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This paper introduces a novel fast iterative process designed for approximating fixed points of 
contraction and weak contraction mappings. The study presents strong convergence results for this 
newly proposed iterative process, and proving its efficiency. Analytical and numerical evidences 
are provided to establish that the proposed iterative method converges more rapidly than several 
existing processes. Furthermore, stability results and dependence analysis are presented for the newly 
developed iterative process, enhancing its practical applicability and robustness.
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Fixed point theory is a crucial concept in mathematics and various sciences. It involves expressing problems as 
equations involving operators and finding solutions by identifying the fixed points of these operators. This theory 
combines functional analysis, topological theory, and geometry to simplify real-world or theoretical problems 
into fixed-point problems. Fixed point theory is especially useful in determining whether or not solutions to 
differential and integral equations exist because these equations govern the behavior of a variety of real-world 
problems, and the presence of a solution is critical. A fixed point of a mapping is a value that remains unchanged 
when the mapping is applied to it. In other words, if F is a function, a fixed point x satisfies F (x) = x.

Banach proved a fixed point theorem known as the contraction mapping principle in 19221, which guarantees 
the presence and uniqueness of a fixed point on a complete metric space. We assume that D is a nonempty subset 
of a Banach space X. Let F be a self-mapping on D. If there exists µ ∈ [0, 1) such that

	 ||Fh1 − Fh2|| ≤ µ||h1 − h2||, ∀h1, h2 ∈ D ⊆ X.

F is called a contraction condition. Numerous articles have been published to enhance the fundamental principle 
above, leading to its generalization. The majority of these contributions have focused on generalizing the 
contraction condition within metric spaces. However, once the occurrence of a fixed point for a given mapping 
is established, determining that fixed point becomes a challenging task. Addressing this challenge effectively 
involves the utilization of iterative strategies. Therefore, the endeavor to approximate fixed points under diverse 
contraction conditions is of both theoretical and practical significance. Developing an iterative process with 
a high convergence rate is crucial for approximating solutions to nonlinear equations. Over the years, many 
researchers have dedicated their efforts to establishing iterative processes with accelerated convergence rates, 
specifically within real-valued metric and Banach spaces. We have listed below some one-step iterative processes, 
namely Picard2, Krasnoselskii3, and Mann4, respectively.

	 κ1 = κ ∈ D, κn+1 = Fκn, n ∈ N. � (1)

	 h1 = h ∈ D, hn+1 = (1− γ)hn + γFhn, n ∈ N. � (2)

	 s1 = s ∈ D, sn+1 = (1− an)sn + anFsn, n ∈ N, � (3)

where {an} & γ are in (0, 1). Two-step iterative processes named Ishikawa5, S-iterative6, Picard Mann hybrid 
(PMH)7, and Picard Krasnoselskii hybrid (PKH)8 are detailed below.

	 q1 = q ∈ D, qn+1 = (1− an)qn + anFκn, κn = (1− bn)qn + bnFqn, n ∈ N. � (4)

	 p1 = p ∈ D, pn+1 = (1− an)Fpn + anFκn, κn = (1− bn)pn + bnFpn, n ∈ N. � (5)
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	 u1 = u ∈ D, un+1 = Fκn, κn = (1− an)un + anFun, n ∈ N. � (6)

	 v1 = v ∈ D, vn+1 = Fκn, κn = (1− γ)vn + γFvn, n ∈ N, � (7)

where {an}, {bn} & γ are in (0, 1). In 2009, Agarwal et al.6 defined the S-iterative method, which approaches 
faster than Picard, Krasnoselskii, Mann, and Ishikawa iterative methods. In 2013, Khan7 defined the PMH 
iterative process and also proved that the iterative scheme which tends toward faster than all of the Picard, Mann, 
and Ishikawa processes in the sense of Berinde9 for contraction mapping. In8, authors proved that the PKH 
iterative process converges quicker than Picard, Mann, Krasnoselskii, and Ishikawa iterative methods. Next, we 
give the following three-step iterative process, namely the Picard-Ishikawa hybrid (PIH) whcih is defined in10.

	




ω1 = ω ∈ D,

ωn+1 = Fvn,

vn = (1− an)ωn + anFun,

un = (1− bn)ωn + bnFωn, n ∈ N,

� (8)

where {an} & {bn} are in (0,  1). In10, the author proved that his iterative method converges faster than 
widely recognized methods such as Picard, Mann, Ishikawa, Krasnoselskii, Picard Mann hybrid, and Picard 
Krasnoselskii hybrid iterations, as per the criteria outlined by Berinde9. Likewise, in11 Faik Gursoy et al. 
introduced the three-step iterative process named Picard-S hybrid (PSH) method that converges faster than 
the other iteration methods in the literature existing. In12, Julee Srivastava used the three-step iterative process 
namely Picard-S hybrid (PSH), establishing its quicker convergence compared to various other iterative methods 
like Picard, Mann, Krasnoselskii, Ishikawa, S-iterate, PMH, PKH, and PIH for contraction conditions on real-
valued normed linear spaces, for {xn} on real-valued normed linear space, and it is

	




x1 = x ∈ D,

xn+1 = Fzn,

zn = (1− an)Fxn + anFκn,

κn = (1− bn)xn + bnFxn,

� (9)

where {an} & {bn} are sequences of real numbers in (0, 1). Austine Efut Ofem et al. introduced the three steps A∗∗ 
iteration method in13, which is a more efficient method for approximating the fixed points of almost contraction 
mappings and generalized α-nonexpansive mappings. For another type of three steps iteration method, see14. 
The authors of15 provided the AH iterative scheme, a four-step iterative scheme for approximating fixed points 
of contractive-like mappings, and Reich-Suzuki-type nonexpansive mappings. For additional information 
regarding four-step iterative schemes, please refer to16,17.

Wasfi Shatanawi et al.18 introduced the four-step iterative process, namely SBTn, and proved numerically that 
the iterative process converges faster than Sintunavarat et al.19, Agarwal et al., Mann, and Ishikawa iterative 
processes.

	




y1 = y ∈ D,

yn+1 = (1− dn)Fxn + dnFzn,

zn = (1− an)Fxn + anFκn,

xn = (1− cn)yn + cnκn,

κn = (1− bn)yn + bnFyn,

� (10)

where {an}, {bn}, {cn} and {dn} are sequences of real numbers in [a, 1− a], [b, 1− b], [c, 1− c], [d, 1− d] 
respectively. Hammad et al.20 introduced the four-step iterative process named HR, which converges faster than 
the K∗ iterative process21, S iterative process, Picard-S iterative process, and Thakur iterative process.

	




z1 = z ∈ D,

zn+1 = Fyn,

yn = F ((1− cn)xn + cnF (xn)),

xn = F ((1− bn)κn + bnF (κn)),

κn = (1− an)zn + anFzn,

� (11)

where {an}, {bn} and {cn}⊂ [0, 1]. Recently, Hammad et al.22 introduced another four-step iterative process 
named HR∗ and proved analytically that their iterative processes converge faster than existing iterative processes 
named JK in23.
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



o1 = o ∈ D,

on+1 = (1− cn)zn + cnFzn,

zn = F (F (xn)),

xn = F ((1− bn)κn + bnF (κn)),

κn = (1− an)on + anFon,

� (12)

where {an}, {bn} and {cn} are sequences of real numbers in (0, 1). In the diverse landscape of pure and applied 
sciences, spanning domains such as biology, physics, and computer science, the exploration of metric spaces 
has emerged as a pivotal focus. In 2011, Azam et al.24, defined the concept of complex valued metric spaces. His 
novel concept has assisted researchers in overcoming the disadvantage of being unable to define rational form in 
cone metric spaces, and it can be used to create complex valued normed spaces as well as complex valued inner 
product spaces, both of which provide a wealth of potential research topics. More results on complex valued metric 
spaces have been discussed in24,25. However, a conspicuous gap persists in understanding the approximation of 
fixed points of nonlinear mappings within real-valued metric spaces and real-valued Banach spaces26–31. To 
bridge this void, Okeke, in32, introduced the concept of complex valued Banach spaces. Leveraging the iterative 
techniques proposed by8,10, Okeke successfully approximated the fixed points of contraction conditions within 
these complex valued Banach spaces. Moreover, the PMH iteration and the PKH iteration have been shown to 
have the same rate of convergence both analytically and numerically.

Motivated by these authors, we propose a new iterative process to approximate fixed points for contraction 
and weak contraction conditions on complex-valued Banach spaces. We show that the new iterative process 
converges faster than other iterative processes named S-iterative, Picard Mann hybrid, Picard Krasnoselskii 
hybrid iterative, Picard Ishikawa hybrid, Picard-S hybrid, HR-iterative, and HR∗-iterative processes. Also, we 
prove that the new iterative process is strongly convergent on complex-valued Banach spaces. The obtained 
results are proven both analytically and numerically with examples and visualized for the speed of convergence 
using Matlab tools for contraction and weak contraction conditions. We prove a small result for nonexpansive 
mapping using our new iterative process. We discuss the stability of our novel iterative technique and its impact 
on data dependence for contraction.

Lemmas and definitions
The purpose of this section is to provide the reader with certain definitions and lemmas that will ensure that they 
have a better comprehension of our content and will be beneficial in the subsequent section. Let A be a linear 
space over a field K, where K = R or K = C.

Lemma 2.1  32 Let (A, ||.||) be a complex valued Banach space, and let {pn} be a sequence in A. Then {pn} con-
verges to p if and only if |∥pn − p∥| → 0 as n → ∞.

Lemma 2.2  32 Let (A,  ||.||) be a complex valued Banach space and {pn} be a sequence in A. Then {pn} is a 
Cauchy sequence if and only if |∥pn − pn+m∥| → 0 as n → ∞.

Definition 2.1  9 Let {ℓn}, {mn} be two sequences of positive numbers that converge to ℓ and m, respectively. 

Suppose that ∃ a constant c such that lim
n→∞

||ℓn − ℓ||
||mn −m||

= c. If 

	1.	� c = 0, then {ℓn} converges to ℓ faster than {mn} to m.
	2.	� 0 < c < ∞, then {ℓn}∞n=0 and {mn}∞n=0 have the same rate of convergence.

For more details on the following, one can refer to9,33–38.

Definition 2.2  Let F,
∼
F  be two self operators on B ⊆ A. We define 

∼
F  as an approximate operator of F if, for any 

a ∈ B and a given fixed ϵ > 0, the condition ||Fa−
∼
Fa|| ≤ ϵ holds.

Definition 2.3  Let B ⊆ A and S be self-mapping on B. Assume that p1 ∈ B and pn+1 = f (S, pn) defines an 
iterative process that produces a sequence {pn} ⊂ B and {pn} converges strongly to a ∈ F (S) ̸= ∅ where F(S) is 
the set of all the fixed points of S. Let {qn} be any sequence of bounded in B, and choose ϵn = ||qn+1 − f (S, qn)||
. Then 

	1.	� The iterative process {pn}∞n=0 defined by pn+1 = f (S, pn) is said to be S-stable on B if limn→∞ ϵn = 0, =⇒
limn→∞ qn = a.

	2.	� The iterative process {pn}∞n=0 defined by pn+1 = f (S, pn) is said to be at-most S-stable on B if 
∞∑
n=1

ϵn < ∞, 

=⇒ limn→∞ qn = a.
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Lemma 2.3  9 Let σ be a real number in the range 0 ≤ σ < 1, and consider a sequence of positive numbers 
{ϵn}∞n=0 such that lim

n→∞
ϵn = 0. Then, for the sequence of positive numbers {pn}∞n=0 satisfying the condition 

pn+1 ≤ σpn + ϵn for all n ≥ 0, we have limn→∞ pn = 0.

.

Lemma 2.4  39 Let {qn} and {ρn} be non-negative real sequences satisfying qn+1 ≤ (1− µn)qn + ρn, where 
µn ∈ (0, 1), ∀n ≥ n0, 

∞∑
n=1

µn = ∞ and ρnµn → 0 as n → ∞, then lim
n→∞

qn = 0.

Lemma 2.5  40 Let {qn}∞n=0 denote a non-negative real sequence that adheres to the inequality:

qn+1 ≤ (1− νn)qn + νnδn,
where νn ∈ (0, 1)∀n ∈ N, 

∑∞
n=1 νn = ∞, and δn ≥ 0∀n ∈ N. Given that there exists n0 ∈ N such that n ≥ n0

, it follows that 0 ≤ lim sup
n→∞

qn ≤ lim sup
n→∞

δn.
Let (A, ||.||) be a complex valued Banach space, and F be a self-mapping on B ⊆ A. If ∃µ ∈ (0, 1) such that

	 ||Fh1 − Fh2|| ⪯ µ||h1 − h2||, ∀h1, h2 ∈ B ⊆ A,� (13)

F is called a contraction condition. On a complete metric space, weak contraction type conditions are discussed 
in41,42. Here we define the weak contraction on a complex valued Banach space. If there exists µ ∈ (0, 1) and 
ν ≥ 0 such that

	 ||Fh1 − Fh2|| ⪯ µ||h1 − h2|| + ν||h1 − Fh1||,� (14)

for all h1, h2 ∈ B ⊆ A, F is called a weak contraction or almost weak contraction condition.

Main results
In this section, we propose the following new iterative process for a sequence {ℓn} such that:

	




ℓ1 = ℓ ∈ B,

ℓn+1 = F ((1− an)un + anFun),

un = Fvn,

vn = F ((1− bn)wn + bnFwn),

wn = F ((1− cn)ℓn + cnFℓn), ∀n ∈ N,

� (15)

where {an}, {bn} and {cn} are sequences in [0, 1]. This iterative process given by (15) can be called the M-Fast 
iterative process. In this main result, we first discuss the rate of convergence of a new iterative process named 
M-Fast for contraction and weak contraction conditions on complex valued metric spaces. Then we prove 
analytically and with numerical examples that our new four-step iterative method converges faster than other 
three-step iterative methods (named S-iterative, PMH, PKH, PIH, and Picard-S hybrid) and four-step iterative 
methods (named HR-iterative and HR∗-iterative). Furthermore, the stability of our new iterative method and 
the data dependence found for contraction conditions by employing our new iterative method are also discussed.

Convergence analysis
Strong convergence results for our new iterative process
We initiate this section with the subsequent convergence result of the M-Fast iterative method for contraction 
conditions on a complex valued Banach space.

Theorem 3.1  Let B be a nonempty closed convex subset of a complex-valued Banach space (A, ||.||). Suppose F 
is a self-mapping on B satisfying the condition (13) and possessing a fixed point. Consider the iterative sequence 
{ℓn} generated by (15), where the sequences {an}, {bn}, {cn} are real and lie within the closed interval [0, 1] 
such that 

∑∞
n=1 an = ∞. Then, the sequence {ℓn} converges strongly to a unique fixed point κ of the mapping F.

Proof  Let κ be a unique fixed point of the mapping F. Using (13) and (15), we have

	

||wn − κ|| = ||F ((1− cn)ℓn + cnFℓn)− κ||
⪯ µ(1− cn)||ℓn − κ|| + µcn||Fℓn − κ||
⪯ µ(1− cn)||ℓn − κ|| + µ2cn||ℓn − κ||
= µ(1− cn + µcn)||ℓn − κ||.

� (16)
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||vn − κ|| = ||F ((1− bn)wn + bnFwn)− κ||
⪯ µ(1− bn)||wn − κ|| + µbn||Fwn − κ||
⪯ µ(1− bn)||wn − κ|| + µ2bn||wn − κ||
= µ(1− bn + µbn)||wn − κ||.

� (17)

	 ||un − κ|| = ||F (vn)− κ|| ⪯ µ||vn − κ||. � (18)

Using (16), (17) and (18), we have

	

||ℓn+1 − κ|| = ||F ((1− an)un + anFun)− κ||
⪯ µ(1− an)||un − κ|| + µan||Fun − κ||
⪯ µ(1− an)||un − κ|| + µ2an||un − κ||
⪯ µ(1− an + µan)||un − κ||
⪯ µ2(1− an + µan)||vn − κ||
⪯ µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)||ℓn − κ||.

� (19)

Since 0 < µ < 1 and bn and cn∈ [0, 1]∀n ≥ 1,(1− bn(1− µ))(1− cn(1− µ))< 1. Thus the above equation (19) 
reduces to

	 ||ℓn+1 − κ|| ⪯ µ4(1− an + µan)||ℓn − κ||,� (20)

where (1− an(1− µ)) is in (0, 1). As µ ∈ (0, 1) and an∈ [0, 1] for all n ≥ 1, we obtain

	




||ℓn+1 − κ|| ⪯ µ4(1− an + µan)||ℓn − κ||
||ℓn − κ|| ⪯ µ4(1− an−1 + µan−1)||ℓn−1 − κ||
.

.

.

||ℓ2 − κ|| ⪯ µ4(1− a1 + µa1)||ℓ1 − κ||.

Therefore we have

	
||ℓn+1 − κ|| ⪯ ||ℓ1 − κ||µ4(n+1)

n∏
k=1

(1− ak(1− µ)).� (21)

Using the classical result, 1− x ≤ e−x for all x ∈ [0, 1] in the above inequality, we get

||ℓn+1 − κ|| ⪯ ||ℓ1 − κ||µ4(n+1)

e(1−µ)
∑n

k=1(ak)
 and lim

n→∞
|||ℓn+1 − κ||| ≤ ||ℓ1 − κ||µ4(n+1)

e(1−µ)
∑n

k=1(ak)
→ 0 as n → ∞.

=⇒ ℓn → κ as n → ∞.
□

Using the aforementioned theorem technique, we provide the following result for the weak contraction condition.

Theorem 3.2  Let (A, ||.||) be a complex-valued Banach space. Given a nonempty closed convex subset B ⊆ A
, consider a self-mapping F : B → B that satisfies condition (14). Let ℓn be an iterative sequence generated by 
(15), with real sequences {an}, {bn}, {cn} in [0, 1] such that 

∑∞
n=1 an = ∞. Then, the sequence {ℓn} converges 

strongly to a unique fixed point κ of the mapping F.

Speed of convergence of our iterative process with other two- and three-step iterative processes
The following theorem shows that our new iterative process converges faster than the S-iterative, PMH, PKH , 
PIH, and Picard-S hybrid iterative processes.

Theorem 3.3  Let (A, ||.||) be a complex-valued normed space with B being a nonempty closed convex subset. 
Consider a self-mapping F : B → B satisfying condition (13). Assume that each iterative process defined by 
equations (5), (6), (7), (8), (9), and (15) converges to the same fixed point κ of F. Here, the sequences {an}, {bn}
, and {cn} are real with 0 < ρ ≤ γ, an, bn, cn < 1 for all n ∈ N. Then, the M-Fast iterative process (15) exhibits a 
faster convergence rate compared to all other iterative processes mentioned.

Proof  Let F (κ) = κ. Use S-iterative process (5) in the contraction condition (13), by usual technique we have,

	 ||κn − κ|| ⪯ (1− bn)||pn − κ|| + bnµ||pn − κ||.

Thus
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||pn+1 − κ|| = ||(1− an)Fpn + anFκn − κ||
⪯ (1− an)||Fpn − κ|| + an||Fκn − κ||
⪯ (1− an)µ||pn − κ|| + anµ||κn − κ||
= (1− an)µ||pn − κ|| + anµ((1− bn)||pn − κ|| + bnµ||pn − κ||)
= µ(1− (1− µ)anbn)||pn − κ||
⪯ µ(1− (1− µ)ρ2)||pn − κ||.

||pn+1 − κ|| ⪯ µ(1− (1− µ)ρ2)||pn − κ||... ⪯ µn+1(1− (1− µ)ρ2)n+1||p1 − κ||. We let 
An = (µ(1− (1− µ)ρ2))n+1||p1 − κ||.

From Picard Mann hybrid process (6) and contraction condition (13), we have

	

||un+1 − κ|| = ||Fκn − κ||
⪯ µ||κn − κ||
= µ||(1− an)un + anFun − κ||
⪯ µ(1− an)||un − κ|| + µan||Fun − κ||
⪯ µ(1− an)||un − κ|| + µ2an||un − κ||
= µ(1− (1− µ)an)||un − κ||
⪯ µ(1− (1− µ)ρ2)||un − κ||.

=⇒ ||un+1 − κ|| ⪯ (µ(1− (1− µ)ρ2))n+1||u1 − κ||. Let Bn = (µ(1− (1− µ)ρ2))n+1||u1 − κ||.

From Picard Krasnoselskii hybrid iterative (7) and (13), we have

	

||vn+1 − κ|| = ||Fκn − κ||
⪯ µ||κn − κ||
= µ||(1− γ)vn + γFvn − κ||
⪯ µ(1− γ)||vn − κ|| + µγ||Fvn − κ||
⪯ µ(1− γ)||vn − κ|| + µ2γ||vn − κ||
= µ(1− γ + µγ)||vn − κ||
⪯ µ(1− (1− µ)ρ2)||vn − κ||.

Since ||vn+1 − κ|| ⪯ µ(1− (1− µ)ρ2)||vn − κ|| ⪯ .... ⪯ µn+1(1− (1− µ)ρ2)n+1||v1 − κ||.

Let Cn = (µ(1− (1− µ)ρ2))n+1||v1 − κ||.
From Picard Ishikawa hybrid (8) and (13),

	

||vn − κ|| ⪯ (1− an)||ωn − κ|| + µan||un − κ||.
||un − κ|| ⪯ (1− bn)||ωn − κ|| + µbn||ωn − κ||.

Thus

	

||ωn+1 − κ|| = ||Fvn − κ||
⪯ µ||vn − κ||
⪯ µ(1− an)||ωn − κ|| + µ2an((1− bn)||ωn − κ|| + µbn)||ωn − κ||
= µ((1− (1− µ)an||ωn − κ||
⪯ µ(1− (1− µ)ρ2)||ωn − κ||.

We have ||ωn+1 − κ|| ⪯ µ(1− (1− µ)ρ2)||ωn − κ|| ⪯ .... ⪯ µn+1(1− (1− µ)ρ2)n+1||ω1 − κ||. Let 
Dn = (µ(1− (1− µ)ρ2))n+1||ω1 − κ||.

From Picard-S hybrid iterative process (9) and the condition (13),

	

||κn − κ|| ⪯ (1− bn)||xn − κ|| + µbn||xn − κ||.
||zn − κ|| ⪯ µ(1− an)||xn − κ|| + µan||κn − κ||.

Therefore,
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||xn+1 − κ|| = ||Fzn − κ||
⪯ µ||zn − κ||
⪯ µ(µ(1− an)||xn − κ|| + µan||κn − κ||)
⪯ µ(µ(1− an)||xn − κ|| + µan((1− bn)||xn − κ|| + µbn||xn − κ||))
= µ2(1− (1− µ)anbn))||xn − κ||
⪯ µ2(1− (1− µ)ρ2)||xn − κ||.

||xn+1 − κ|| ⪯ µ2(1− (1− µ)ρ2)||xn − κ|| ⪯ ... ⪯ µ2(n+1)(1− (1− µ)ρ2))n+1||x1 − κ||. So Let 
En = µ2(n+1)(1− (1− µ)ρ2)n+1||x1 − κ||.

For M-Fast iterative process (15) and the contraction condition (13), it follows from the equation (20)

	

||ℓn+1 − κ|| ⪯ µ4(1− an + µan)||ℓn − κ||
⪯ µ4(1− (1− µ)ρ2)||ℓn − κ||

||ℓn+1 − κ|| ⪯ µ4(1− (1− µ)ρ2)||ℓn − κ|| ⪯ ... ⪯ µ4(n+1)(1− (1− µ)ρ2)n+1||ℓ1 − κ||.

Let Fn = (µ4(1− (1− µ)ρ2))n+1||ℓ1 − κ||.
Now we show that rate of convergence. Since (µ(1− (1− µ)ρ2)) < 1 and µ ∈ (0, 1),
we observe the following,

	
Fn

An
=

(µ4(1− (1− µ)ρ2))n+1||ℓ1 − κ||
(µ(1− (1− µ)ρ2))n+1||p1 − κ||

= µ3(n+1) ||ℓ1 − κ||
||p1 − κ||

.

Letting n → ∞, we have limn→∞
Fn
An

= 0. Thus M-Fast iterative process (15) converges to κ faster than S-iterative 
process (5).

	
Fn

Bn
=

(µ4(1− (1− µ)ρ2))n+1||ℓ1 − κ||
(µ(1− (1− µ)ρ2))n+1||u1 − κ||

= µ3(n+1) ||ℓ1 − κ||
||u1 − κ||

.

As n → ∞, we have limn→∞
Fn
Bn

= 0. Thus M-Fast iterative process (15) converges to κ faster than Picard Mann 
hybrid process (6).

	
Fn

Cn
=

(µ4(1− (1− µ)ρ2))n+1||ℓ1 − κ||
(µ(1− (1− µ)ρ2))n+1||v1 − κ||

= µ3(n+1) ||ℓ1 − κ||
||v1 − κ||

.

Letting n → ∞, we have limn→∞
Fn
Cn

= 0. Thus M-Fast iterative process (15) converges to κ faster Picard 
Krasnoselskii hybrid iterative (7).

	
Fn

Dn
=

(µ4(1− (1− µ)ρ2))n+1||ℓ1 − κ||
(µ(1− (1− µ)ρ2))n+1||w1 − κ||

= µ3(n+1) ||ℓ1 − κ||
||w1 − κ||.

As n → ∞, we have limn→∞
Fn
Dn

= 0. Thus M-Fast iterative process (15) converges to κ faster Picard Ishikawa 
hybrid iterative (8).

	
Fn

En
=

(µ4(1− (1− µ)ρ2))n+1||ℓ1 − κ||
(µ2(1− (1− µ)ρ2))n+1||x1 − κ||

= µ3(n+1) ||ℓ1 − κ||
||x1 − κ||

Letting n → ∞, we have limn→∞
Fn
En

= 0. Thus M-Fast iterative process (15) converges to κ faster Picard-S 
hybrid (PSH) iterative process (9). Therefore {ℓn} converges faster than {pn}, {un},  {vn}{wn} and {xn}. That 
is the M-Fast iterative process (15) exhibits a faster convergence rate compared to all other iterative processes 
mentioned. □
Based on the technique mentioned earlier, we prove the following theorem under the condition of weak 
contraction.

Theorem 3.4  Let (A, ||.||) a complex valued normed space and B be a nonempty closed convex subset of (A, ||.||). 
Let F be a mapping from B to B satisfying condition (14). Assume that each iterative process in (5), (6), (7), 
(8), (9) and (15) converges to the same fixed point κ of F where {an}, {bn} and {cn} are the real sequences in 
0 < ρ ≤ γ, an, bn, cn < 1∀n ∈ N. Then M-Fast iterative process (15) exhibits a faster convergence rate compared 
to all other iterative processes mentioned.

Here we provide the following example to ensure that the analytical proof in the above theorem is valid.

Example 1  Let A = R and B = [1, 10]. Let F : [1, 10] → [1, 10] be a self operator which is defined by
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F (x) = 4
√
7x + 2, ∀x ∈ B.

Taking γ = an = bn = cn = 1
2  for n ∈ N, with initial values x0 = 5, it satisfies condition (13) for µ = 1

4√2
 and 

also condition (14) when ν = 0. Therefore, it has a unique fixed point κ = 2. From Table 1 and Fig. 1, we can see 
that the M-Fast iterative process (15) exhibits a faster convergence rate compared to all other iterative processes 
mentioned.

Speed of convergence of M-Fast iterative process with other four- step iterative processes
Now, we prove that the new iterative process converges faster than the other four-step iterative processes, namely 
HR and HR∗, on a complex valued normed space.

Fig. 1.  Comparison of the speed of convergence of M-Fast iteration process with the other two- and three- 
step iterative processes.

 

Step M-Fast Iterative Picard-S-Hybrid Picard-Ishikawa-Hybrid Picard-Mann-Hybrid Picard-Krasnoselskii Hybrid S-Iteration

0 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000000000000

1 2.0011261867836319 2.0793059134079650 2.2912488865942713 2.3030358186374400 2.3030358186374400 2.3846807665985503

2 2.0000005834225019 2.0030110496598703 2.0350206591613547 2.0389097369451790 2.0389097369451790 2.0641149195728792

3 2.0000000003022937 2.0001158794067488 2.0043246344827916 2.0051608040420277 2.0051608040420277 2.0111783140030237

4 2.0000000000001563 2.0000044619078006 2.0005358084723226 2.0006874802484398 2.0006874802484398 2.0019643560533171

5 2.0000000000000000 2.0000001718080949 2.0000664121678637 2.0000916335015981 2.0000916335015981 2.0003456740638228

6 2.0000000000000000 2.0000000066155659 2.0000082320460413 2.0000122146724939 2.0000122146724939 2.0000608442374688

7 2.0000000000000000 2.0000000002547358 2.0000010204004890 2.0000016282228121 2.0000016282228121 2.0000107100323050

8 2.0000000000000000 2.0000000000098086 2.0000001264834970 2.0000002170433273 2.0000002170433273 2.0000018852345725

9 2.0000000000000000 2.0000000000003775 2.0000000156782329 2.0000000289320443 2.0000000289320443 2.0000003318490576

10 2.0000000000000000 2.0000000000000147 2.0000000019433917 2.0000000038566639 2.0000000038566639 2.0000000584138569

11 2.0000000000000000 2.0000000000000004 2.0000000002408926 2.0000000005140963 2.0000000005140963 2.0000000102823217

12 2.0000000000000000 2.0000000000000000 2.0000000000298597 2.0000000000685292 2.0000000000685292 2.0000000018099495

13 2.0000000000000000 2.0000000000000000 2.0000000000037010 2.0000000000091349 2.0000000000091349 2.0000000003185967

14 2.0000000000000000 2.0000000000000000 2.0000000000004587 2.0000000000012177 2.0000000000012177 2.0000000000560814

15 2.0000000000000000 2.0000000000000000 2.0000000000000568 2.0000000000001621 2.0000000000001621 2.0000000000098717

16 2.0000000000000000 2.0000000000000000 2.0000000000000071 2.0000000000000213 2.0000000000000213 2.0000000000017373

17 2.0000000000000000 2.0000000000000000 2.0000000000000009 2.0000000000000027 2.0000000000000027 2.0000000000003055

18 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000004 2.0000000000000004 2.0000000000000533

19 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000093

20 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000000 2.0000000000000013

Table 1.  Comparison of the speed of convergence of the M-Fast iterative process with the other two and three 
step iterative processes.
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Theorem 3.5  Let F be a self-mapping on a nonempty closed convex subset B of a complex valued normed space 
(A, ||.||) that satisfies the condition (13). Assume that each iterative process in (11), (12), and (15) converges to 
the same fixed point κ of F, where {an}, {bn}, and {cn} are the real sequences with 0 < ρ ≤ an, bn, cn < 1∀
n ∈ N. Then the M-Fast iterative process (15) exhibits a faster convergence rate compared to all other iterative 
processes mentioned.

Proof  For M-Fast iterative process (15) and the contraction condition (13), it follows from the equation (21) 
together with 0 < ρ ≤ an < 1, n ∈ N,

	

||ℓn+1 − κ|| ⪯ ||ℓ1 − κ||µ4(n+1)
n∏

k=1

(1− ρ(1− µ))

= ||ℓ1 − κ||µ4(n+1)(1− ρ(1− µ))4(n+1)

Let Fn = (µ4(1− (1− µ)ρ))n+1||ℓ1 − κ||.

For HR iterative process (11) and the contraction condition (13),

	

||κn − κ|| = ||(1− an)zn + anFzn − κ||
⪯ (1− an)||zn − κ|| + an||F (zn)− κ||
⪯ (1− an)||zn − κ|| + µan||zn − κ||
⪯ (1− an + µan)||zn − κ||.

Similarly, we have ||yn − κ|| ⪯ µ(1− cn + µcn)||xn − κ||,||xn − κ|| ⪯ µ(1− bn + µbn)||κn − κ||. Thus

	

||zn+1 − κ|| = ||Fyn − κ||
⪯ µ||yn − κ||
⪯ µ2(1− cn + µcn)||xn − κ||
⪯ µ3(1− cn + µcn)(1− bn + µbn)||κn − κ||
⪯ µ3(1− an + µan)(1− bn + µbn)(1− cn + µcn)||zn − κ||.

� (22)

Since µ in (0, 1) and bn, cn are in [0, 1] ∀n ∈ N, we get (1− bn(1− µ))(1− cn(1− µ))< 1. Thus above inequality 
(22) reduces to

	 ||zn+1 − κ|| ⪯ µ3(1− an + µan)||zn − κ||,� (23)

where (1− an(1− µ)) is in (0, 1). Since µ ∈ (0, 1) and an∈ [0, 1] for all n ∈ N, we obtain

	
||zn+1 − κ|| ⪯ ||z1 − κ||µ3(n+1)

n∏
k=1

(1− ak(1− µ)).� (24)

It follows from equation (24) together with 0 < ρ ≤ an < 1∀n ∈ N,

	

||zn+1 − κ|| ⪯ ||z1 − κ||µ3(n+1)
n∏

k=1

(1− ρ(1− µ))

= ||z1 − κ||µ3(n+1)(1− ρ(1− µ))3(n+1)

Let Gn = (µ3(1− (1− µ)ρ))n+1||z1 − κ||.

For HR∗ iterative process (12) and the contraction condition (13), we got ||κn − κ|| ⪯ (1− an + µan)||on − κ|| 
and |xn − κ|| ⪯ µ(1− bn + µbn)||κn − κ||.

	

||zn − κ|| = ||F (F (xn))− κ||
⪯ µ2||xn − κ||.

Thus
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||on − κ|| = ||(1− cn)zn + cnFzn − κ||
⪯ (1− cn)||zn − κ|| + cn||F (zn)− κ||
⪯ (1− cn)||zn − κ|| + µcn||zn − κ||
⪯ (1− cn + µcn)||zn − κ||
⪯ µ3(1− cn + µcn)(1− bn + µbn)||κn − κ||
⪯ µ3(1− cn + µcn)(1− bn + µbn)(1− an + µan)||on − κ||
⪯ µ3(1− an + µan)||on − κ||,

where (1− an(1− µ)) is in (0, 1). As µ ∈ (0, 1) and an∈ [0, 1]∀n ∈ N, we find

	
||on+1 − κ|| ⪯ ||o1 − κ||µ3(n+1)

n∏
k=1

(1− ak(1− µ)).� (25)

It follows from the equation (25) together with 0 < ρ ≤ an < 1∀n ∈ N,

	

||on+1 − κ|| ⪯ ||o1 − κ||µ3(n+1)
n∏

k=1

(1− ρ(1− µ))

= ||o1 − κ||µ3(n+1)(1− ρ(1− µ))3(n+1).

Let Hn = (µ3(1− (1− µ)ρ))n+1||o1 − κ||. While checking the rate of convergence, we observe the following,

	
Fn

Gn
=

(µ4(1− (1− µ)ρ))n+1||ℓ1 − κ||
(µ3(1− (1− µ)ρ))n+1||z1 − κ||

= µ(n+1) ||ℓ1 − κ||
||z1 − κ||

,

since (µ(1− (1− µ)ρ)) < 1 and µ ∈ (0, 1) Letting n → ∞, we have limn→∞
Fn
Gn

= 0. Similarly,

	
Fn

Hn
=

(µ4(1− (1− µ)ρ))n+1||ℓ1 − κ||
(µ3(1− (1− µ)ρ))n+1||o1 − κ||

= µ(n+1) ||ℓ1 − κ||
||o1 − κ||

.

Letting n → ∞, we have limn→∞
Fn
Hn

= 0. Thus M-Fast iterative process (15) converges to κ faster than HR-
iterative process (11) and HR∗-iterative process (12). □
The following theorem, which pertains to the condition of the weak contraction, has been proved by us, using 
the technique that has been discussed earlier.

Theorem 3.6  Let (A,  ||.||) be a complex-valued normed space with B as a nonempty closed convex subset. 
Consider a self-mapping F : B → B satisfying condition (14). Suppose that every iterative process defined by 
equations (11), (12), and (15) converges to the same fixed point κ of F, where {an}, {bn}, and {cn} are real se-
quences such that 0 < ρ ≤ an, bn, cn < 1∀n ∈ N. Then, the M-Fast iterative process (15) achieves a faster rate of 
convergence compared to all other iterations.

In order to show the validity of the analytical proof presented in the above Theorem, we provide a numerical 
illustration as follows.

Example 2  Let A = R and B = [1, 50]. Let F : [1, 50] → [1, 50] be a self operator which is defined by 
F (x) =

√
x2 − 8x + 40, ∀x ∈ B. Taking an = bn = cn = 1

2  for n ∈ N, with initial values x0 = 50, it satisfies 
condition (13) and also (14) condition when ν = 0. Therefore, it has a unique fixed point κ = 5. From Table 2 
and Fig. 2, we can see that the M-Fast iterative process (15) converges faster than all the other iterations.

Next, we provide a small result of nonexpansive mapping for the M-Fast iterative process on a complex valued 
banach space.

Theorem 3.7  Let F be a nonexpansive self-mapping from a nonempty closed convex subset of a complex val-
ued Banach space (A, ||.||) to itself. Assume that {ℓn}∞n=0 is generated by process(15), then lim

n→∞
∥ℓn − κ∥ exist 

∀κ ∈ F (F ).

Proof  Suppose κ ∈ F (F ).
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Fig. 2.  Comparison of the speed of convergence of M-Fast iterative process with the other 4-step iterative 
processes.

 

Step M-Fast iteration HR∗ iteration HR iteration SBTn iteration

0 50.0000000000000000 50.0000000000000000 50.0000000000000000 50.0000000000000000

1 29.7983219777272730 33.3923263795198508 33.3904475851243419 43.2444875224078089

2 11.7418515288816714 17.8112141702975144 17.7997315173083202 36.5781382065469671

3 5.0322485948855791 6.4758736098510514 6.3988545945311150 30.0377438189666250

4 5.0000112969950772 5.0043238443811520 5.0038977070800321 23.6868656427377005

5 5.0000000039042600 5.0000074826778516 5.0000067439454190 17.6468208208834980

6 5.0000000000013491 5.0000000129301005 5.0000000116535634 12.1787126296530488

7 5.0000000000000000 5.0000000000223430 5.0000000000201377 7.8808153287967073

8 5.0000000000000000 5.0000000000000382 5.0000000000000346 5.6284225798452923

9 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0751181454845957

10 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0072852038527920

11 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0006869105740304

12 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000645882705879

13 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000060714625523

14 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000005707189388

15 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000536475930

16 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000050428746

17 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000004740306

18 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000000445590

19 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000000041886

20 5.0000000000000000 5.0000000000000000 5.0000000000000000 5.0000000000003944

Table 2.  Comparison of the speed of convergence of the M-Fast iterative process with the other 4-step iterative 
processes.
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||wn − κ|| = ||F ((1− cn)ℓn + cnFℓn)− κ||
⪯ (1− cn)||ℓn − κ|| + cn||Fℓn − κ||
⪯ (1− cn)||ℓn − κ|| + cn||ℓn − κ||
⪯ ||ℓn − κ||.

||vn − κ|| = ||F ((1− bn)wn + bnFwn)− κ||
⪯ (1− bn)||wn − κ|| + bn||Fwn − κ||
⪯ (1− bn)||wn − κ|| + bn||wn − κ||
⪯ ||wn − κ||.

||un − κ|| = ||F (vn)− κ|| ⪯ ||vn − κ||.

Thus

	

||ℓn+1 − κ|| = ||F ((1− an)un + anFun)− κ||
⪯ (1− an)||un − κ|| + an||Fun − κ||
⪯ (1− an)||un − κ|| + an||un − κ||
⪯ ||un − κ|| ⪯ ||vn − κ|| ⪯ ||wn − κ|| ⪯ ||ℓn − κ||.

Take n = ℓn − κ for all n ∈ N, as ∥Sn+1∥ ⪯ ∥Sn∥, lim
n→∞

∥ℓn − κ∥ exist ∀κ ∈ F (F ). □

Stability results for our new iterative process in complex valued banach spaces
In this part, we prove the stability of the M-Fast iteration procedures for contraction mapping on a complex-
valued Banach space.

Theorem 3.8  Let (A, ∥.∥) be a complex valued Banach space and F : B ⊆ A → B be a mapping that satisfies 
the contraction condition (13). Assume that there exists κ in F(F) and the sequence {ℓn} of (15) converges to κ 

with 
∞∑
n=1

an = ∞ and real sequences 0 < ρ ≤ an, bn, cn < 1 for all n ∈ N. Then the M-Fast iterative process is 

F-stable and almost F-stable.

Proof  Suppose {ℓn}∞n=0 in B is a bounded sequence and put ϵn = ∥ℓn+1 − f (F, ℓn)∥, where

	

ℓn+1 = F ((1− an)un + anFun),

un = Fvn,

vn = F ((1− bn)wn + bnFwn),

wn = F ((1− cn)ℓn + cnFℓn).

Let lim
n→∞

ϵn = 0. Using (13) and (15), we have

	

∥ℓn+1 − κ∥ ⪯ ∥ℓn+1 − f (F, ℓn)∥ + ∥f (F, ℓn)− κ∥
⪯ ϵn + ∥F ((1− an)un + anFun)− κ∥
⪯ ϵn + µ(1− an)||un − κ|| + µan||Fun − κ||
= ϵn + µ(1− an + µan)||un − κ||
= ϵn + µ(1− an + µan)||Fvn − κ||
⪯ ϵn + µ2(1− an + µan)||vn − κ||
= ϵn + µ2(1− an + µan)||F ((1− bn)wn + bnFwn)− κ||
⪯ ϵn + µ3(1− an + µan)((1− bn)||wn − κ|| + bn||Fwn − κ||)
⪯ ϵn + µ3(1− an + µan)((1− bn)||wn − κ|| + µbn||wn − κ||)
= ϵn + µ3(1− an + µan)(1− bn + µbn)||F ((1− cn)ℓn + cnFℓn)− κ||
⪯ ϵn + µ3(1− an + µan)(1− bn + µbn)(µ(1− cn)||ℓn − κ|| + µ2cn||ℓn − κ||)
⪯ ϵn + µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)||ℓn − κ||
⪯ ϵn + µ4(1− ρ + µρ)3||ℓn − κ||.

	 ∥ℓn+1 − κ∥ ⪯ ϵn + µ4(1− ρ + µρ)3||ℓn − κ||.� (26)

By our assumption, we have 1− (1− µ)ρ < 1. From Lemma 2.3, lim
n→∞

ℓn = κ. And then conversely
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ϵn = ∥ℓn+1 − f (F, ℓn)∥
⪯ ∥ℓn+1 − κ∥ + ∥κ − f (F, ℓn)∥
⪯ ∥ℓn+1 − κ∥ + µ(1− an)||un − κ|| + µan||Fun − κ||
= ∥ℓn+1 − κ∥ + µ(1− an + µan)||un − κ||
= ∥ℓn+1 − κ∥ + µ(1− an + µan)||Fvn − κ||
⪯ ∥ℓn+1 − κ∥ + µ2(1− an + µan)||vn − κ||
= ∥ℓn+1 − κ∥ + µ2(1− an + µan)||F ((1− bn)wn + bnFwn)− κ||
⪯ ∥ℓn+1 − κ∥ + µ3(1− an + µan)(1− bn + µbn)||wn − κ||
= ∥ℓn+1 − κ∥ + µ3(1− an + µan)(1− bn + µbn)||F ((1− cn)ℓn + cnFℓn)− κ||
⪯ ∥ℓn+1 − κ∥ + µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)||ℓn − κ||.

	 ϵn ⪯ ∥ℓn+1 − κ∥ + µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)||ℓn − κ||.� (27)

Therefore lim
n→∞

ϵn = 0, so the M-Fast iterative process is F-stable . We find that the process is almost F-stable. 

Suppose 
∞∑
n=1

ϵn < ∞. Using (26) we have

∥ℓn+1 − κ∥ ⪯ ϵn + µ4(1− ρ + µρ)3||ℓn − κ||.
By Lemma (2.1) and (2.4), we get ℓn → κ as n → ∞.
Conversely, suppose that lim

n→∞
ℓn = κ. From (27), we have

	 ϵn ⪯ ∥ℓn+1 − κ∥ + µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)||ℓn − κ||.

we obtain, ϵn → 0 as n → ∞. Hence the proof.

□

Example 3  Let F : [0, 1] → [0, 1] be a self mapping defined by ||x− y|| = i||x− y|| such that F (x) = x
2 . It can 

be checked that the condition (13) is satisfied for µ = 1
2  and κ = 0. Suppose ℓn = 1

n  with an = bn = cn = 1√
2
.

Using (26), we have

	

∥ℓn+1 − κ∥ ⪯ |ϵn| + |µ4(1− ρ + µρ)3||ℓn − κ|||

= |ϵn| + |(1
2
)4(1− 1√

2
+ (

1

2
)
1√
2
)3||1

n
− κ|||

= |ϵn| + |(1
2
)4(1− 1√

2
+ (

1

2
)
1√
2
)3i|1

n
− 0|| → 0 as n → ∞.

Using (27),

	

ϵn ⪯ ∥ℓn+1 − κ∥ + µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)||ℓn − κ||

≤ |∥ 1

n + 1
− κ∥| + |(1

2
)4(1− an +

1

2
an)(1− bn +

1

2
bn)(1− cn +

1

2
cn)||ℓn − κ|||

≤ i| 1

n + 1
− 0| + |(1

2
)4(1− 1√

2
+

1

2

1√
2
)(1− 1√

2
+

1

2

1√
2
)(1− 1√

2
+

1

2

1√
2
)i|1

n
− 0|| → 0 as n → ∞.

lim
n→∞

ϵn = 0. Therefore, the M-Fast iterative process is F-stable and also almost F-stable.

In the same line, we prove the stability of the M-Fast iteration procedures for weak contraction mapping on a 
complex-valued Banach space.

Theorem 3.9  Let (A, ∥.∥) be a complex valued Banach space and F : B ⊆ A → B be a mapping that satisfies 
the contraction condition (14). Assume that ∃κ in F(F),  such that the sequence {ℓn} of (15) converges to κ with 
∞∑
n=1

an = ∞ and real sequences 0 < ρ ≤ an, bn, cn < 1∀n ∈ N, then the M-Fast iterative process is F-stable and 

almost F-stable.

Data dependence result for our new iterative process in complex valued banach spaces
In this section, we prove the data dependence result of M- Fast iterative process for contraction mapping on a 
complex valued banach space.
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Theorem 3.10  Let 
∼
F  be an approximate operator on B for a map F satisfying condition (13). Suppose {ℓn} gen-

erated by (15) for F and {
∼
ℓn} is defined as

	




∼
ℓ1 =

∼
ℓ ∈ B,

∼
ℓn+1 =

∼
F ((1− an)

∼
un + an

∼
F

∼
un),

∼
un =

∼
F

∼
vn,

∼
vn =

∼
F ((1− bn)

∼
wn + bn

∼
F

∼
wn),

∼
wn =

∼
F ((1− cn)

∼
ℓn + cn

∼
F

∼
ℓn),

� (28)

with real sequences {an}, {bn} and {cn} ∈ [0, 1] satisfying 
∞∑
n=1

an = ∞ and 12 ≤ an. If Fκ = κ and 
∼
F

∼κ =
∼κ 

such that lim
n→∞

∼
ℓn =

∼κ, then we have 
∣∣∣∥κ − ∼κ∥

∣∣∣ ≤ 13ε

1− µ
 where ε is fixed.

Proof  Using (13), (15) and (28), we got,

	

∥wn+1 −
∼
wn+1∥ = ∥F ((1− cn)ℓn + cnFℓn)−

∼
F ((1− cn)

∼
ℓn + cn

∼
F

∼
ℓn)∥

⪯ ∥F ((1− cn)ℓn + cnFℓn)− F ((1− cn)
∼
ℓn + cn

∼
F

∼
ℓn)∥

+ ∥F ((1− cn)
∼
ℓn + cn

∼
F

∼
ℓn)−

∼
F ((1− cn)

∼
ℓn + cn

∼
F

∼
ℓn)∥

⪯ µ(1− cn)∥ℓn −
∼
ℓn∥ + µcn∥Fℓn −

∼
F

∼
ℓn∥ + ε

⪯ µ(1− cn)∥ℓn −
∼
ℓn∥ + µcn∥Fℓn − F

∼
ℓn + F

∼
ℓn −

∼
F

∼
ℓn∥ + ε

⪯ µ(1− cn)∥ℓn −
∼
ℓn∥ + µ2cn∥ℓn −

∼
ℓn∥ + µcnε + ε

⪯ µ(1− cn + µcn)∥ℓn −
∼
ℓn∥ + µcnε + ε.

	

∥vn −
∼
vn∥ = ∥F ((1− bn)wn + bnFwn)−

∼
F ((1− bn)

∼
wn + bn

∼
F

∼
wn)∥

⪯ µ(1− bn)∥wn −
∼
wn∥ + µbn∥Fwn −

∼
F

∼
wn∥ + ε

⪯ µ(1− bn)∥wn −
∼
wn∥ + µ2bn∥wn −

∼
wn∥ + µbnε + ε

⪯ µ(1− bn + µbn)∥wn −
∼
wn∥ + µbnε + ε.

	

∥un −
∼
un∥ = ∥Fvn −

∼
F

∼
vn∥

⪯ ∥Fvn − F
∼
vn∥ + ∥F∼

vn −
∼
F

∼
vn∥

⪯ µ∥vn −
∼
vn∥ + ε.

Thus

	

∥ℓn+1 −
∼
ℓn+1∥ =∥F ((1− an)un + anFun)−

∼
F ((1− an)

∼
F

∼
un + an

∼
F

∼
un)∥

⪯ µ(1− an + µan)∥un −
∼
un∥ + µanε + ε

⪯ µ(1− an + µan)
(
µ∥vn −

∼
vn∥ + ε

)
+ µanε + ε

= µ2(1− an + µan)∥vn −
∼
vn∥ + µε + µ2anε + ε

⪯ µ2(1− an + µan)
(
µ(1− bn + µbn)∥wn −

∼
wn∥ + µbnε + ε

)
+ µε + µ2anε + ε

= µ3(1− an + µan)(1− bn + µbn)∥wn −
∼
wn∥ + µ3bnε− anµ

3bnε

+ µ4anbnε + µ2ε + µ3εan + µε + ε

⪯ µ3(1− an + µan)(1− bn + µbn)
(
µ(1− cn + µcn)∥ℓn −

∼
ℓn∥ + µcnε + ε

)

+ µ3bnε− anµ
3bnε + µ4anbnε + µ2ε + µ3εan + µε + ε.

	

∥ℓn+1 −
∼
ℓn+1∥ ⪯ µ4(1− an + µan)(1− bn + µbn)(1− cn + µcn)∥ℓn −

∼
ℓn∥ + µ4cnε(1− an + µan)(1− bn + µbn)

+ µ3ε(1− an + µan)(1− bn + µbn) + µ3bnε + anµ
3bnε(µ− 1) + µ2ε + µ3εan + µε + ε.

� (29)

For µ ∈ (0, 1) and an, bn and cn are in [0,  1] ∀n ∈ N, then we have the following observations 
(1− an(1− µ)) < 1, (1− bn(1− µ)) < 1, (1− cn(1− µ)) < 1, µ, µ2, µ3, µ4 < 1, (µ− 1) < 0 and 
µ3an, µ

3bn, µ
3cn, µ

4cn < 1. Since our assumption that 12 ≤ an, we have 1− an ≤ an. Using the above observations 
together with (29), we get
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∥ℓn+1 −
∼
ℓn+1∥ ⪯ (1− (1− µ)an)∥ℓn −

∼
ℓn∥ + anε + 6ε

= (1− (1− µ)an)∥ℓn −
∼
ℓn∥ + anε + 6(1− an + an)ε

⪯ (1− (1− µ)an)∥ℓn −
∼
ℓn∥ + an(1− µ)

13

1− µ
ε.

� (30)

Let pn = ∥ℓn −
∼
ℓn∥, δn = 13

1−µε, νn = an(1− µ). Using lemma (2.5) together with (30), we get

	
0 ≤ lim sup

n→∞
pn ≤ lim sup

n→∞
δn.� (31)

By Theorem (3.1), {ℓn} converges to κ of mapping F and the assumption that {
∼
ℓn} converges to a ∼κ of mapping 

∼
F , we obtain ∥κ − ∼κ∥ ≤ 13ε

1− µ
. □

Conclusion
In this work, we have proposed a new iterative process for approximating fixed points in complex-valued Banach 
spaces under contraction and weak contraction conditions. Through our analysis, we have demonstrated that 
our novel iterative approach achieves faster convergence rates compared to several existing methods, including 
the S-iterative, PMH, PKH, PIH, PSH, HR-iterative, and HR∗-iterative processes. Additionally, we have 
established the strong convergence of our new iterative process in complex-valued Banach spaces. Our findings 
are supported by both analytical proofs and numerical examples, and visualized the speed of convergence using 
MATLAB. Furthermore, we have extended our investigation to include a small result concerning non-expansive 
mapping using our proposed iterative technique. Finally, we have discussed the stability of our novel approach 
and its implications for data dependence under contraction conditions.

We can apply our fast iterative processes across various fields and industries. Some common areas where fast 
iterative algorithms find application include:

Optimization: Fast iterative algorithms are widely used in optimization problems across diverse domains 
such as engineering, finance, logistics, and machine learning. They help in finding optimal solutions to complex 
problems efficiently.

Signal Processing: In areas like image processing, audio signal processing, and communication systems, fast 
iterative algorithms are employed for tasks such as denoising, compression, filtering, and equalization.

Machine Learning and Data Mining: Iterative algorithms play a crucial role in training machine learning 
models, such as gradient descent-based optimization in neural networks, clustering algorithms like k-means, 
and dimensionality reduction techniques like principal component analysis (PCA).

Scientific Computing: Many scientific simulations and computations rely on fast iterative methods to solve 
differential equations, linear algebra problems, and optimization tasks arising from physics, chemistry, biology, 
and other scientific disciplines.

Finance and Economics: Iterative algorithms are used for portfolio optimization, risk management, option 
pricing, algorithmic trading, and other financial applications.

Computer Graphics and Vision: Fast iterative techniques are utilized in rendering algorithms, computer 
vision tasks like object detection and recognition, 3D reconstruction, and motion tracking.

Operations Research: In fields such as transportation, scheduling, and resource allocation, fast iterative 
methods are applied to solve complex optimization problems and improve decision-making processes.

Healthcare and Bioinformatics: Iterative algorithms find application in medical imaging, genome sequencing, 
drug discovery, and personalized medicine, aiding in data analysis, pattern recognition, and predictive modeling.

Data availability
 The authors affirm that the data underpinning the results of this investigation are provided within the article 
itself.
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