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Antioxidant capacity is an important indicator for evaluating the growth and developmental quality 
of rice. This study has guiding significance for the cultivation of high-nutrient-value varieties. To 
investigate the molecular mechanisms underlying the antioxidant characteristics of rice grains after 
the filling stage, Yangzinuo 1 (YZN1) was used as the experimental material, and grains collected at 
five different time points (7 days apart) after the filling stage were used for transcriptome sequencing. 
Through weighted gene coexpression network analysis (WGCNA), a coexpression network of gene 
weights related to antioxidant characteristics was constructed. LOC_Os10g39140, LOC_Os10g38276, 
and LOC_Os05g45740 were identified from the 2 modules showing the highest correlations with 
the target traits. GO functional annotation showed that target modules were enriched in pathways 
related to phenylalanine, flavonoids, and other related pathways, such as GO:0006558, GO:0006559, 
GO:0009812, and GO:0009813. Correlation analysis with metabolites revealed that differentially 
expressed genes were significantly enriched in pathways related to antioxidant characteristics and 
energy metabolism processes, such as glycolysis/gluconeogenesis and flavonoid biosynthesis. The core 
genes identified in this study were found to be highly correlated with antioxidant characteristics and 
enriched in pathways related to metabolic and energy pathways and molecular activities. These results 
provide an effective dataset supporting breeding targeting functional rice characteristics.
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Rice is the main food crop for more than half of the world’s population. With the improvement of living standards 
and the ongoing development of the rice trade, the demand for high-quality rice is increasing. Therefore, 
breeding high-quality rice is crucial to meet market demand1. The completion of rice genome sequencing 
has laid a solid foundation for extracting valuable information from vast biological datasets. In contrast to 
traditional molecular biology methods, bioinformatics tools not only expedite the identification of target genes 
but also enhance the evaluation of key genes associated with specific traits. WGCNA is a method in which 
a scale-free topology overlap matrix is constructed based on RNA-seq expression data, which describes the 
interactions between genes and divides genes with similar expression patterns into gene expression modules. 
WGCNA is predominantly used to investigate the biological relationships between coexpressed gene modules 
and target traits, while also identifying core genes within the coexpression network. As a representative systems 
biology method, WGCNA has found broad application in plant research2. For example, 22 gene modules were 
identified by analysing 17 rice (Oryza sativa) transcriptome datasets obtained at different time points under 
cadmium treatment, and combined with differential expression analysis, a total of 164 cadmium stress response-
related genes were revealed3. To further accurately annotate the rice genome, WGCNA can integrate expression 
datasets generated under different experimental conditions and biological systems, and different periods are 
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a more important variable3. WGCNA has also been employed to analyse transcriptome data from two cotton 
strains at various developmental stages, identifying five fibre development-specific modules. Additionally, core 
genes were identified within these modules4. By performing WGCNA on transcriptome data from 14 different 
developmental stages of maize (Zea mays), researchers identified 14 tissue-specific modules and further studied 
the gene interaction networks in two of the modules, discovering flowering-related core genes such as ZCN8, 
ZCN7, and COL15.

Antioxidant capacity is an important indicator of rice growth and development quality. Rice varieties with 
a high antioxidant capacity can effectively resist nonbiological environmental stresses such as drought and 
waterlogging6,7. Enhancing the antioxidant capacity can also effectively alleviate salt toxicity and achieve an 
effective response to salt stress during plant growth and development. To ensure high-yield and high-quality 
rice production goals, many methods have been applied to enhance antioxidant capacity. For example, the foliar 
application of methyl jasmonate (MeJA) can increase the content of 2-acetyl-1-pyrroline (2-AP) in aromatic rice, 
thereby regulating antioxidant properties and further promoting yield formation8. The foliar spraying of salicylic 
acid can also enhance the antioxidant capacity, which is beneficial for the growth and yield formation of cereal 
crops6. In addition, in the context of breeding, a strong antioxidant capacity has considerable guiding significance 
for the cultivation of high-nutrient-value varieties9. Ongoing research in this area, aimed at accelerating breeding 
strategies for these special rice varieties, will significantly contribute to improving dietary health, advancing 
agricultural development, and boosting farmers’ incomes1. Brown rice with a red, purple, or black pericarp 
is more beneficial to human health than traditional white-pericarp rice because of the accumulation of more 
antioxidant compounds10,11. There is a strong correlation between flavonoid and phenolic metabolite contents 
and total antioxidant capacity. The contents of flavonoids and oligomeric proanthocyanidins in purple rice and 
the total antioxidant capacity are significantly higher than those in white rice12. Related studies have also shown 
that the total antioxidant capacity and phenolic substance content of red rice varieties are higher. Furthermore, 
varieties with lower nutritional quality but a higher antioxidant capacity are considered better13. The elevated 
polyphenol content in red rice is a key factor contributing to its significantly higher antioxidant capacity 
compared to white rice. Moreover, red rice retains its nutritional properties more effectively during processing14. 
More phytochemicals are observed in black rice bran with high antioxidant activity, providing researchers with 
opportunities to cultivate new genotypes of rice with higher nutritional value15.

In this study, we used YZN1, a type of purple sticky rice, as the experimental material and collected 
transcriptome data at five time points after grain filling. Differential expression analysis was performed on the 
data. By constructing a weighted gene coexpression network, genes were classified into modules, and specific 
modules related to antioxidant enzymes were selected. Core genes related to antioxidant properties were 
identified within these modules. This study provides a theoretical basis for further elucidating the antioxidant 
characteristics of purple rice grains after filling, offering new gene resources for breeding special rice varieties.

Methods
Plant materials and growth conditions
The experimental material used in this study was the purple rice cultivar YZN1, which was independently bred 
by the College of Agriculture, Yangzhou University. The rice was grown at the Shatou Experimental Station of 
Yangzhou City, Jiangsu Province. The rice was sown on May 20, 2022, and transplanted at age 25 days, with 
4 seedlings per hill and a spacing of 30 cm × 12 cm. Three replicates were set up for the cultivation of YZN1. 
Compound fertilizer with a nitrogen, phosphorus, and potassium ratio of 15% each was used for rice fertilization. 
A total of 300 kg of pure nitrogen was applied per hectare, with a ratio of 5:3:2 for the basal, tillering, and panicle 
fertilizers. The prevention and control of diseases, pests, and weeds were carried out in accordance with the 
conventional high-yield cultivation requirements for rice.

Sample collection
Three hundred panicles of rice with similar panicle types, growth and size were selected from each plot during 
the heading stage of rice. The selected panicles were marked and tagged. After 7 (Y1G1), 14 (Y1G2), 21 (Y1G3), 
28 (Y1G4), and 35 (Y1G5) days of grain filling, marked rice panicles were quickly selected and taken back to the 
laboratory. Using tweezers, the rice shells were removed, and the grains were placed in cryovials before being 
frozen in liquid nitrogen. Three biological replicates, each comprising a mixed sample of 10 rice panicle grains, 
were prepared. The samples were stored in a -20 °C freezer until data measurement. In our previous work, we 
conducted an analysis of physiological and biochemical indicators in each sample, including catalase (CAT), 
polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), total phenols (TP), flavonoids (FD), oligomeric 
proanthocyanidin (OPC), and total antioxidant capacity (ABTS method, 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid; DPPH method, 2,2-diphenyl-1-picrylhydrazyl; FRAP method, ferric ion reducing antioxidant 
power method)16.

RNA extraction
Total RNA was extracted from the tissue using TRIzol® Reagent (Plant RNA Purification Reagent for plant 
tissue) according the manufacturer’s instructions (Invitrogen), and genomic DNA was removed using DNase 
I (TaKaRa). RNA degradation and contamination were monitored on 1% agarose gels. Then, RNA quality was 
determined with a 2100 Bioanalyzer (Agilent Technologies) and quantified using an ND-2000 instrument 
(NanoDrop Technologies). Only high-quality RNA samples (OD260/280 = 1.8 ~ 2.2, OD260/230 ≥ 2.0, 
RIN ≥ 8.0, 28 S:18 S ≥ 1.0, > 1 µg) were used to construct the sequencing library.
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Library preparation and sequencing
RNA purification, reverse transcription, library construction and sequencing were performed at Shanghai 
Majorbio Biopharm Biotechnology Co., Ltd. (Shanghai, China) according to the manufacturer’s instructions 
(Illumina, San Diego, CA). The transcriptome library was prepared following the instructions of the TruSeqTM 
RNA sample preparation kit from Illumina (San Diego, CA) using 1 µg of total RNA. Briefly, messenger RNA 
was isolated according to the polyA selection method by using oligo(dT) beads and then fragmented with 
fragmentation buffer. Second, double-stranded cDNA was synthesized using a SuperScript double-stranded 
cDNA synthesis kit (Invitrogen, CA) with random hexamer primers (Illumina). Then, the synthesized cDNA 
was subjected to end repair, phosphorylation and ‘A’ base addition according to Illumina’s library construction 
protocol. Libraries were size selected for cDNA target fragments of 300 bp on 2% Low Range Ultra Agarose, 
followed by PCR amplification using Phusion DNA polymerase (NEB) for 15 PCR cycles. After quantification 
with a TBS380 system, a paired-end RNA-seq library was sequenced with an Illumina NovaSeq 6000 sequencer 
(2 × 150 bp read length).

Quality control and read mapping
The raw paired-end reads were trimmed and subjected to quality control with fastp (https://github.com/
OpenGene/fastp)17 with the default parameters. Then, clean reads were separately aligned to the reference 
genome in orientation mode using HISAT2 (http://ccb.jhu.edu/software/hisat2/index.shtml)18 software. The 
mapped reads of each sample were assembled by StringTie (https://ccb.jhu.edu/software/stringtie/) according to 
a reference-based approach19. Reference genome version: IRGSP-1.0 (http://rice.uga.edu/).

Differential expression analysis and GO enrichment analysis
To identify differentially expressed genes (DEGs) between two different samples/groups, the expression level of 
each gene was calculated according to the transcripts per million reads (TPM) method. RSEM (http://deweylab.
biostat.wisc.edu/rsem/)20 was used to quantify gene abundances. Essentially, differential expression analysis was 
performed using DEGseq21, and DEGs with a |log2 (fold change)| ≥ 1 and P-adjusted ≤ 0.001 were considered 
significantly differentially expressed genes. In addition, GO enrichment analysis (Gene Ontology, http://
www.geneontology.org) was performed to identify which DEGs were significantly enriched in GO terms and 
metabolic pathways according to a P-adjust ≤ 0.05 compared with the whole-transcriptome background. GO 
functional enrichment was carried out with Goatools (https://github.com/tanghaibao/Goatools) and KOBAS22.

Weighted correlation network analysis (WGCNA)
We used the WGCNA package in R project to construct a weighted gene coexpression network. The input 
was a normalized gene expression matrix from 15 transcriptome samples (5 stages, each with three replicates, 
according to the results of DEG analysis). We integrated the differentially expressed genes associated with 
the antioxidant properties of fully filled grains across five stages with previously published physiological and 
biochemical indicator data. The mean expression values were set to 1, and the coefficient of variation was set 
to 0.1. After background correction and standardization of gene expression data, genes with outliers and low 
variability were filtered out. This process was conducted to ensure that the resulting correlation strengths between 
genes followed a scale-free distribution. Through WGCNA and gene set-phenotype correlation analysis, we 
aimed to explore the core genes regulating the network of antioxidant properties and the nutrient composition 
in fully filled purple rice grains during the grain-filling stage. We selected the top 50% of genes with the highest 
variability in expression levels across samples by calculating the variance of each gene. After threshold filtering, 
we used β = 9 to raise the original scale-free matrix to a power to obtain the unscaled adjacency matrix. To better 
evaluate the correlation of gene expression patterns, we further transformed the adjacency matrix into a TOM 
and used dissTOM (1-TOM) as the topological dissimilarity matrix. We then used the dynamic cut method to 
perform gene clustering and module partitioning. The minimum number of genes in a module was set to 30 
(minModuleSize = 30), and the network type was “signed” (type="signed” or networkType="signed”, depending 
on the function).

To construct the coexpression network of DEGs, it was necessary to calculate the correlation coefficient 
between each gene pair and then use the formula Smn = cor(xm, xn) and S = [Smn] to obtain the similarity 
matrix between genes. Smn represents the Pearson correlation coefficient between gene m and gene n, and 
S represents the similarity matrix. The WGCNA package in R software was used to construct the weighted 
gene coexpression network. To make the network conform to the scale-free distribution, the pickSoftThreshold 
function in the WGCNA package was used to calculate the weight value. According to the results shown 
in Fig. 1A-B, a soft power threshold value of β = 9 was chosen to construct the coexpression network. After 
determining the soft power threshold value of β = 9, the similarity matrix was converted to an adjacency matrix 
according to the formula Amn = [(1 + Smn)/2]β, and the adjacency matrix was then converted to the topological 
overlap matrix (TOM). In addition, the dissTOM = 1/TOM function was used to obtain the dissimilarity matrix 
of the topological overlap matrix, which was aimed at eliminating the errors caused by background noise and 
false association. Finally, the hclust function was used to perform hierarchical clustering on the dissimilarity 
matrix. The dynamic tree cut method was used to cut the resulting clustering tree. This process can merge 
genes with similar expression patterns into the same branch, where each branch represents a coexpression 
module, with different colours representing different modules. Differentially expressed genes were analysed 
and clustered based on their fragments per kilobase million (FPKM) values. We built upon the foundation of 
various physiological and biochemical indicators from our earlier work16. For module division, parameters such 
as minModuleSize were set to 30, minKMEtoStay was set to 0.3, and mergeCutHeight was set to 0.25, and genes 
with high correlations were assigned to the same module (Fig. S3).
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qRT‒PCR (quantitative reverse transcription polymerase chain reaction)
Based on the enrichment results, we selected differentially expressed genes that were involved in activities such 
as peroxidase activity, metabolism, and ATP metabolism at different time points. We then selected eight genes 
for qRT‒PCR validation using the Thermo Fisher Scientific QuantStudio 5 real-time fluorescent quantitative 
PCR system and the 2× SYBR Green qPCR Mix kit from Novogene. SYBR Green was used as the fluorescent dye, 
and β-actin was used as the reference gene. The reaction program included an initial denaturation at 95 °C for 
3 min, followed by 40 cycles of denaturation at 95 °C for 15 s and annealing at 60 °C for 15 s. The melting curve 
program was set to 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s. The reaction system consisted of 10 µL of 
2× SYBR qPCR Mix, 0.8 µL of DNA template (diluted 10 times), 0.4 µL of the forwards primer (10 µmol·L− 1), 
0.4 µL of the reverse primer (10 µmol·L− 1), and 8.4 µL of ddH2O. The relative expression levels of the genes were 
analysed using the 2−ΔΔCt method with three biological replicates23. The gene primers used are listed in Table S1.

Data analysis
The grain physiological and biochemical data were organized, average values were calculated, and graphs were 
drawn using Excel 2019 software. The variance analysis of the grain physiological and biochemical data16 was 
conducted using SPSS 18.0 software. Adobe Illustrator 2022 software was used to combine the various graphs.

Fig. 1.  Grain sample analysis. (A) Scale independence. The abscissa represents the power expo-nent-
weighted beta value, and the ordinate represents the fitting degree (R2) between the corre-sponding beta 
value-transformed adjacency matrix and the scale-free network assumption. (B) Mean connectivity. The 
horizontal axis represents the power exponent-weighted β value, and the vertical axis represents the degree of 
fit (R2) between the corresponding β value-transformed ad-jacency matrix and the assumption of the scale-
free network. (C) PCA plot. (D) Venn diagram showing the distribution of genes/transcripts among different 
samples/groups. (E) Venn diagram.
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Results
Sequencing quality statistics
Transcriptome sequencing was performed on 15 grain samples, generating a total of 108.37 Gb of clean data. 
Each sample showed over 6.5 Gb of clean data and a Q30 base percentage above 93.36%, meeting the sequencing 
requirements. The results are available for further analysis (Table S2).

The results of principal component analysis (PCA) showed that PC1 and PC2 accounted for 63.78% and 
15.95%, respectively, of the gene expression variation among all samples. The combined contribution of these 
two principal components was 79.73%. This analysis provided a preliminary understanding of the overall 
transcriptional differences among the sample groups and the degree of variation within each group (Fig. 1C). 
The different transcriptional patterns of developing seeds at various stages after purple rice grain filling were also 
consistent with the PCA results (Fig. S1).

DEG analysis of different developmental stages
The Venn diagram of DEGs at different developmental stages after purple rice grain filling indicated that there 
were specific genes expressed in the grains at each stage. A total of 12,202 DEGs were identified, accounting for 
59.73% of all DEGs (Fig. 1E). A total of 38,879 DEGs were identified in the 5 developmental stages of grains 
using the criteria of a |log2FC| ≥1 and padjust < 0.05 (Fig. 2A). The number of differentially expressed genes 

Fig. 2.  DEGs and gene module information. (A) The statistical graph of differential expression shows different 
comparison groups on the x-axis and the corresponding number of upregulated and downregulated genes/
transcripts on the y-axis, with red representing upregulation and blue rep-resenting downregulation. (B) The 
module membership statistical graph shows the number of members belonging to each module (represented 
by module colour) on the y-axis. (C) The module correlation graph shows the correlations between different 
modules. Red represents a higher cor-relation between modules, and green represents a lower correlation. (D) 
The module-phenotype correlation analysis graph shows different phenotypes/samples/groups on the x-axis 
and different modules on the y-axis. The number of genes/transcripts for each module is displayed in the left 
column, and each group of data on the right represents the correlation coefficient and significance P value (in 
parentheses) between the module and phenotype. A larger absolute value indicates a stronger correlation, with 
blue representing a negative correlation and red representing a positive correlation, as indicated by the colour 
scale in the lower right corner.
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and their up- and down-regulation between the comparison groups at each developmental stage can be found in 
Fig. 1E and Tables S3-S12. The distribution of upregulated and downregulated DEGs is shown in a more intuitive 
manner in a scatter plot (Fig. S2).

The number and proportion of shared DEGs between different comparison groups are different. We can 
conclude that the number of DEGs and the up- and downregulation of different comparison groups are quite 
different according to Fig. 1D.

WGCNA reveals associations between modules and physiological and biochemical traits
Based on the 9 physiological and biochemical traits that we identified in the preliminary study, we obtained 9 
modules that were associated with these traits in different treatment periods, each of which was represented by 
a different colour (Fig. 2D). Some modules were highly correlated with the physiological and biochemical traits, 
with the turquoise module including the largest number of genes (5806), followed by the blue module with 
4911 genes, while the pink module comprised the fewest genes, with only 74 (Fig. 2B). Due to the large number 
of genes in each module, a dimensionality reduction approach was used to study gene modules by selecting 
representative gene-module eigengenes (ME). Using ME to represent the thousands of genes in a module, we 
conducted a correlation analysis, which allowed us to further clarify the relationships between gene modules 
and phenotypic traits at different treatment times and to screen for target gene modules. After performing 
clustering analysis on all MEs, we found that some MEs were highly correlated with each other (Fig. 2C). The 
higher the correlation is between MEs, the higher the correlation of the module in which they are located will 
be. Through correlation analysis between MEs, we found that the correlation between MEs in the brown and 
turquoise modules reached 0.86, and the correlation between MEs in the yellow and black modules reached 0.85 
(Fig. 2C). Moreover, the gene expression patterns in the turquoise and blue modules gradually changed from a 
negative correlation with antioxidant-related physiological and biochemical traits to a highly significant positive 
correlation. While the correlation values of the 9 physiological and biochemical indicators in the blue module 
were all greater than 0.643, those in the turquoise module were all less than − 0.625. Additionally, the gene 
expression patterns in the turquoise and blue modules in different treatment periods were highly correlated with 
the target traits (Fig. 2D), indicating that these two modules could be considered target gene modules.

GO enrichment analysis
The results showed that the turquoise module was enriched in pathways related to ADP metabolism 
(GO:0046031), ATP metabolism (GO:0046034), and oxidoreductase activity (GO:0016860, GO:0016864, 
GO:0016861). On the other hand, the blue module was enriched in pathways related to antioxidant activity 
genes (GO:0016209), hydrogen peroxide metabolism (GO:0042743, GO:0042744, GO:0042542, GO:0004096), 
synthesis and metabolism of phenolic compounds (GO:0018958, GO:0046189), synthesis and metabolism 
of flavonoids (GO:0009812, GO:0009813), and metabolism of L-phenylalanine (GO:0006558, GO:0006559) 
(Table  1). Overall, the results suggested that both gene modules were highly associated with antioxidant 
properties and showed some relationship with energy metabolism pathways. These findings indicated that the 
WGCNA method could effectively construct coexpression modules of genes related to antioxidant properties 
after grain filling, and these two modules were the focus of further investigation.

Module GO ID Description Ratio_in_study Ratio_in_pop P value

Turquoise GO:0046031 ADP metabolic process 26/4810 71/42,651 4.35E-07

Turquoise GO:0046034 ATP metabolic process 39/4810 125/42,651 1.05E-06

Turquoise GO:0016860 Intramolecular oxidoreductase activity 19/4810 57/42,651 8.53E-06

Turquoise GO:0016864 Intramolecular oxidoreductase activity, transposing S‒S bonds 7/4810 14/42,651 0.000385235

Turquoise GO:0016861 Intramolecular oxidoreductase activity, interconverting aldoses and ketoses 6/4810 24/42,651 0.046208292

Blue GO:0016209 Antioxidant activity 43/3960 301/42,651 0.004957872

Blue GO:0042743 Hydrogen peroxide metabolic process 28/3960 202/42,651 0.028729882

Blue GO:0042744 Hydrogen peroxide catabolic process 28/3960 201/42,651 0.02794752

Blue GO:0018958 Phenol-containing compound metabolic process 11/3960 28/42,651 2.09186E-05

Blue GO:0009812 Flavonoid metabolic process 10/3960 23/42,651 1.72741E-05

Blue GO:0009813 Flavonoid biosynthetic process 10/3960 23/42,651 1.72741E-05

Blue GO:0042542 Response to hydrogen peroxide 9/3960 27/42,651 0.000503918

Blue GO:0006558 L-phenylalanine metabolic process 8/3960 36/42,651 0.015604145

Blue GO:0006559 L-phenylalanine catabolic process 5/3960 16/42,651 0.012556104

Blue GO:0046189 Phenol-containing compound biosynthetic process 4/3960 9/42,651 0.006376417

Blue GO:0004096 Catalase activity 3/3960 5/42,651 0.006926473

Blue GO:0046283 Anthocyanin-containing compound metabolic process 3/3960 6/42,651 0.012898615

Blue GO:0009718 Anthocyanin-containing compound biosynthetic process 3/3960 6/42,651 0.012898615

Table 1.  GO enrichment analysis of target modules.
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Interactions between core gene networks in the target modules
To obtain the core genes in the two modules discussed above, the gene regulatory networks were visualized 
and processed using Cytoscape software to screen for highly connected genes in the modules, which were then 
identified as the core genes in each module (Fig. 3). In these networks, each node represents a gene, and nodes 

Fig. 3.  Gene coexpression network and hub genes in blue and turquoise modules. (A) Blue module. (B) 
Turquoise module. Genes with the same shape (circle or triangle) represent genes belonging to the same 
functional class. The size of a node is proportional to its connectivity, meaning that nodes with more edges 
connected to them will be larger. This reflects the significance of a gene in the network – the more connections 
it has, the larger the node, indicating its greater importance within the net-work.
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are connected by lines, where genes at either end of a line are typically considered to have similar biological 
functions. In the blue module, 31 core genes were identified (Fig. 3A and Table S13), among which 28 were 
related to catalase, 2 were related to phenylalanine, and 1 was related to flavonoids. In the turquoise module, 22 
core genes were identified (Fig. 3B and Table S14), all of which were related to energy metabolism. The screened 
core genes were functionally involved in antioxidant properties and energy metabolism processes.

qRT-PCR analysis of 8 core genes
We selected 8 core genes from the turquoise and blue modules that were associated with antioxidant properties 
in purple rice grains for quantitative fluorescence PCR validation. The results of the validation showed that the 
changes in expression trends were consistent with the transcriptome sequencing results (Table S1 and Fig. 4), 
further confirming the reliability of the transcriptome sequencing results.

Association analysis of the transcriptome and metabolome
In our previous work, we conducted a comprehensive analysis of metabolites in each sample16. To further 
understand the relationship between differentially expressed genes and related metabolites in purple rice grains, 
the differentially expressed genes were annotated and analysed in the KEGG (Kyoto Encyclopedia of Genes 
and Genomes) Pathway database, as shown in Fig. 5A. We found that the differentially expressed genes were 
significantly enriched in glycolysis/gluconeogenesis, starch and sucrose metabolism, flavone and flavonol 
biosynthesis, and flavonoid biosynthesis pathways. These pathways could be broadly classified into flavonoid 

Fig. 4.  Expression analysis was performed by qRT‒PCR. The horizontal axis represents the different time 
points, the left vertical axis represents the relative expression levels of the genes, shown as bars, and the right 
vertical axis represents fragments per kilobase million values, shown as lines.
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metabolic processes and ATP metabolic processes. One core gene (LOC_Os10g39140) was annotated to 
flavonoid biosynthesis, 1 core gene (LOC_Os10g38276) was annotated to glycolysis/gluconeogenesis, and 1 core 
gene (LOC_Os05g45740) was annotated to starch and sucrose metabolism. These results further confirmed the 
high correlation between core genes and antioxidant properties as well as energy metabolism processes.

Fig. 5.  Pathway analysis. (A) KEGG pathway enrichment statistical graph. (B) Metabolic pathways of 
flavonoid metabolic process and ATP metabolic process. The coefficient R2 is a measure of the goodness of fit 
of a regression equation. It indicates how well the regression equation fits the data points. Generally, a higher 
R2 value closer to 1 indicates a better fit of the regression equation to the data points.
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Discussion
High-antioxidant rice shows a wide range of biological functions in promoting human health9. Coloured rice 
generally exhibits higher antioxidant activity than nonpigmented rice due to higher contents of anthocyanins, 
phenolics, and flavonoids9. These three compounds play a crucial role in the synthesis of C = C aromatic groups 
(1740 –1710  cm− 1) and C = C (stretching) alkanes (1640 –1500  cm− 1), promoting the formation of organic 
compounds in coloured rice24. Phenylalanine is a precursor of catechin and proanthocyanidin in the biosynthesis 
of phenylpropanoid compounds, and research has shown that coloured rice contains more phenylalanine18. In 
this study, the blue module was enriched in pathways related to the synthesis or degradation of phenylalanine, 
and WGCNA identified core genes related to phenylalanine in the blue module (Table 1; Fig. 3A). Phenolics have 
been reported to be the major hydrophilic antioxidants in rice and serve as an important indicator for measuring 
the antioxidant capacity of offspring samples in hybrid breeding. Rice with coloured husks generally contains 
higher levels of phenolic compounds and exhibits stronger antioxidant activity25. In this study, the blue module 
was enriched in pathways related to the synthesis and metabolism of phenolic compounds (Table 1), indicating 
that purple rice grains are rich in phenolic compounds. Flavonoids are a group of polyphenolic compounds 
synthesized by the shikimic and malonic acid pathways that are present in higher amounts in coloured rice26. 
As secondary metabolites, flavonoids exert a regulatory effect on the composition and function of endophytic 
fungal communities in black rice27. Flavonoid biosynthesis is an important metabolic pathway during grain 
filling in rice28. In this study, the blue module was enriched in pathways related to the synthesis and metabolism 
of flavonoids (Table 1), and 1 core gene related to flavonoids was also identified (Fig. 3A). Flavonoid biosynthesis 
was another metabolic pathway that was highly correlated with differentially expressed genes (Fig.  5A, B). 
Catalase (CAT) is a core antioxidant enzyme in most organisms and can catalyse the decomposition of hydrogen 
peroxide (H2O2), thereby controlling the abundance of this essential cell signalling molecule. CAT is the most 
abundant protein in plant peroxisomes and shows one of the highest catalytic rates known in biology29. Our 
WGCNA identified core genes related to CAT in the blue module (Fig. 3A). In addition, studies have shown that 
black rice contains higher levels of amino acids and functions in energy metabolism, enriching its nutritional 
value over that of ordinary rice30. In this study, 22 core genes related to energy metabolism were identified in the 
turquoise module (Fig. 3B), and the correlation analysis of the transcriptome and metabolome also indicated a 
strong correlation between energy metabolism and differentially expressed genes (Fig. 5A, B).

In this study, we used WGCNA to identify gene modules and core genes that were highly associated with 
antioxidant properties, revealing the molecular mechanisms underlying the antioxidant properties of rice grains 
after the filling stage. We focused on the turquoise and blue modules, which showed high correlations, although 
other gene modules that were not discussed in detail here may also contain pathways related to antioxidant 
properties and warrant further investigation of their biological significance.

Conclusion
In this study, we constructed a weighted gene coexpression network to perform an in-depth analysis of the 
two gene modules with the highest associations with the target trait. As a result, we identified representative 
core genes (LOC_Os10g39140, LOC_Os10g38276, and LOC_Os05g45740). We found that these core genes were 
involved in pathways related to antioxidant activity and energy metabolism, such as flavonoid biosynthesis 
and glycolysis/gluconeogenesis. These results provide clues about the molecular mechanism underlying the 
antioxidant properties of purple rice grains and offer theoretical support for the breeding of high-antioxidant 
functional rice.

Data availability
The data supporting the findings of this study are available from the corresponding authors upon request. The 
raw sequences data was uploaded to National Genomics Data Center (https://ngdc.cncb.ac.cn/). The accession 
numbers are uploaded and archived at NGDC with accession CRA010137.
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