fln — Flo+ Flo— Flo + ¢

(
(
H(L = )l — Call + 12l — Lol + prcee +
(1 = cp+ pcy)||n — an + pcne +e.

0 = Tall = IF((1 = bu)wn + by Fvy) = F((L = by)iby + b, i)
=l = by)[wn — INUTI” + by || Fw, — F;‘}n” te
= (1= bo)wn = wal| + 76w — wal| + pbye + &
=< (1 = by, + pby)||w, — w, || + pbue + €.

”un - an” = HFUn - FZHH
j HFUn, - FZT{H + HFEIL - an“
=< pl|lvn — V|| + €.

Thus

it — Costll =IF((L = an)n + @nFun) — F((1 = an)Fiin + an Feiy) |
= (1 = ap + pay)|lu, — an“ + pane + €
= (1 = an + pay) (pllve — val +€) + page + €
= 121 — ay + pay)||vn — On|| + pe + plane + ¢
<21 —a, + uan)( (1 = by + pby)||w, — Wy || + pbae + 6) + pie + plage + €
=31 —a,+ uan)(l — by + pby) ||l wn — Wy + p3bue — anpdbue
+ ;f‘anbns + /[25 + /1, ean + pe + €
< (L= @ pag) (1= b+ ) (L = e+ pe) [ — Call + pcae + <)
+ /ﬁbna — a,lugbna + pitanbne + /f& + /ﬁaan + ue +¢€.

H‘€n+1 - f,1+1H j H4(1 — Qp + ﬂanxl - bn, + an)(l —Cp + NCW)H&L - lnH + /146115(1 — Qp + [L(l”)(l - bn + ,Ubn,) (29)
+ 12e(1 = @y, + pay)(1 = by + pby,) + 112bue + anpbpe(p — 1) + p’e + plea, + pe + <.

For pe€ (0,1) and a,,b, and ¢, are in [0, 1] ¥Vn € N, then we have the following observations
(1—a,(1—p) <1,(1=b,(1—p)<1,(1—cy(1—p)) <1 pm?pdput<1,(p—1)<0 and
pan, u3by, ue,, utc, < 1.Since ourassumption that% < a,,wehavel — a,, < a,. Using the above observations
together with (29), we get
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HEnJrl - €7l+l“ j (1 - (1 - ,u)an)an - fn” + apc + 65

= (1= (1= pwan)|ly — Cs]| + ane + 6(1 — a, + ay)e (30)
~ 13
< (1= (1= pwan)|ln — Lu]l + an(l — u)l — /15.
Letp, = |4, — ZnH,(Sn = 1%5, vy, = ay(1 — p). Using lemma (2.5) together with (30), we get
0 < limsup p, < limsup d,. (31)
n—oo n—oo

By Theorem (3.1), {/,,} converges to s of mapping F and the assumption that {EN”} converges to a 5 of mapping

13¢
.0
I—p

F, we obtain ||3c — || <

Conclusion

In this work, we have proposed a new iterative process for approximating fixed points in complex-valued Banach
spaces under contraction and weak contraction conditions. Through our analysis, we have demonstrated that
our novel iterative approach achieves faster convergence rates compared to several existing methods, including
the S-iterative, PMH, PKH, PIH, PSH, HR-iterative, and H R*-iterative processes. Additionally, we have
established the strong convergence of our new iterative process in complex-valued Banach spaces. Our findings
are supported by both analytical proofs and numerical examples, and visualized the speed of convergence using
MATLAB. Furthermore, we have extended our investigation to include a small result concerning non-expansive
mapping using our proposed iterative technique. Finally, we have discussed the stability of our novel approach
and its implications for data dependence under contraction conditions.

We can apply our fast iterative processes across various fields and industries. Some common areas where fast
iterative algorithms find application include:

Optimization: Fast iterative algorithms are widely used in optimization problems across diverse domains
such as engineering, finance, logistics, and machine learning. They help in finding optimal solutions to complex
problems efficiently.

Signal Processing: In areas like image processing, audio signal processing, and communication systems, fast
iterative algorithms are employed for tasks such as denoising, compression, filtering, and equalization.

Machine Learning and Data Mining: Iterative algorithms play a crucial role in training machine learning
models, such as gradient descent-based optimization in neural networks, clustering algorithms like k-means,
and dimensionality reduction techniques like principal component analysis (PCA).

Scientific Computing: Many scientific simulations and computations rely on fast iterative methods to solve
differential equations, linear algebra problems, and optimization tasks arising from physics, chemistry, biology,
and other scientific disciplines.

Finance and Economics: Iterative algorithms are used for portfolio optimization, risk management, option
pricing, algorithmic trading, and other financial applications.

Computer Graphics and Vision: Fast iterative techniques are utilized in rendering algorithms, computer
vision tasks like object detection and recognition, 3D reconstruction, and motion tracking.

Operations Research: In fields such as transportation, scheduling, and resource allocation, fast iterative
methods are applied to solve complex optimization problems and improve decision-making processes.

Healthcare and Bioinformatics: Iterative algorithms find application in medical imaging, genome sequencing,
drug discovery, and personalized medicine, aiding in data analysis, pattern recognition, and predictive modeling.

Data availability
The authors affirm that the data underpinning the results of this investigation are provided within the article
itself.
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