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Identifying the optimal mining methods plays a pivotal role in ensuring both economic efficiency 
and environmental sustainability. This study aims to propose a model that combines interval-valued 
Pythagorean fuzzy sets (IVPFS) and TOPSIS-GRA to select the optimal mining method for broken 
ore bodies. First, a multi-factor comprehensive evaluation system, including economic, safety, and 
technical aspects, was established. IVPFS was introduced to express the fuzzy information of the 
decision-making process within the evaluation system. Additionally, an objective method combining 
the principle of fuzzy entropy measurement with EWM was proposed to determine the weights of 
fuzzy information. This method distinguished the importance of decision-makers and indicators. Then, 
an integration of distance and similarity (TOPSIS-GRA) was employed for ranking alternative solutions 
to select the optimal one. This model was applied to the decision-making problem of mining methods 
for the broken and difficult-to-mine ore bodies in the Tanyaokou mining area. Initial fuzzy evaluation 
information was obtained by having decision-makers score the mining methods. Results showed that 
the comprehensive scores of four alternatives are 0.5172, 0.4683, 0.5192, and 0.5465, respectively. 
The optimal method was the point-pillar upward horizontal layered filling mining method. Finally, 
the sensitivity analysis confirmed the stability of the model. The comparative results under different 
fuzzy environments (PFS and TFS) demonstrated the strong capability of IVPFS in handling fuzzy 
information for optimizing mining methods.

Keywords  Mining method optimization, Interval-valued Pythagorean fuzzy sets, Integrated model, Broken 
and difficult-to-mine ore body, Point-pillar upward horizontal layered filling mining method

Background
Mineral resources are the basis for scientific and technological development. With the development and 
utilization of mineral resources, easily mined resources are gradually exhausted1–3. To meet the needs of industry 
development and the sustainable development requirements of the mining industry, research on broken and 
difficult-to-mine ore bodies is of great significance. The selection of mining methods, as a core aspect of resource 
extraction, forms the foundational work and critical premise for the construction and development of mining 
enterprises. A reasonable choice of mining methods is crucial for safe and efficient extraction of resources4–6.

In the actual implementation process, due to the complex and variable geological conditions, different 
mining methods exhibit significant differences in cost-effectiveness, safety risks, and resource utilization 
efficiency. Decision-makers must comprehensively consider various factors, including geological conditions, 
technical feasibility, economic benefits, and environmental impacts, to select the optimal mining method. This 
is recognized as a typical multi-criteria decision-making problem. Moreover, the presence of multiple fuzzy 
indicators, which are dependent on the decision-makers’ experience, introduces a high degree of subjectivity 
into the decision-making process.

Therefore, this study proposes a group decision-making method based on IVPFS for optimizing mining 
methods, with the aim of preserving the maximum amount of information from fuzzy indicators in 

School of Resource and Safety Engineering, Central South University, Changsha 410083, Hunan, People’s Republic 
of China. email: ningwang98@csu.edu.cn

OPEN

Scientific Reports |        (2024) 14:23397 1| https://doi.org/10.1038/s41598-024-73814-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


comprehensive evaluation systems. A combined approach, utilizing entropy measurement principles and the 
EWM, is employed to determine the weights of decision-makers and evaluation criteria, thereby objectively 
distinguishing their relative importance. The extended TOPSIS and Grey Relational Analysis (GRA) integration 
method is then used to rank the alternatives.

Literature review
The optimization of mining methods is a multi-attribute decision-making (MADM) problem that is affected by 
multiple factors such as economics and safety7. For mines with simple geological conditions, method selection 
is typically guided by experienced decision-makers. However, for mines with complex geological conditions, 
numerous influencing factors usually need to be considered, rendering empirical analogy methods insufficient.

Consequently, many researchers have adopted multi-criteria decision-making (MCDM) theories and 
methods to scientifically select mining methods. Suprakash8 applied the analytic hierarchy process (AHP) to 
the selection of mining methods. Liu9 used the uncertainty measure theory and the entropy weight method 
(EWM) to determine the optimal mining method for the Sanshan Island Xinli Gold Mine. Qinqiang7 used the 
AHP-TOPSIS method to identify the optimal solution for the method selection of difficult ore bodies under soft 
rock layers. In addition to the above methods, commonly used MCDM methods include CRITIC10, VIKOR11,12, 
and so on. Both single models and combined models have shown promising results. However, previous research 
has predominantly focused on determining subjective and objective weights, often neglecting the evaluation 
of multiple uncertainty indicators in the selection of mining methods. Decision-makers frequently substitute 
these uncertainties with simple deterministic values, which can compromise the accuracy and reliability of the 
decision-making process.

Of course, some scholars used fuzzy sets in fuzzy theory to deal with the uncertain information existing in 
indicators. For example, Mahmut Yavuz13, Karimnia14, and Sanja15 used the fuzzy analytic hierarchy process 
(FAHP) to overcome the limitations of AHP and determine uncertain information using fuzzy theory, thereby 
enhancing model accuracy. Liang16 proposed a hybrid model of triangular fuzzy numbers and TODIM 
for selecting seabed mining methods, considering factors such as safety, technology, and economy, which 
demonstrated a certain degree of reliability. With the development of fuzzy set theory, Atanassov introduced 
the concept of the intuitionistic fuzzy set of second type based on the intuitionistic fuzzy set framework17. This 
concept was later expanded by Yager into what is known as the Pythagorean fuzzy set18. Compared to traditional 
fuzzy numbers, such as triangular fuzzy numbers and intuitionistic fuzzy numbers19–21, the Pythagorean fuzzy 
set (PFS) offers a more advanced approach to handling uncertainty. Moreover, Shuai22 applied the combined 
simulation of PFS and TOPSIS to the mining method selection problem, effectively avoiding direct comparisons 
of various uncertainties in the plans, and achieved favorable results in the Suichang Gold Mine. This further 
illustrates the advantages of fuzzy sets in dealing with mining method decision-making problems.

Using fuzzy sets to handle uncertain information is a common approach in decision-making, addressing 
the challenge of preserving the richness of fuzzy linguistic information in multi-criteria decision problems. 
Traditional fuzzy set-based multi-criteria decision models have been applied in various fields. For example, 
Khan23 proposed a trapezoidal fuzzy environment for three-way decision-making, introducing operators to 
resolve real-life decision problems. Ali24,25 leveraged intuitionistic fuzzy sets (IFS) and decision theory rough 
sets with power aggregation operators, introducing a new three-way decision model. They further enhanced 
this model by integrating interval values and Bayesian rules, demonstrating strong performance in the medical 
domain. Iftikhar26 utilized Pythagorean fuzzy numbers, applying Aczel–Alsina T-norm and T-conorm 
operations to propose a novel Pythagorean fuzzy aggregation operator for preference ranking in multi-attribute 
group decision-making, validating its effectiveness through comparative analysis. Ali27 combined intuitionistic 
hesitant fuzzy sets (IHFS) with set pair analysis (SPA) theory to propose a new hybrid model for MADM, 
showing its practicality and efficiency through comparative analysis and graphical interpretation in real-world 
decision scenarios.

Dealing with uncertainty and preserving fuzzy language information in multi-criteria decision-making 
is challenging. To address this, Garg28 combined the strengths of PFS and interval-valued intuitionistic fuzzy 
sets (IVIFS), generalizing PFS into IVPFS. IVPFS not only extends the constraints of IVIFS but also allows 
membership and non-membership values to be represented as intervals, thus improving its ability to capture 
uncertain information22,29. Among them, Chunxia30 aimed at the decision-making problem of sustainable 
supplier groups, using optimism to simplify complex operations under IVPFS, and finally using the extended 
TOPSIS method to select the optimal solution. Wu31 established a DEA model that can internalize quantitative 
indicators based on IVPFS, providing a solution for the selection of green suppliers. Wang32 applied IVPFS to 
three-way conflict analysis and proved its superiority through comparative analysis of multiple models. Given 
the shortcomings of IVPFS in sorting methods and weight determination, some researchers have improved 
the scoring function, precision function, and distance measure of IVPFS33–39, and introduced new aggregation 
operators, applying them to multi-criteria decision-making problems to verify the method’s correctness.

The newly proposed IVPFS theory is now relatively complete and has been effectively applied in many fields. 
Based on the characteristics of the data, scholars have also introduced concepts such as complex fuzzy sets 
(CFS) and linearly ordered fuzzy sets (LDFS) to address decision problems with fuzzy data exhibiting periodic 
variations. Muhammad40 developed weighted averaging operators and ordered averaging operators for complex 
linear Diophantine fuzzy sets (CLDFS), proposing a decision method with visual effects that broadens the 
computational and applicational scope of CLDFS. When facing decision problems with conflicting data, Zhang41 
introduced the concept of bipolar fuzzy information. Harish42 used power aggregation operators of Aczel-Alsina 
type (AAO) and bipolar complex fuzzy sets to establish a MADM method for exploring applications in quantum 
mechanics. Fuzzy set-based methods demonstrate excellent performance in decision-making problems. 
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Muhammad43 based on bipolar fuzzy sets, introduced aggregation operators (AO) and derived a novel decision 
method successfully applied in renewable energy decision-making.

Works and contributions of this study
Based on the aforementioned research findings, while many scholars have explored various methods for mining 
method decision problems, gaps remain in group decision methods that effectively capture uncertain information. 
Currently, multi-criteria decision theory and fuzzy set theory are relatively mature, offering new perspectives 
for solving mining method decision problems. Therefore, this study proposes a model that integrates Interval-
Valued Pythagorean Fuzzy Sets (IVPFS) and TOPSIS-GRA to select the optimal mining method for fractured 
ore bodies. The following contributions have been made:

Firstly, a multi-factor comprehensive evaluation system was established, incorporating IVPFS to effectively 
represent the fuzzy information in the decision-making process. This approach addresses and represents the 
uncertainties and ambiguities encountered in evaluating mining methods, thus enhancing the accuracy and 
comprehensiveness of the assessment.

Secondly, this study proposes a method for determining the weights of fuzzy information, combining the 
principles of fuzzy entropy measurement with the EWM. This innovative approach objectively differentiates the 
importance of decision-makers and evaluation criteria, improving the scientific and impartial determination of 
weights.

Thirdly, the integrated TOPSIS-GRA method, which combines distance and similarity measures, was 
employed to rank the alternative mining methods. This application provides a scientific basis for selecting the 
optimal mining method for fractured and difficult-to-mine ore bodies.

Fourthly, the stability of the model was validated through sensitivity analysis, and comparisons under different 
fuzzy environments (PFS and TFS) demonstrated the robustness of IVPFS in handling fuzzy information for 
mining method optimization.

Interval-valued Pythagorean fuzzy sets
Definition 1  Intuitionistic fuzzy set of second type 17. Let X be a finite non-empty set. A Pythagorean fuzzy set 
ϕ in the set X can be expressed by Eq. (1). The concept of the intuitionistic fuzzy set of second type was intro-
duced by Atanassov in 1989 and later extended by Yager as the PFS, which has since been widely applied22,28–30. 
T﻿herefore, the subsequent sections of this study will use PFS.

	 ϕ = {< x, ϕ(µϕ(x), νϕ(x))|x ∈ X >}� (1)

where µϕ(x) is a membership degree of ϕ, µϕ(x) ∈ [0, 1]. νϕ(x) is a non-membership degree of ϕ, νϕ(x) ∈ [0, 1]
. For any PFS ϕ belonging to upper, x ∈ X , (µϕ(x))

2 + (vϕ(x))
2 ≤ 1 is satisfied. At this time, the degree of 

hesitation is determined as: πϕ(x) =
√
1− (µp(x))2 − (vp(x))2. For convenience, let ϕ = (µϕ, vϕ) denote the 

Pythagorean fuzzy number (PFN). When 0 ≤ µϕ(x) + vϕ(x) ≤ 1 is satisfied, PFNs degenerate into intuitionistic 
fuzzy numbers.

Definition 2: IVIFS29  Let X be a finite non-empty set. An interval-valued intuitionistic fuzzy set φ in the set X 
can be expressed by Eq. (2).

	 φ =
{
< x,

[
µL
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φ (x)
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 is a non-membership degree of φ, 0 ≤ νLφ (x) ≤ νUφ (x) ≤ 1 and νLφ (x), νUφ (x) ∈ [0, 1], In 

particular, when µL
φ(x) = µU

φ (x),vLφ(x) = vUφ (x), the IVIFS degenerates into an intuitionistic fuzzy set. At this 
time, defined πφ(x) =

[
πL
φ(x), π

U
φ (x)

]
 as the hesitation degree of any element x ∈ X  for the IVIFS φ. And 

πL
φ(x) = 1− µU

φ (x)− vUφ (x), πU
φ (x) = 1− µL

φ(x)− νLφ (x).

Definition 3: IVPFS28  Let X be a finite non-empty set. An interval-valued Pythagorean fuzzy set φ̃ in the set X 
can be expressed by Eq. (3).

	 φ̃ =
{
< x,
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φ̃(x), µ

U
φ̃ (x)

]
,
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U
φ̃ (x)

]
> |x ∈ X

}
� (3)

where the membership and non-membership degrees are defined the same as IVPFS. The difference is that for 
any IVPFS φ̃ belonging to x ∈ X , it satisfies (µL

φ̃(x))
2 + (vUφ̃ (x))

2 ≤ 1. In particular, when µL
φ̃(x) = µU

φ̃ (x) and 
vLφ̃(x) = vUφ̃ (x), the IVPFS degenerates into a PFS. The hesitation degree of any element x ∈ X  for the IVPFS φ̃ 
is πφ̃(x) =
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φ̃ (x))
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2, πU
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2. For 

convenience, let φ̃ = (
[
µL
φ̃, µ

U
φ̃

]
,
[
vLφ̃, ·vUφ̃

]
) be the interval-valued Pythagorean number (IVPFN).

Definition 4: Interval-valued Pythagorean entropy measure44   It is known that there exists an IVPFN 
φ̃ = (

[
µL
φ̃, µ

U
φ̃

]
,
[
vLφ̃, ·vUφ̃

]
), The interval-valued Pythagorean entropy E(φ̃) can be expressed by Eq. (4).
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E(φ̃) = 1− p
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where p is the LP norm. The greater the interval-valued Pythagorean fuzzy entropy, the greater the uncertainty 
of the IVPFNs.

Definition 5: Distance measure for IVPFS44,45   Suppose there are two IVPFNs Ã = (
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Ã

]
)  and 

B̃ = (
[
µL
B̃
, µU

B̃

]
,
[
vL
B̃
, vU

B̃

]
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Definition 6: interval-valued Pythagorean fuzzy weighted average (IVPFWA)46   Suppose there exists IVP-
FNs Ãi = (
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]
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IVPFWA is expressed as:

	
Ã = IV PFWA(Ã1, Ã2, . . . , Ãn) = ω1Ã1 ⊕ ω2Ã2 ⊕ · · · ⊕ wkÃn =

([
n∑

i=1

ϖiµ
L
ĩ
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Research on integrated model based on IVPFS and TOPSIS-GRA
To address the decision-making problem of selecting mining methods more scientifically, This study combined 
the advantages of IVPFS to construct an integrated model based on IVPFS and TOPSIS-GRA. IVPFS is utilized 
to handle fuzzy information, employing the TOPSIS method for effective ranking of multiple alternatives. 
However, the TOPSIS method may encounter the rank reversal paradox in practical applications. To enhance 
the stability of the model and the reliability of the decision results, GRA is introduced as an effective relational 
analysis tool. GRA complements TOPSIS by addressing its limitations in ranking, using relational degrees to 
refine the evaluation process. This combined approach leverages both distance and relational degrees to provide 
a comprehensive ranking of the alternatives. The flow chart (Fig. 1) and specific framework of this method are 
as follows:

Suppose there is a MADM problem in which h decision-makers D = {D1, D2, …, Dh} discuss m solutions 
A = {A1, A2, …, Am} and there are n evaluation indicators C = {C1, C2, …, Cn}. Each decision-maker evaluates the 
selected alternatives and indicators. Assume the weight corresponding to each decision-maker is ϖ={ϖ1, ϖ2, 
…, ϖh}, and the weight assigned to each evaluation indicator pair is w = {w1, w2, …, wn}. These weights satisfy ∑h

i=1ϖ = 1 and 
∑n

i=1w = 1.
Step 1: Identify alternatives and decision-makers. Select appropriate evaluation indicators to establish a 

decision-making evaluation system. Determine the conversion rules for natural language and interval-valued 
Pythagorean fuzzy numbers.

Step 2: Decision-makers score and determine the IVPFN ̃a = (
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Step 3: Determine the weights of decision-maker and indicator. Due to the differences in experience, expertise, 
and other factors among decision-makers, their input significantly influences the decision-making results. 
Simultaneously, the importance of evaluation indicators varies among decision-makers, necessitating careful 
weight distribution. Entropy measure theory is a widely adopted method for determining weights18,47–49. 
This study determined weights of decision-maker and indicator based on the interval-valued Pythagorean 
entropy measure and the EWM. The interval-valued Pythagorean fuzzy entropy ekj  of each decision-makers 
corresponding index interval value was calculated using Eq. (4). The interval-valued Pythagorean fuzzy entropy 
matrix E of the indicator set was established by decision-makers.
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where E is the normalized matrix of the interval-valued Pythagorean fuzzy entropy matrix E
According to the calculation principle of the EWM50–52, the weight of each indicator is expressed as:
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1−Hj
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The weight of each decision-maker is expressed as:
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n∑
j=1

wje
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j � (10)

Step 4: Weighted decision matrix determination based on decision-maker weights. Aggregate decision matrices 
from different decision-makers. After assigning weights to the decision-makers, the weighted decision matrix R̃ 
is obtained. This calculation process is implemented using the IVPFWA (Eq. (6)).
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Step 5: According to the weighted decision matrix R̃, the positive ideal solutions (PIS) and negative ideal solutions 
(NIS) are determined using Eq. (12) and Eq. (13). TOPSIS, also known as the distance method between superior 
and inferior solutions, is one of the commonly used decision-making methods in MCDM53,54. When faced with 
a decision-making problem, TOPSIS chooses the optimal solution that is closest to the positive ideal solution 
and at the same time, as far away from the negative ideal solution as possible. After extensive development 

Fig. 1.  Flow chart of the integrated method based on IVPFS and TOPSIS-GRA.
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and optimization, TOPSIS and its expanded versions have been applied to many fields such as economics and 
management, achieving favorable results55–57.
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Where, .




µ+L
ϖj = min

i
µL
ϖij

µ+U
ϖj = min

i
µU
ϖij

v+L
ϖj = max

i
vLϖij

v+U
ϖj = max

i
vUϖij

µ−L
ϖj = max

i
µL
ϖij

µ−U
ϖj = max

i
µU
ϖij

v−L
ϖj = min

i
vLϖij

v−U
ϖj = min

i
vUϖij

if Ci ∈ M1.




µ+L
ϖj = max

i
µL
ϖij

µ+U
ϖj = max

i
µU
ϖij

v+L
ϖj = min

i
vLϖij

v+U
ϖj = min

i
vUϖij

µ−L
ϖj = min

i
µL
ϖij

µ−U
ϖj = min

i
µU
ϖij

v−L
ϖj = max

i
vLϖij

v−U
ϖj = max

i
vUϖij

if Ci ∈ M2.

M1 and M2 are cost indicators and benefits indicators respectively.
Step 6: According to the TOPSIS principle, the distance measure of the IVPFNs is replaced with the original 

Euler distance, and the distance between each solution and the ideal solution is calculated. Its distance formula 
is as follows:

	

d+ij =
1

2
(|(µL

ij)
2 − (µ+L

ϖi )
2| + |(µU

ij)
2 − (µ+U

ϖi )
2| + |(vLij)2 − (v+L

ϖi )
2|

+|(vUij)2 − (v+U
ϖi )

2| + |(πL
ij)

2 − (π+L
ϖi )

2| + |(πU
ij)

2 − (π+U
ϖi )

2|)
� (14)

	

d−ij =
1

2
(|(µL

ij)
2 − (µ−L

ϖi )
2| + |(µU

ij)
2 − (µ−U

ϖi )
2| + |(vLij)2 − (v−L

ϖi )
2|

+|(vUij)2 − (v−U
ϖi )

2| + |(πL
ij)

2 − (π−L
ϖi )

2| + |(πU
ij)

2 − (π−U
ϖi )

2|)
� (15)

Step 7: Based on the weight of each evaluation indicator obtained in Step 3, the weighted distance is calculated:

	
D+

i =

n∑
j=1

d+ijwj � (16)

	
D−

i =

n∑
j=1

d−ijwj� (17)

Step 8: Use GRA to determine the gray correlation degree of alternatives. GRA is a factor analysis method in gray 
theory. It is generally used in research on phenomena where the information is partly clear, partly unclear, and 
contains uncertainty. Determine the optimal solution by calculating the gray correlation between the solution 
data and the optimal solution data58–60. Use Eq. (18) and Eq. (19) to calculate the gray correlation coefficient 
between each solution and ideal solutions.

	
ξ+ij =

min
i

min
j

d+ij + λ ·max
i

max
j

d+ij

d+ij + λ ·max
i

max
j

d+ij
� (18)

	
ξ−ij =

min
i

min
j

d−ij + λ ·max
i

max
j

d−ij

d−ij + λ ·max
i

max
j

d−ij
� (19)

According to the weight of each indicator obtained in Step 3, the weighted gray correlation degree GRD is 
calculated:

	
GRD+

i =
1

n

n∑
j=1

ξ+ijwj � (20)

	
GRD−

i =
1

n

n∑
j=1

ξ−ijwj� (21)

Step 9: Calculate distance comprehensive closeness and gray comprehensive closeness respectively.

Scientific Reports |        (2024) 14:23397 6| https://doi.org/10.1038/s41598-024-73814-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Di =

D−
i

D+
i +D−

i

� (22)

	
GRDi =

GRD−
i

GRD+
i + GRD−

i

� (23)

Step 10: Calculate the overall comprehensive score for each alternative.

	 Ri = γDi + (1− γ)GRDi� (24)

where γ is the compromise coefficient. γ ∈ [0,1] is generally taken as 0.5.
Step 11: Sort solutions based on comprehensive scores and select the best solution.

Application examples
Mine background
The Tanyaokou mining area, located in Wendur Town, Huhe, Wulatehou Banner, Inner Mongolia, mainly 
engages in the mining of S, Cu, and Zn. Currently, the Tanyaokou mining area is segmented into two regions 
(south and north), with operations occurring in three mining sections. The 3# ore body in the southern region 
stands out as the largest and most mineral-rich deposit. This ore body extends 1750 m in length, with an average 
thickness of 44 m, trending NE70°, dipping northwest with an inclination of approximately 56°, and is distributed 
in a vein-like formation. It predominantly comprises zinc, copper, and sulfur ores, characteristic of a typical 
polymetallic deposit. The mineral zone consists of interbedded soft and hard limestone and carbonaceous slate. 
Copper is predominantly found within the limestone and carbonaceous slate, while zinc is mainly present in 
the carbonaceous slate. The slate is notably soft, with well-defined lamellae and extensively developed joints and 
fissures. The ore body’s roof and floor are mainly carbonaceous slate. This study focused on optimizing mining 
methods for the 3# ore body. The primary mining challenges currently identified are as follows:

	1.	� Geological surveys reveal poor stability of the ore rock, with extensively developed joints and fissures. Exces-
sively large exposure areas and prolonged exposure times are untenable, complicating the mining technolo-
gy.

	2.	� Despite the ore body’s thickness, the boundary between the ore body and the surrounding rock is indistinct, 
exhibiting a gradual transition. Early-stage mining methods were suboptimal, leading to significant ore loss 
and dilution, thereby wasting resources.

	3.	� The initial open stope method resulted in the collapse of the void areas and surface subsidence. Additionally, 
the safe working conditions for workers and equipment are substandard, failing to meet the essential require-
ments for sustainable mining practices.

Preliminary selection of mining methods
To achieve comprehensive resource recovery and promote sustainable mining practices, this study was grounded 
in field investigations and rock mechanics experiments conducted at typical locations representative of mining 
sites. It integrated geological data from local mines and similar operations. Four mining methods were initially 
chosen: vertical pre-protected roof downward deep hole mining and subsequent filling mining method (A1), 
pre-controlled roof continuous segmented and striped filling mining method (A2), mechanized upward 
horizontal layered filling mining method (A3) and point-pillar upward layered filling mining method (A4). The 
characteristics of these four mining methods and the standard ore block diagram are summarized as follows:

	1.	� The A1 standard ore block diagram is shown in Fig. 2. This method combines the characteristics of deep 
hole mining and has a high degree of mechanization, low labor intensity, and elevated labor productivity. 
It involves relatively modest volumes of mining and cutting engineering, resulting in low costs. However, 
challenges arise in controlling loss and dilution, necessitating stringent requirements for the blasting process.

	2.	� The A2 standard ore block diagram is shown in Fig. 3. This method represents an advancement over stage 
mining and stage extraction mining methods. It features significant mechanization, controllable stope pa-
rameters, and high safety. The mining and cutting engineering volume is relatively minimal, resulting in 
cost-effectiveness. However, it requires subsequent filling, hence resulting in relatively lower labor produc-
tivity.

	3.	� The A3 standard ore block diagram is shown in Fig. 4. This method is highly mechanized, facilitating easy 
control over loss and dilution. However, it has a high stope cutting ratio, resulting in lower labor productivity 
and higher mining costs.

	4.	� The A4 standard ore block diagram is shown in Fig. 5. This method shares similarities with A3 in its advan-
tages. The added point pillars (ore pillars) ensure stope stability when the exposed area is extensive. But the 
ore pillars are permanent losses and contribute to an overall increase in loss rates.

Construction of comprehensive evaluation index system
Optimizing mining methods is affected by various economic and technological factors. By selecting relevant 
research indicators, this study established a comprehensive evaluation indicator system. Three scholars 
specializing in mining were chosen as decision-makers: expects from the mine’s technical department (D1), 
university researchers (D2) and designers (D3). The four alternatives considered are A1, A2, A3 and A4. The 
evaluation indicators are ore dilution rate (C1), ore loss rate (C2), total cost (C3), construction organization and 
labor intensity (C4), mining-to-cut ratio (C5), ore recovery rate (C6), stope production capacity (C7), flexibility 
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Fig. 3.  Pre-controlled roof continuous segmented and striped filling mining method (A2).

 

Fig. 2.  Vertical pre-protected roof downward deep hole mining and subsequent filling mining method (A1).
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Fig. 5.  Point-pillar upward layered filling mining method (A4).

 

Fig. 4.  Mechanized upward horizontal layered filling mining method (A3).
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and adaptability (C8), stope safety conditions (C9). Among these evaluation indicators, C1-C5 are cost indicators 
(M1), and C6-C9 are benefit indicators (M2). The evaluation index system is shown in Fig. 6.

Simultaneously, the corresponding relationship between natural evaluation language and IVPFNs is clarified. 
Table 1 defines the conversion criteria between the importance of evaluation indicators and IVPFNs.

Optimization of broken ore body solutions based on an integrated model
Preferred mining methods are typically grounded in practical mine operations. This study proposed an integrated 
model to address the decision-making problem regarding mining methods. The specific steps are as follows:

Step 1: Three decision-making decision-makers scored the evaluation indicators corresponding to different 
options. Table 2 shows the rating results of three decision-makers for different options.

Decision-makers Alternatives

Evaluation index

C1 C2 C3 C4 C5 C6 C7 C8 C9

D1

A1 M VB MB B VB VI VG M MB

A2 G B B VB B VG G MB MB

A3 MB M MB M M M M VI VI

A4 MB B M MB MB VG M VG VG

D2

A1 M B B MB B VG G M M

A2 M B VB B B VG M M MB

A3 VB MB M M MB G M VG VI

A4 B VB MB M MB VI G G VI

D3

A1 G B B VB B VG G M M

A2 M MB MB B VB G VG M MB

A3 VB B M MB MB VG MB VG VI

A4 VB VB M B M VI M G VG

Table 2.  Mining method index evaluation system.

 

Linguistic terms IVPFNs

Perfect (VI) ([0.80,0.95], [0.00,0.15])

Very good (VG) ([0.70,0.80], [0.15,0.25])

Good (G) ([0.55,0.70], [0.25,0.40])

Medium (M) ([0.45,0.55], [0.40,0.55])

Medium bad (MB) ([0.30,0.45], [0.55,0.70])

Bad (B) ([0.20,0.30], [0.70,0.80])

Very bad (VB) ([0.00,0.20], [0.80,0.95])

Table 1.  Evaluation index importance and IVPFNs conversion rules.

 

Fig. 6.  Evaluation index system.
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Step 2: Following to the fuzzy language conversion rules, natural language was converted into IVPFNs. The 
interval-valued Pythagorean fuzzy decision matrix of the evaluation index was obtained, as shown in Table 3.

Step 3: According to Table 3 and Eq. (4), the interval-valued Pythagorean fuzzy entropy for each evaluation 
index was calculated, and the interval-valued Pythagorean fuzzy entropy matrix for the evaluation index and 
decision-makers was established. The decision-maker weight and evaluation index weight were calculated using 
Eq. (8)–(10). The calculation results are presented in Tables 4, 5, 6.

Step 4: According to Step 3 and Eq. (11), the weighted decision matrix and the hesitation degree corresponding 
to the IVPFNs in each interval were calculated. The results are shown in Table 7:

Step 5: PIS and NIS under the weighted decision matrix were calculated from Eq. (12)–(13). The hesitation 
degree corresponding to the PIS and NIS is shown in Table 8.

D1 D2 D3

ϖ 0.44 0.32 0.24

Table 6.  The weight value corresponding to each decision-maker.

 

C1 C2 C3 C4 C5 C6 C7 C8 C9

w 0.07 0.17 0.06 0.08 0.16 0.16 0.07 0.06 0.17

Table 5.  The weight value corresponding to each price indicator.

 

C1 C2 C3 C4 C5 C6 C7 C8 C9

D1 0.79 0.55 0.74 0.61 0.61 0.54 0.78 0.61 0.55

D2 0.67 0.49 0.61 0.80 0.62 0.47 0.84 0.78 0.55

D3 0.54 0.49 0.80 0.49 0.61 0.47 0.73 0.78 0.61

Table 4.  Interval-valued Pythagorean fuzzy entropy.

 

C1 C2 C3 C4 C5 C6 C7 C8 C9

D1

A1 ([0.45,0.55],
[0.40,0.55])

([0.00,0.20],
[0.80,0.95])

([0.30,0.45],
[0.55,0.70])

([0.20,0.30],
[0.70,0.80])

([0.00,0.20],
[0.80,0.95])

([0.80,0.95],
[0.00,0.15])

([0.70,0.80],
[0.15,0.25])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

A2 ([0.55,0.70],
[0.25,0.40])

([0.20,0.30],
[0.70,0.80])

([0.20,0.30],
[0.70,0.80])

([0.00,0.20],
[0.80,0.95])

([0.20,0.30],
[0.70,0.80])

([0.70,0.80],
[0.15,0.25])

([0.55,0.70],
[0.25,0.40])

([0.30,0.45],
[0.55,0.70])

([0.30,0.45],
[0.55,0.70])

A3 ([0.30,0.45],
[0.55,0.70])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

([0.80,0.95],
[0.00,0.15])

([0.80,0.95],
[0.00,0.15])

A4 ([0.30,0.45],
[0.55,0.70])

([0.20,0.30],
[0.70,0.80])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

([0.30,0.45],
[0.55,0.70])

([0.70,0.80],
[0.15,0.25])

([0.45,0.55],
[0.40,0.55])

([0.70,0.80],
[0.15,0.25])

([0.70,0.80],
[0.15,0.25])

D2

A1 ([0.45,0.55],
[0.40,0.55])

([0.20,0.30],
[0.70,0.80])

([0.20,0.30],
[0.70,0.80])

([0.30,0.45],
[0.55,0.70])

([0.20,0.30],
[0.70,0.80])

([0.70,0.80],
[0.15,0.25])

([0.55,0.70],
[0.25,0.40])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

A2 ([0.45,0.55],
[0.40,0.55])

([0.20,0.30],
[0.70,0.80])

([0.00,0.20],
[0.80,0.95])

([0.20,0.30],
[0.70,0.80])

([0.20,0.30],
[0.70,0.80])

([0.70,0.80],
[0.15,0.25])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

A3 ([0.00,0.20],
[0.80,0.95])

([0.30,0.45],
[0.55,0.70])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

([0.55,0.70],
[0.25,0.40])

([0.45,0.55],
[0.40,0.55])

([0.70,0.80],
[0.15,0.25])

([0.80,0.95],
[0.00,0.15])

A4 ([0.20,0.30],
[0.70,0.80])

([0.00,0.20],
[0.80,0.95])

([0.30,0.45],
[0.55,0.70])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

([0.80,0.95],
[0.00,0.15])

([0.55,0.70],
[0.25,0.40])

([0.55,0.70],
[0.25,0.40])

([0.80,0.95],
[0.00,0.15])

D3

A1 ([0.55,0.70],
[0.25,0.40])

([0.20,0.30],
[0.70,0.80])

([0.20,0.30],
[0.70,0.80])

([0.00,0.20],
[0.80,0.95])

([0.20,0.30],
[0.70,0.80])

([0.70,0.80],
[0.15,0.25])

([0.55,0.70],
[0.25,0.40])

([0.45,0.55],
[0.40,0.55])

([0.45,0.55],
[0.40,0.55])

A2 ([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

([0.30,0.45],
[0.55,0.70])

([0.20,0.30],
[0.70,0.80])

([0.00,0.20],
[0.80,0.95])

([0.55,0.70],
[0.25,0.40])

([0.70,0.80],
[0.15,0.25])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

A3 ([0.00,0.20],
[0.80,0.95])

([0.20,0.30],
[0.70,0.80])

([0.45,0.55],
[0.40,0.55])

([0.30,0.45],
[0.55,0.70])

([0.30,0.45],
[0.55,0.70])

([0.70,0.80],
[0.15,0.25])

([0.30,0.45],
[0.55,0.70])

([0.70,0.80],
[0.15,0.25])

([0.80,0.95],
[0.00,0.15])

A4 ([0.00,0.20],
[0.80,0.95])

([0.00,0.20],
[0.80,0.95])

([0.45,0.55],
[0.40,0.55])

([0.20,0.30],
[0.70,0.80])

([0.45,0.55],
[0.40,0.55])

([0.80,0.95],
[0.00,0.15])

([0.45,0.55],
[0.40,0.55])

([0.55,0.70],
[0.25,0.40])

([0.70,0.80],
[0.15,0.25])

Table 3.  Interval Pythagorean fuzzy decision matrix corresponding to different decision-makers.
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r+ =





([0.13, 0.31], [0.69, 0.84]), ([0.09, 0.24], [0.76, 0.88]), ([0.24, 0.37], [0.63, 0.76]), ([0.11, 0.26], [0.74, 0.87]),

([0.11, 0.26], [0.74, 0.87]), ([0.76, 0.88], [0.07, 0.19]), ([0.62, 0.74], [0.21, 0.33]), ([0.74, 0.87], [0.08, 0.21]),

([0.80, 0.95], [0.00, 0.15])




	

r− =





([0.49, 0.62], [0.33, 0.48]), ([0.34, 0.46], [0.52, 0.66]), ([0.40, 0.52], [0.45, 0.60]), ([0.41, 0.53], [0.44, 0.59]),

([0.37, 0.47], [0.51, 0.66]), ([0.54, 0.67], [0.29, 0.43]), ([0.41, 0.53], [0.44, 0.59]), ([0.38, 0.51], [0.47, 0.62]),

([0.30, 0.45], [0.55, 0.70])




Step 6: The distances d+ij  and d−ij  between each alternative and ideal solution were calculated from Eq. (14)–(17). 
The weighted comprehensive distance was obtained. The results are shown in Tables 9, 10, 11.

Step 7: The gray correlation coefficients ξ+ij  and ξ−ij  between each alternative and the ideal solution were 
calculated using Eq.  (18)–(21). The weighted comprehensive gray correlation degree was obtained, and the 
results are shown in Tables 12, 13, 14.

Step 8: The comprehensive TOPSIS and GRA scores were calculated using Eq. (22)–(24). The compromise 
coefficient γ was set to 0.5. The calculation results are shown in Table 15:

d−ij C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.0592 0.5956 0.4097 0.5614 0.6157 0.5637 0.4791 0.1401 0.1942

A2 0.000 0.3293 0.4097 0.7661 0.5334 0.3102 0.3163 0.000 0.000

A3 0.8439 0.000 0.0346 0.000 0.5334 0.000 0.000 0.9017 1.0388

A4 0.7257 0.6432 0.000 0.2119 0.000 0.6098 0.1615 0.5271 0.9576

Table 10.  The distance d−ij  from the alternative to the NIS.

 

d+ij C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.7972 0.0479 0.000 0.2047 0.000 0.0462 0.000 0.7985 0.8762

A2 0.8439 0.3140 0.000 0.000 0.0819 0.2997 0.1628 0.9017 1.0388

A3 0.000 0.6432 0.3754 0.7661 0.0819 0.6098 0.4791 0.000 0.000

A4 0.1183 0.000 0.4097 0.5543 0.6157 0.000 0.3299 0.3747 0.2993

Table 9.  The distance d+ij  from the alternative to the PIS.

 

C1 C2 C3 C4 C5 C6 C7 C8 C9

r+ [0.45,0.71] [0.41,0.64] [0.53,0.74] [0.42,0.66] [0.42,0.66] [0.44,0.65] [0.59,0.76] [0.45,0.67] [0.60,0.78]

r− [0.62,0.81] [0.59,0.78] [0.60,0.80] [0.61,0.80] [0.59,0.78] [0.61,0.79] [0.61,0.80] [0.60,0.80] [0.55,0.78]

Table 8.  Hesitation degrees π corresponding to PIS and NIS.

 

C1 C2 C3 C4 C5 C6 C7 C8 C9

Weighted IVPFNs

A1 ([0.47,0.59],
[0.36,0.51])

([0.11,0.26],
[0.74,0.87])

([0.24,0.37],
[0.63,0.76])

([0.18,0.32],
[0.68,0.80])

([0.11,0.26],
[0.74,0.87])

([0.74,0.87],
[0.08,0.21])

([0.62,0.74],
[0.21,0.33])

([0.45,0.55],
[0.40,0.55])

([0.38,0.51],
[0.47,0.62])

A2 ([0.49,0.62],
[0.33,0.48])

([0.22,0.34],
[0.66,0.78])

([0.24,0.37],
[0.63,0.76])

([0.11,0.26],
[0.74,0.87])

([0.15,0.28],
[0.72,0.84])

([0.66,0.78],
[0.17,0.29])

([0.55,0.68],
[0.27,0.41])

([0.38,0.51],
[0.47,0.62])

([0.30,0.45],
[0.55,0.70])

A3 ([0.13,0.31],
[0.69,0.84])

([0.34,0.46],
[0.52,0.66])

([0.38,0.51],
[0.47,0.62])

([0.41,0.53],
[0.44,0.59])

([0.15,0.28],
[0.72,0.84])

([0.54,0.67],
[0.29,0.43])

([0.41,0.53],
[0.44,0.59])

([0.74,0.87],
[0.08,0.21])

([0.80,0.95],
[0.00,0.15])

A4 ([0.20,0.34],
[0.66,0.79])

([0.09,0.24],
[0.76,0.88])

([0.40,0.52],
[0.45,0.60])

([0.32,0.45],
[0.54,0.68])

([0.37,0.47],
[0.51,0.66])

([0.76,0.88],
[0.07,0.19])

([0.48,0.60],
[0.35,0.50])

([0.62,0.74],
[0.21,0.33])

([0.73,0.85],
[0.10,0.22])

π
A1 [0.63,0.81] [0.42,0.66] [0.53,0.74] [0.51,0.71] [0.42,0.66] [0.45,0.67] [0.59,0.76] [0.63,0.80] [0.60,0.80]

A2 [0.62,0.81] [0.53,0.72] [0.53,0.74] [0.42,0.66] [0.46,0.68] [0.55,0.73] [0.61,0.79] [0.60,0.80] [0.55,0.78]

A3 [0.45,0.71] [0.59,0.78] [0.60,0.80] [0.61,0.80] [0.46,0.68] [0.61,0.79] [0.61,0.80] [0.45,0.67] [0.60,0.78]

A4 [0.51,0.72] [0.41,0.64] [0.60,0.80] [0.58,0.78] [0.59,0.78] [0.44,0.65] [0.62,0.80] [0.59,0.76] [0.48,0.68]

Table 7.  Weighted decision matrix.

 

Scientific Reports |        (2024) 14:23397 12| https://doi.org/10.1038/s41598-024-73814-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The calculation results that the optimal ranking of the four alternative methods is A4 > A3 > A1 > A2. The 
optimal solution is A4, which is the point-pillar upward horizontal layered filling mining method.

The Point Support Upward Horizontal Layered Filling Mining Method is an optimized version of the 
traditional upward horizontal layered filling method. Compared to other mining methods, it is particularly 
effective for fractured ore bodies, as it can control ground pressure, provide filling support, and reduce ore 
loss and dilution, thereby enhancing mining safety and efficiency. Additionally, this method has successfully 
addressed the challenges of mining fractured ore bodies at the Xincheng Gold Mine in Shandong, China, 
offering valuable insights for mining operations under complex geological conditions.

Discussion
Sensitive analysis
This study used an integrated model within an interval-valued Pythagorean fuzzy environment to determine 
the optimal mining method for the 3# ore body in the Tanyaokou mining area. To avoid errors caused by a 
single model, a combination of TOPSIS and GRA was used to rank the alternatives. Considering the influence 
of human subjective factors, variations in the compromise coefficient γ may affect the results. Consequently, 
sensitivity analysis was performed by altering the compromise coefficient γ to further explore the robustness of 
the integrated model.

Alternatives D GRD R Rank

A1 0.6065 0.4279 0.5172 3

A2 0.4184 0.5182 0.4683 4

A3 0.5278 0.5105 0.5192 2

A4 0.6383 0.4546 0.5465 1

Table 15.  Comprehensive score and ranking of alternatives.

 

A1 A2 A3 A4

GRD+
i

0.0849 0.0716 0.0768 0.0798

GRD−
i

0.0635 0.0770 0.0801 0.0665

Table 14.  Weighted comprehensive gray correlation degree from alternatives to ideal solutions.

 

ξ−ij C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.8977 0.4658 0.5590 0.4806 0.4576 0.4795 0.5202 0.7876 0.7279

A2 1.000 0.6120 0.5590 0.4040 0.4934 0.6261 0.6215 1.000 1.000

A3 0.3810 1.000 0.9375 1.000 0.4934 1.000 1.000 0.3655 0.3333

A4 0.4172 0.4468 1.000 0.7102 1.000 0.4599 0.7628 0.4963 0.3517

Table 13.  The gray correlation coefficient ξ−ij  from the alternative to the NIS.

 

ξ+ij C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.3945 0.9156 1.000 0.7173 1.000 0.9183 1.000 0.3941 0.3722

A2 0.3810 0.6232 1.000 1.000 0.8638 0.634 0.7614 0.3655 0.3333

A3 1.000 0.4468 0.5805 0.4040 0.8638 0.4599 0.5202 1.000 1.000

A4 0.8145 1.000 0.5590 0.4837 0.4576 1.000 0.6116 0.5809 0.6344

Table 12.  The gray correlation coefficient ξ+ij  from the alternative to the PIS.

 

A1 A2 A3 A4

D+
i

0.2846 0.4156 0.3374 0.2722

D−
i

0.4386 0.2990 0.3772 0.4804

Table 11.  The weighted comprehensive distance of alternatives to the ideal solution.
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First, increase the compromise coefficient γ from 0 to 1 to simulate different situations. When γ = 0, the model 
only uses GRA to rank alternatives. When γ = 1, the model only uses extended TOPSIS to rank alternatives. 
The simulation results of different situations are shown in Fig. 7 and Table 1661. The results reveal that when 
different values of γ produced different sorting results. When γ ≥ 0.4, the optimal solution among the four 
alternatives was A4, consistent with the result of this study. When 0 < γ < 0.4, the optimal solution was A3. 
Notably, when only gray correlation similarity ranking was used, the optimal solution was A2. Despite this, A4 
emerged as the optimal solution in a significant proportion of situations, indicating that the γ = 0.5 selected in 
this study was more reasonable. Moreover, in the actual production process of the 3# ore body in the Tanyaokou 
mining area, the use of the A1 mining method also achieved ideal results in terms of safety and efficiency. Thus, 
the combination of models reduces the error caused by a single model. Of course, this also depends on the 
preferences of decision-makers.

To visually express the differences in rankings for different values of γ, a ranking similarity coefficient is 
introduced to provide a qualitative measure of the differences between the obtained rankings. Figure 8 shows 
the weighted Spearman correlation coefficients for various γ values, calculated using the formula provided by 
Sałabun62.As can be seen from the figure, the rankings for γ = 0.5 and γ = 0.4 are completely identical, exhibiting 
the same ranking logic. Furthermore, there is a high similarity (correlation coefficient of 0.8) between the 
rankings for γ = 0.5 and the group with γ values ranging from 0.6 to 1.0. This demonstrates the rationale for 
selecting γ = 0.5.

Comparison analysis
To illustrate the advantage of IVPFS in handling uncertain information in mining method optimization decision 
problems, this study conducts comparative analyses with PFS and TFS16,22. Table 17 presents the conversion 
rules between the natural language of PFSs and TFNs. The evaluation system in the comparative experiments 
aligns with that of this study. Natural language in the evaluation system is transformed into a fuzzy decision 
matrix according to the conversion criteria.

	1.	� Comparative Experiment 1: PFS

γ A1 A2 A3 A4 Rank

0.0 0.4279 0.5182 0.5105 0.4546 A2 > A3 > A4 > A1

0.1 0.4458 0.5082 0.5122 0.4730 A3 > A2 > A4 > A1

0.2 0.4636 0.4982 0.5140 0.4913 A3 > A2 > A4 > A1

0.3 0.4815 0.4883 0.5157 0.5097 A3 > A4 > A2 > A1

0.4 0.4993 0.4783 0.5174 0.5281 A4 > A3 > A1 > A2

0.5 0.5172 0.4683 0.5192 0.5465 A4 > A3 > A1 > A2

0.6 0.5351 0.4583 0.5209 0.5648 A4 > A1 > A3 > A2

0.7 0.5529 0.4483 0.5226 0.5832 A4 > A1 > A3 > A2

0.8 0.5708 0.4384 0.5243 0.6016 A4 > A1 > A3 > A2

0.9 0.5886 0.4284 0.5261 0.6199 A4 > A1 > A3 > A2

1.0 0.6065 0.4184 0.5278 0.6383 A4 > A1 > A3 > A2

Table 16.  Scores and rankings of alternatives for different values of γ.

 

Fig. 7.  Ranking of alternatives with different γ values.
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Replacing natural language with PFSs in Table 1, the experimental results are shown in Table 18. The calculated 
weight of the decision-makers was ϖ = (0.64, 0.27, 0.09). The weight of the evaluation index was w = (0.13, 0.16, 
0.06, 0.07, 0.15, 0.06, 0.15, 0.16, 0.06). The PIS and NIS of the comparative experiment 1 were:

	
r+ =

{
(0.28, 0.69, 0.66), (0.13, 0.84, 0.52), (0.19, 0.77, 0.60), (0.13, 0.84, 0.52), (0.13, 0.84, 0.52),

(0.92, 0.14, 0.37), (0.76, 0.28, 0.59), (0.92, 0.14, 0.37), (0.86, 0.20, 0.46)

}

	
r− =

{
(0.60, 0.37, 0.71), (0.45, 0.47, 0.76), (0.47, 0.45, 0.76), (0.49, 0.41, 0.77), (0.45, 0.46, 0.76),

(0.59, 0.37, 0.72), (0.49, 0.41, 0.77), (0.41, 0.52, 0.75), (0.35, 0.60, 0.72)

}

The Euclidean distance formula is used to calculate the distance between each solution and the positive and 
negative ideal solutions30. The calculated weighted distance were D +  = {0.2162, 0.3065, 0.3612, 0.3049}, 
D- = {0.3396, 0.2433, 0.1813, 0.3136}. The weighted gray correlation was GRD +  = {0.0855, 0.0696, 0.0538, 
0.0778}, GRD- = {0.0601, 0.0686, 0.1014, 0.0615}. The comparative experiment alternative had a score of 
R = {0.5119, 0.4695, 0.4938, 0.4753}. The ranking of the alternatives was A1 > A3 > A4 > A2, with the optimal 
solution under the Pythagorean fuzzy environment in Comparative Experiment 1 identified as A1.

This study Comparative experiment Comparative experiment 2

ϖ (0.44, 0.32, 0.24) (0.64, 0.27, 0.09) (0.80, 0.12, 0.08)

w (0.07, 0.17, 0.06, 0.08, 0.16, 0.16, 0.07, 0.06, 0.17) (0.13, 0.16, 0.06, 0.07, 0.15, 0.06, 0.15, 0.16, 0.06) (0.15, 0.15, 0.06, 0.07, 0.15, 0.06, 0.15, 0.15, 0.06)

D+, D− {0.2846, 0.4156, 0.3374, 0.2722},
{0.4386, 0.2990, 0.3772, 0.4804}

{0.2162, 0.3065, 0.3612, 0.3049},
{0.3396, 0.2433, 0.1813, 0.3136}

{0.0706, 0.1103, 0.1057, 0.0811},
{0.1181, 0.0785, 0.0831, 0.1076}

GRD+,GRD− {0.0849, 0.0716, 0.0768, 0.0798},
{0.0635, 0.0770, 0.0801, 0.0665}

{0.0855, 0.0696, 0.0538, 0.0778},
{0.0601, 0.0686, 0.1014, 0.0615}

{0.0857, 0.0708, 0.0736, 0.0746},
{0.0648, 0.0791, 0.0855, 0.0694}

R {0.5172, 0.4683, 0.5192, 0.5465} {0.5119, 0.4695, 0.4938, 0.4753} {0.5286, 0.4717, 0.4888, 0.5261}

Best solution A4 A1 A1

Table 18.  Experiment comparison analysis table.

 

Linguistic terms PFNs TFNs

Perfect (VI) (0.95,0.10,0.30) (0.750,0.875,1.000)

Very good (VG) (0.80,0.25,0.55) (0.625,0.750,0.875)

Good (G) (0.65,0.35,0.70) (0.500,0.625,0.750)

Medium (M) (0.50,0.40,0.77) (0.375,0.500,0.625)

Medium bad (MB) (0.35,0.60,0.72) (0.250,0.375,0.500)

Bad (B) (0.20,0.75,0.63) (0.125,0.250,0.375)

Very bad (VB) (0.05,0.90,0.43) (0.000,0.125,0.250)

Table 17.  Conversion rules between natural language.

 

Fig. 8.  Weighted Spearman correlation coefficients for different γ values.
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	2.	� Comparative Experiment 2: TFS

Replacing natural language with TFSs in Table 1, the experimental results are shown in Table 18. The calculated 
weight of decision-makers was ϖ = (0.80, 0.12, 0.08), and for evaluation index was w = (0.15, 0.15, 0.06, 0.07, 
0.15, 0.06, 0.15, 0.15, 0.06). The positive and negative ideal solutions for the comparative experiment 2 were:

	

r+ =




(0.067, 0.108, 0.150), (0.008, 0.050, 0.092), (0.040, 0.082, 0.124), (0.008, 0.050, 0.092),

(0.008, 0.050, 0.092), (0.242, 0.283, 0.325), (0.200, 0.242, 0.283), (0.242, 0.283, 0.325),

(0.250, 0.292, 0.333)




	

r− =





(0.158, 0.200, 0.242), (0.113, 0.155, 0.196), (0.120, 0.162, 0.203), (0.121, 0.163, 0.205),

(0.117, 0.158, 0.200), (0.137, 0.179, 0.220), (0.121, 0.163, 0.205), (0.092, 0.133, 0.175),

(0.083, 0.125, 0.167)




In Comparative Experiment 2, the Euclidean distance formula was similarly used. The weighted distances were 
calculated as D +  = {0.0706, 0.1103, 0.1057, 0.0811}, D- = {0.1181, 0.0785, 0.0831, 0.1076}. The weighted gray 
relational correlation was GRD +  = {0.0857, 0.0708, 0.0736, 0.0746}, GRD- = {0.0648, 0.0791, 0.0855, 0.0694}. 
The scores for the alternative solutions were R = {0.5286, 0.4717, 0.4888, 0.5261}. The ranking of the alternatives 
was A1 > A4 > A3 > A2, with the optimal solution under the triangular fuzzy environment in Comparative 
Experiment 2 identified as A1.

From the results (Table 18 and Fig. 9), the ranking orders vary for each experiment, with the optimal solution 
under the interval-valued Pythagorean fuzzy environment being A4, while A1 is optimal in both comparative 
experiments. There are deviations in the decision results between the Pythagorean fuzzy and triangular fuzzy 
environments because indicators such as construction flexibility and safety conditions in mining method 
optimization decisions often rely heavily on decision-makers subjective assessments and experience, leading to 
high fuzziness and subjectivity. The use of IVPFS helps mitigate excessive loss of important linguistic information 
during conversion and better captures uncertain information. Therefore, handling uncertain information in 
mining method optimization with IVPFS offers significant advantages, resulting in more reliable decision 
outcomes.

Limitations and future work
In this study, the IVPFS effectively handled uncertainty in mining method decision-making. Additionally, 
entropy measurement and EWM provided objective weight allocation for decisions, making this approach 
applicable to other fields. However, this method still has limitations. Decision-making inherently involves 
trade-offs, balancing economic, safety, and technological factors to maximize mining enterprise benefits 
while considering environmental impacts to meet green mining standards. The fuzzy sets used only consider 
positive impacts and neglect negative impacts. Reviewing relevant literature41–43,63–65, bipolar complex fuzzy 
sets effectively address this limitation by extending fuzzy set definitions from [0,1] to [− 1,0] × [0,1], offering 
a more comprehensive view of polarity issues40. Bipolar complex fuzzy sets have been successfully applied in 
medical42,60–62 and energy sectors43 and hold potential for mining method decision-making, which is a focus of 
future research considerations.

Conclusion
The selection of mining methods is fundamental to the sustainable development of mining enterprises. Due to 
the diverse geological conditions and ore body characteristics, it is necessary to comprehensively evaluate the 
suitability of mining methods. This study established an integrated multi-criteria decision-making model in the 
interval-valued Pythagorean fuzzy environment for the optimal selection of mining methods under complex 
conditions. First, a comprehensive evaluation index system was established, using IVPFS to express indicator 

Fig. 9.  Experimental comparison analysis chart.
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information, which better captures uncertainty. Second, the entropy measure and EWM were combined to 
determine the importance of decision-makers and indicators, avoiding errors caused by subjectivity and different 
experience values. This approach makes the decision-making process more realistic. Third, an integrated ranking 
considering distance and similarity was adopted, avoiding the defects of a single model.

Finally, the comprehensive model was applied to the decision-making of mining methods for fragmented 
ore bodies. The final scores of the four alternatives in the interval-valued Pythagorean fuzzy environment were 
0.5172, 0.4683, 0.5192, and 0.5465, with the optimal solution being A4. In the traditional fuzzy sets environment 
(PFS and TFS), the optimal solution is A1, with scores of 0.5119 and 0.5286, respectively. The results show that 
traditional fuzzy sets perform poorly in the optimal selection of mining methods under complex environmental 
conditions. IVPFS are superior in capturing fuzzy information. Additionally, the point-pillar upward horizontal 
layered filling mining method proves to be better in practical applications than other alternatives, demonstrating 
the model’s effectiveness. Moreover, sensitivity analysis was conducted by setting preference factors, showing 
that the stability of the dual-measure integrated ranking is superior to the use of a single-measure method. In 
summary, this study provides a scientific and reasonable solution for multi-criteria decision-making problems 
and offers guidance and reference significance for the selection of mining schemes under complex conditions.

In the future, more advanced weight determination methods and the development of decision support 
systems can be explored to enhance the robustness of decisions. Integrating methods such as bipolar complex 
fuzzy sets can provide a more comprehensive perspective on polarity problems, potentially improving decision 
outcomes. In addition, comparing and analyzing with other fuzzy models can provide a deeper understanding 
of the advantages and disadvantages of different methods, which can contribute to more effective and sustainable 
mining practices.

Data availability

The corresponding author provides data that support the findings of this study upon 
reasonable request.
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