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We have successfully proposed and demonstrated a clustering method that overcomes the “needle-
in-a-haystack problem” (finding minuscule important regions from massive spectral image data sets). 
The needle-in-a-haystack problem is of central importance in the characterization of materials since 
in bulk materials, the properties of a very tiny region often dominate the entire function. To solve 
this problem, we propose that rational partitioning of the spectral feature space in which spectra are 
distributed, or defining of the decision boundaries for clustering, can be performed by focusing on 
the discrimination limit defined by the measurement noise and partitioning the space at intervals of 
this limit. We verified the proposed method, applied it to actual measurement data, and succeeded in 
detecting tiny (~ 0.5%) important regions that were difficult for human researchers and other machine 
learning methods to detect in discovering unknown phases. The ability to detect these crucial regions 
helps in understanding materials and designing more functional materials.

In bulk materials, the properties of a very tiny region often dominate the entire function. Examples of functionally 
essential tiny regions include the following:

	1.	� Metal accumulation on the surface of catalytic materials degrades the performance1.
	2.	� Defects in battery electrodes lead to efficiency loss2,3.
	3.	� Nanoscale impurities embedded within the structure of solar cell materials lead to reduced solar cell perfor-

mance4.

Understanding the role of ultramicro regions is essential to understanding materials and designing more 
functional materials. However, these regions are only present in extremely small regions compared to the overall 
size of the material, and where they are located is not known. Therefore, developing nanoscale or submicron-
scale measurements over the entire material is essential, i.e., a characterization method that can simultaneously 
achieve a large field of view and a high resolution, and a data analysis method that can find a small number of 
phases in the measurement data without overlooking them.

The development of multimodal measurement techniques with a large field of view and a high resolution has 
been actively studied in various fields. Spectroscopic imaging measurement techniques such as hyperspectral 
imaging5, infrared spectroscopic imaging6,7, Raman imaging8–10, and X-ray absorption spectroscopic 
imaging11–16 enable the acquisition of spectra reflecting chemical and electronic states at each point in space. In 
particular, X-ray absorption spectroscopic imaging is widely used for analyzing the reaction process of battery 
materials because the obtained spectra reflect the valence and local structure of the absorbing elements. Our 
newly developed gigapixel X-ray microscope (G-XRM) can measure spectra with a submicron spatial resolution 
in a centimeter-order field of view. As a result, approximately one billion spectra can be obtained in one 
measurement. However, data analysis methods for finding minuscule important regions from massive spectral 
image data sets have yet to be studied. Despite the development of measurement techniques, there is currently 
no practical solution to the “needle-in-a-haystack problem” of data analysis (finding tiny regions compared to 
the entire enormous data set).

There are two main approaches to spectral data analysis by machine learning techniques: supervised 
learning17–21 and unsupervised learning22–29. In supervised learning, some methods use predefined standard 
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spectra and perform linear regression for each point in space17,18. Moreover, methods that use random forest19 
or neural networks20,21 to infer specific physical properties have been developed. However, linear regression 
is impossible to use when dealing with phases whose spectra are unknown. In scenarios where the goal is to 
visualize the spatial distribution of a physical quantity obtained by spectral analysis, such as inferring the magnetic 
moment from an X-ray magnetic circular dichroism (XMCD) spectrum, inferring a specific physical quantity 
from the spectrum is suitable. However, this method cannot be applied when the intrinsic physical properties 
of minority phases governing the bulk properties are unknown. In contrast, unsupervised learning methods use 
only measured data and classify regions considering the spectral similarity for each measured spatial point. The 
researcher then analyzes these classified regions to understand the material. In contrast to supervised methods, 
regions can be identified even when the spectra of phases contained throughout the material are unknown 
in advance.  Unsupervised classification methods can be broadly divided into non-density-based methods 
and density-based methods. Non-density-based methods can be further divided into centroid-based methods 
represented by the K-means method22–25, neural networks26,27, and hierarchical clustering28. The K-means 
method is an unsupervised classification method that performs with a given number of clusters and is known for 
its high computational efficiency. In recent years, methods that optimize computational efficiency further have 
been developed25, making it easier to apply to large datasets. Additionally, there are some research to develop 
methods that can accurately determine the number of clusters29,30, which has been a limitation of the traditional 
K-means method. However, these methods tend to overlook minority phases because they minimize the sum of 
intra-cluster variances as a loss function, where the contribution of the minority phase is insignificant. Neural 
network-based methods perform dimensionality reduction to obtain effective latent representation of input data, 
then use typical clustering method in the latent space. However, the number of data points remains same even 
if the dimension is reduced, therefore the same problem of K-means method arises. In contrast, hierarchical 
clustering calculates the distance between each data point and classifies them based on a certain threshold. This 
method overcomes the drawback of centroid-based methods in identifying minority phases, as it calculates the 
distances between all points. However, it requires O

(
N 2

)
 computations, which makes it impossible to apply 

to large datasets (more than 1 M pixels). In density-based clustering methods, DBSCAN31–35 and MeanShift36 
are considered the most representative approaches. These methods classify data based on density, which 
eliminates the need to designate the number of clusters and allows for accurate classification even when there is 
significant bias within the clusters. While both methods typically have a computational complexity of O

(
N 2

)
, recent advancements in computational efficiency and the use of appropriate approximations of DBSCAN have 
reduced this complexity to O (N logN)or O

(
N 2

)
with small constant33–35. However, a common drawback of 

these methods is the need to specify the non-trivial hyperparameter of density threshold, which greatly affects 
the results depending on its adjustment. As discussed above, it is difficult to address the “needle-in-a-haystack 
problem” by using current machine learning methods.

In this study, we focused on the low-dimensional spectral feature space in which all possible X-ray absorption 
spectroscopy (XAS) spectra are distributed. Previous studies have demonstrated that the valence and coordination 
state of an absorbing atom can be estimated by carefully selecting hand-crafted features based on the researcher’s 
expertise37. Thus, considering a spectrum as a point in high-dimensional data space with dimensions of the 
measured energy points or as a point in infinite-dimensional functional space, the possible spectrum would 
be distributed in a thin membrane-like low-dimensional manifold (spectral feature space) rather than densely 
filling the high-dimensional data space. This intrinsic low dimensionality of high-dimensional natural data, 
called the manifold hypothesis38, is believed to hold not only for scientific measurement data such as XAS spectra 
but also for image data such as handwritten numbers39,40 and crystal structures41. As shown in Fig. 1, this paper 
proposes an unsupervised classification method by rationally partitioning the spectral feature space in high-
dimensional data space. Because of partitioning the spectral feature space in advance, even minority phases can 
be detected. To realize rational partitioning, we considered the measurement noise. If there is no measurement 
noise, then even slightly different spectra should be classified into different clusters. However, noise exists in 
actual measurements, which means that the discrimination limit can be determined by the amount of noise. 
Therefore, rational partitioning of the spectral feature space is realized by performing partitioning at intervals 
of approximately the discrimination limit. In addition, to ensure robustness against irregular noise in actual 
measurements, such as sample thickness variations and sample drift during measurement, information on the 
spatial correlation, where adjacent points have similar chemical states, is incorporated.

First, we applied the developed method to synthetic data to verify that it solves the “needle-in-a-haystack 
problem,” i.e., analyzes entire materials without missing a tiny minor phase. The study was further validated 
using materials with heterogeneous chemical state distributions. Actual materials such as iron ore sinter42,43 were 
used in the study. Iron ore sinter, a crucial raw material in iron making, is produced by liquid-phase sintering of 
iron ore with limestone and coke. Due to its natural origin, it has an inherently heterogeneous internal structure 
from micrometer to millimeter scale and a mixture of different chemical phases. The minority phases within the 
structure are responsible for the degradation of the reduction performance in a blast furnace44. However, the 
details of this structure still need to be clarified. Therefore, extracting intrinsically important regions from a large 
spectral data set that measures a large area with a high resolution is essential to understanding the ironmaking 
process and making it more efficient. In this study, approximately 1  billion spectra measured by G-XRM 
were analyzed by the proposed method, and phases present in tiny amounts, which have been overlooked in 
conventional analysis, were successfully found for the first time.

Results
Evaluation of the spectral feature space
In this paper, XAS spectra are considered as vectors in high-dimensional data space, which is Euclidean space 
with dimensions corresponding to the measured energy points. In XAS spectrum, the constant sum added 
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to the spectrum represents the background, such as the absorption of nontarget elements, and the constant 
multiplication is proportional to the density of the absorbing element. Since this paper aims to classify spectra 
by the chemical state, we standardized the spectra to ensure invariance to the chemical state. In terms of the 
similarity between two spectra, this standardization is equivalent to calculating the Pearson similarity between 
spectra before standardization, and the Pearson similarity has already been reported to be a good similarity 
metric for XAS spectra45.

Taking the Fe-K edge XAS spectra as an example, all XAS spectra have similar spectral shapes, with a sharp 
step-like increase at the Fe-K edge energy and a wavy shape afterward. This similar spectral shape demonstrates 
that the XAS spectra are not densely distributed in high-dimensional data space but on a low-dimensional 
spectral feature space, as shown in Fig. 1 (upper left). We verify the low dimensionality of the XAS spectral 
feature space with a standard spectral data set. The intrinsic dimensionality for the Fe-K edge (178 energy 
points) 61 XAS data set from the NIMS MDR XAFS database46 is estimated by the Fukunaga-Olsen method47 to 
be 3-dimensional which is much smaller than the dimensionality of the data space.

Partitioning of the spectral feature space
Solving a classification problem is equivalent to partitioning the spectral feature space or defining decision 
boundaries. In physical measurements, noise must be present, and its amount can be estimated based on the 
measurement conditions. If the distance between two spectra is less than the magnitude of the measurement noise, 
then they are indistinguishable. Therefore, partitioning the spectral feature space into intervals corresponding to 
the measurement noise is reasonable. As shown in Fig. 2, this partitioning is approximately realized by arranging 
the Voronoi diagram site points at intervals of the measurement noise under the constraint of all possible 
XAS spectra and performing Voronoi tessellation48. From an implementation standpoint, clustering based on 
Voronoi tessellation is realized by performing a nearest neighbor search for each measured spectrum, with the 
Voronoi diagram site points as the search targets, which means that each pixel can be handled independently, 
therefore clustering can be performed with an O (N) computational complexity. Note that although the data has 
dimensionality of more than 150, the ‘curse of dimensionality’49 is not a problem due to the low dimensionality 
of the spectral feature space (approximately 3-dimensional).

We assumed that a linear combination of standard spectral data sets can represent spectra in the spectral 
feature space that consists of all possible XAS spectra. Therefore, we used the linear combination of spectra in 

Fig. 1.  Concept of the proposed clustering method. (Upper left) A spectrum corresponds to a point in the 
low-dimensional space (spectral feature space). (Upper right) For measurement noise, spatial spread in the 
space is generated and rational partitioning of the space is dividing at interval of the spread. (Lower) Each pixel 
has a spectrum which corresponds to a point in the spectral feature space. Because of partitioning the spectral 
feature space in advance, even minority phases can be detected.
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the data set as candidates for Voronoi site points. We then calculated the spacing of the Voronoi site points by 
using the metric determined by the measurement noise, which is formally described below. As discussed, the 
spectra measured for identical chemical state spread out to the distance corresponding to the measurement noise 
in the spectral feature space. Therefore, we reduced the number of candidates for site points so that the size of the 
partitioning area was the same as the noise. The following describes the metric of distances between candidate 
site points for Voronoi tessellation that considers measurement noise. For the candidate site point spectra S1 and 
S2, let us consider the Voronoi tessellation of the spectral feature space based on these two points: the Voronoi 
region containing S1 is V1, and the region containing S2 is V2. If the distance between these two site points is 
smaller than the spread of the noise in the spectral feature space, then spectrum S1g generated by adding the 
measurement noise to spectrum S1 is included in V2. In situations where the classification is based on Voronoi 
tessellation, this results in a misclassification, and the probability can be thought of as the similarity between the 
site points. The similarity of the two site points can be described by Eq. (1), which shows the misclassification 
rate when spectra are generated by adding noise to spectra S1 and S2 and classified by Voronoi tessellation.

	
serror1 (S1, S2) =

(∫

d(S1, Sg)>d(S2, Sg)
p1 (Sg) dSg +

∫

d(S1, Sg)>d(S2, Sg)
p2 (Sg) dSg

)
/2� (1)

where d (Sa, Sb) is the Euclidean distance after standardization between the two spectra Sa and Sb. p1 (Sg) 
represents the probability that spectrum S1 plus noise determined from the measurement conditions will 
produce spectrum Sg. Similarly, p2 (Sg) represents the probability that spectrum Sg is generated from 
spectrum S2. Hierarchical clustering28 was performed by quantifying the measurement noise, approximating 
this equation as described in the Methods section, and calculating the similarity between all candidate site 
points to reduce the number of site points that could be reasonably divided. Sixty-one standard spectra were 
obtained from the XAS database, and 5967 candidate site points were generated by linear combination of the 
database spectra as described in the Methods section. A similarity matrix of candidate points was calculated by 
approximating Eq. (1), and 1528 sites were selected through reduction based on hierarchical clustering with a 
threshold set at 0.0001, which means the misclassification probability is approximately 0.01%.

To confirm that the Voronoi site points are densely distributed in the spectral feature space, a synthetic 
spectrum was created by randomly selecting N  spectra from the standard spectral data set and linearly 
combining them by random weights. The maximum values for the similarity between the synthetic spectra and 
the Voronoi site points were calculated by using Eq. (1). Since we used linear combination of 3 (= estimated 
intrinsic dimensionality of the spectral feature space) components for generating the candidate of Voronoi site 
points, we checked the denseness by spectra generated by more than 3 components: N = 3 to 5, 10,000 times 
in each N , 30,000 times in total. Supplementary Fig. 1 shows the distribution of serror values where blue color 
range is in the threshold, and red color range is over. The rate of over the threshold is approximately 2%. This 
result confirms that the site points of Voronoi tessellation are mostly, although not perfectly, realized in a dense 
distribution, which means the ‘curse of dimensionality’ does not arise.

Verification with synthetic data and improvement of noise redundancy using spatial 
correlation
The ability of the proposed method to classify minority spectra (< 1%) without overlooking them was verified 
using synthetic data. Figure 3(a) shows a XAS data set for validating the classification of a minority spectrum 

Fig. 2.  Realizing rational partitioning. By arranging Voronoi diagram site points at intervals of measurement 
noise and performing Voronoi tessellation, it can be approximately realized to divide the spectral feature space 
at the interval.
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occupying 1/1600 of total; 400 × 400 pixels are filled with Fe2O3 spectrum in all regions except for the central 
10 × 10 pixels containing Fe3O4 spectrum which is obtained by measuring standard samples (very low noise 
measurement). It is a common situation for minority phases to cohere in one area in real systems, rather 
than being scattered. Noise was added to all spectra, as described in the Methods section. Classification was 
performed on these data using the proposed method. Figure 3(b) shows the case where the amount of added 
noise is equivalent to that used for site point reduction, Fig. 3(c) shows the case where the amount of added noise 
is high K = 2. When more noise is added than that used for site points reduction, the number of classes becomes 
11 with an error rate of 1.9%, which is significantly different from the correct number of classes of 2. This occurs 
because the number of site points is determined by allowing a misclassification rate of 0.01%, which would result 
in approximately ten misclassifications when applied to around 100,000 spectra. Furthermore, the grand-truth 
spectra of the clusters only partially match the site points.

To solve this problem, we integrated the spatial information by assuming that adjacent points have similar 
chemical states. We determined the minimum size for the spatial region of each cluster, and if the size was not 
met, then the region was considered misclassified, and the points in that region were complemented based 
on the surrounding information. The details are described in the supplementary materials. We used Ksize
=5 and Pnum=23 for the parameters of the method in the following analysis. Figure  4 shows the results of 
using this method in the synthetic data analysis. The data, which were classified into 11 clusters when only the 
classification was performed, were successfully classified into 2 clusters by integrating spatial information and 
the data. Supplementary Fig. 3 and Supplementary Table 1 show the image of the results of our proposed method 
and statistical analysis, along with comparisons to the K-means method as shown before and the DBSCAN 
method, which is considered the state of the ate method for identifying minority phases due to its density-based 
approach and relatively low computational complexity ( O (N logN)). In the K-means method, it cannot be 
said that the method correctly classifies the data since it recognizes the majority phase as two separate phases 

Fig. 4.  Result of improvement of noise redundancy using spatial correlation. First, remove the isolation points, 
then complement the points.

 

Fig. 3.  Result of synthetic data analysis. (a) Schematic diagram of the prepared of synthetic data. 400 × 400 
pixels are filled with Fe2O3 spectrum in all regions except for the central 10 × 10 pixels containing Fe3O4 
spectrum. (b) Clustering result by the proposed method where the amount of added noise is equivalent to that 
used for site points reduction. (c) Clustering result where the amount of the noise is high.
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rather than one due to the small contribution of minority spectra to the loss function, as described above. The 
DBSCAN method, on the other hand, roughly classifies the data correctly, however, there remains the issue of 
the minority phases being divided into several phases. The next section demonstrates that when applied to real 
data, it leads to fatal misclassification. Additionally, this method is required non-trivial hyperparameter tuning. 
For the synthetic data used in this study, we obtained what we considered to be the optimal parameters after 
approximately ten trials. However, performing such extensive tuning on large-scale real materials data, where 
the correct parameters are completely unknown, is not realistic.

Refer to Supplementary Fig. 4 for the number of classes and misclassification rate dependent on the amount of 
added noise. These results show that the proposed method including the spatial information realizes a high noise 
tolerance. The minimal size of the detection limit is theoretically determined by Ksize. The rates of theoretical 
detection limits reached when varying the amount of noise are shown in Supplementary Fig. 5. The amount of 
noise was approximately 0.04 in the experimental data discussed later. Therefore, this method is confirmed to be 
able to detect up to the theoretical limit in practical conditions.

In summary, clustering that overcomes the needle-in-a-haystack problem can be realized by the rational 
partitioning of low-dimensional spectrum feature space by accounting for measurement noise. Furthermore, 
the integration of spatial information ensures robustness against the measurement noise. When the proposed 
method was used for synthetic data, the minority phase could be detected even with more noise than expected.

Application to large-scale measurement data of actual materials
We adapted the proposed method to classify G-XRM measurement data of iron ore sinter to understand the 
critical microstructure. As mentioned before, extracting small, important regions from massive spectral data sets 
is essential to understand and improve the ironmaking process.

We performed G-XRM measurements at the Fe K-edge of sintered ore provided by a steel mill. The measurement 
area was 0.8 cm x 1.2 cm, and each pixel was approximately 500 nm x 500 nm, resulting in 450 million pixels. 
The analysis with the proposed method could be performed in approximately 20 h by AMD Ryzen Threadripper 
3990 × 64-Core Processor. The analysis resulted in a total of 57 clusters. Careful examination of the mean spectra 
of each cluster by human experts confirmed flattening of the peak areas that occurs when the sample thickness 
is not appropriate. Furthermore, some of the spectra could be described by a linear combination of two other 
spectra. Therefore, the spectra with flattened peaks were replaced with the proper cluster, and the spectra that 
could be considered a linear combination of two other spectra were detected and removed. Then, component 
ratios of the removed points were calculated by performing a nonnegative linear regression using their basis 
spectra. Finally, the number of components was determined to be 5. Currently, the measured data classification 
for actual materials is partially automated since each spectrum is validated based on expert knowledge. However, 
automatically obtaining 57 different components from 450  M spectra based on the measurement noise and 
organizing the classification results based on researchers’ objectives and domain knowledge is one possible 
solution to the “needle-in-a-haystack problem”. The results are shown in Fig. 5, where the colors correspond to 
clusters representing different chemical states, and the shading shows the component ratios and iron density. 
The microregion shown in yellow in the figure, which accounts for only 0.5% of the total, is the most exciting 
classification result. From careful inspection to the component spectrum, the yellow region was suggested as 

Fig. 5.  Clustering result of the large-scale measurement data of an actual material and results of SEM-EDX 
measurements. The colors correspond to clusters representing different chemical states, and the shading shows 
the component ratios and iron density in the clustering result image. SEM-EDX measurements show that the 
yellow phase is Mg-rich phase.
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magnesium ferrite phase. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) 
measurement showed a specific concentration of Mg surrounded by a high-Fe layer at the yellow region. This 
feature corresponds to the magnesioferrite layer around unmolten dolomite or serpentine50 and the adhesive 
layer surrounding iron ore relicts51. It is worth emphasizing that the newly discovered component was derived 
only by the spectral analysis. As shown in the application to the practical data, the proposed method based on 
the division of the spectral feature space has successfully discovered a tiny phase out of large-scale (~ 1G pixel) 
measurement data, without pre-defining the spectral feature or region of interest. Additionally, Supplemental 
Fig. 6 shows comparing results with existing methods, K-means and DBSCAN, on the cropped data including 
this intriguing yellow region.

Discussion
In this study, we developed a clustering method that overcomes the “needle-in-a-haystack problem” by focusing 
on the spectral feature space of XAS spectra and partitioning the space at intervals of the discrimination limit 
determined by the measurement noise. We assumed that all the possible spectra can be considered to represent 
the linear combinations of spectra in the database. Using this assumption and considering low dimensionality 
of the spectral feature space, we can enumerate all the possible spectra that can be discriminated. As a result, we 
acquired a set of approximately a thousand spectra and then partitioned the spectral feature space for clustering 
by Voronoi tessellation by using these spectra as the site points. Here, we discuss the potential for application 
to other measurement data with the same data structure and measurement optimization considering the 
discrimination limit.

First, we discuss the potential limitations and possible future works.

	1.	� The proposed method can be used when the spectral feature space is low-dimensional, and its basis spec-
tra are known. Even with other measurement methods, the latent spectral feature space is considered a 
low-dimensional manifold based on the manifold hypothesis, and methods for automatically determining 
the manifold from data have been proposed by using neural networks52,53. Combining these methods enables 
classification to be performed using only measurement data and can be applied for measurement methods 
for which an extensive database is available.

	2.	� In the proposed method, to ensure robustness against noise, clusters that are not spatially localized are con-
sidered as misclassifications. As a result, it is not possible to achieve accurate classification when the chemical 
state changes on a scale comparable to the pixel size. If, instead of using spatial information, we determine 
whether each cluster’s spectrum has a high level of noise, it might be possible to achieve classification at the 
single-pixel level.

Next, we discuss the design of the optimal measurement experiment. In the present method, the number of 
candidates for Voronoi site points is reduced by focusing on the discrimination limit and quantifying it by 
Eq. (1). Conversely, suppose that the pairs of spectra that need to be distinguished are predetermined. In this 
case, combined with active learning54,55, this method can be applied to automated stopping of the measurement 
when the discrimination limit reaches the difference between the spectra of the pairs.

In conclusion, we proposed rational partitioning of spectral feature space by accounting for measurement 
noise for effective clustering of massive spectral image data. By arranging the Voronoi site points at intervals of 
approximately the measurement noise, we achieved a classification in which the spectra within the same cluster 
can be regarded as the same spectrum. Thus, the probability of misclassification due to measurement noise is 
low. We applied this method to both synthetic and measured data of X-ray absorption spectroscopic imaging 
and confirmed that this method could solve the needle-in-a-haystack problem. We used the database for 
understanding the spectral feature space, however combining latent representation methods makes it possible 
to applied to other measurement methods which have no appropriate database. Additionally, our proposed 
metric based on the measurement noise is important not only for clustering problem but also measurement 
optimization.

Methods
Sample preparation
Iron ore sinter used in this study is provided by a steel mill and was studied as ‘Sinter5 in Ref56. The sample was 
resin embedded, polished to 30- µ m-thick, and then lifted off from the glass slide to prepare a stand-alone slice 
for transmission mode X-ray observation.

Experiments
G-XRM measurements of iron ore sinter were performed at beamline NW2A of the Photon Factory 
Advanced Ring (PF-AR) of the High Energy Accelerator Research Organization (KEK)57. Figure 6 shows the 
measurement setup for G-XRM. X-rays generated by the undulator were monochromatized by a double crystal 
monochromator and irradiated on the sample. The X-rays transmitted from the sample were converted to visible 
light by a scintillator, magnified by a 10x lens, and detected by an sCMOS camera (Hamamatsu Photonics 
ORCA-Quest). The X-ray energy was scanned to measure the two-dimensional XAS data. The sCMOS camera 
had 2304 × 4096 pixels with an effective pixel size of 0.46 µ m. The exposure time at each energy point was set 
to 1.5 s, and 178 energy points were measured from 7009.2 eV to 7321.2 eV around the Fe-K absorption edge. 
Including the moving time of the double crystal monochromator, the measurement time for one field of view 
was approximately 10 min. We also measured the reference images at each energy points, then calculated an 
absorbance of each pixel by using Eq. (2).
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µt = ln

(
cref
ctrans

)
, � (2)

where cref and ctrans represents the counts of reference and transmitted X-rays, respectively.
By scanning the sample position and measuring for a total of 56 fields of view, the XAS spectrum of each 

point in space in an area of 0.8 cm × 1.2 cm was measured. We used the method described in Ref58 to correct the 
energy shift, normalized the spectra by conventional method59, and stitched the images of each measurement by 
the ImageJ stitching plugin60. The number of pixels after stitching was approximately 450 M pixels.

Quantification of measurement noise
To measure the signal to noise ratio of the sCMOS camera, we repeatedly performed measurements with the 
same field of view and exposure time and then estimated the standard deviation for the number of counts. 
Assuming that the noise is proportional to the square root of the number of counts and background noise 
exists, the relationship between the standard deviation σ  and the number of counts N  can be represented 
as σ =

√
A× N − B with A and B as parameters. We performed least square fitting; the results were 

A = 9.3131 and B = 63.003. By considering the propagation of uncertainty61, the standard deviation of the 
absorbance calculated by Eq. (2) was estimated as shown in Eq. (3).

	
σµt =

√
A× cref−B

c2ref
+ A× ctrans−B

c2trans
� (3)

Since we perform conventional normalization59 after calculating an absorbance by Eq. (2), we need to modify 
this equation for calculating the standard deviation of the normalized absorbance. As shown in Supplemental 
Fig.  7, normalization processes are two steps: subtract the pre-edge line and divide by the post-edge line. 
We defined µ tlow as mean absorbance value of the pre-edge region, and µ thigh as mean absorbance value 
of the post-edge region. For calculating the standard deviation of the normalized absorbance, reference 
counts value, µ tlow, µ thigh and normalized absorbance value are needed. By using these values, the standard 
deviation of the normalized absorbance can be calculated by the following steps : First, calculating ctrans by 
crefexp {−µ tnormalize (µ thigh − µ tlow)− µ tlow}, where µ tnormalize is the normalized absorbance value. Then, 
the standard deviation of the normalized absorbance can be obtained by dividing the σ µ t by µ thigh − µ tlow 
corresponding to the second step of normalization.

In the G-XRM measurement, the measurement noise is different for each pixel because each pixel has a 
different cref, µ tlow and µ thigh. However, we used the average of these values to reduce the number of site 
points, so that all pixels were classified using the same Voronoi tessellation. From our G-XRM experimental 
conditions, 

(
cref, µtlow, µthigh

)
= (2.7× 104, 0.36, 1.56).

Approximation of Eq. (1)
This section describes the approximation method for the first term of Eq. (1) as shown in Eq. (4). The second 
term can be calculated in the same way.

Fig. 6.  Experimental setup of G-XRM. X-ray absorption spectrum of each pixel in the space is obtained by 
taking the reference and transmitted light at each X-ray energy.
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serror1 (S1, S2) =

∫
d(S1, Sg)>d(S2, Sg)p1 (Sg) dSg � (4)

where d (Sa,Sb) is the Euclidean distance calculated after standardizing spectra Sa and Sb, and p1 (Sg) 
is the probability that spectrum Sg is generated by adding measurement noise to spectrum S1. Using the 
definition of the Pearson similarity, we obtain d (S1, Sg) > d(S2, Sg) ⇔ spearson (S1, Sg) < spearson(S2, Sg)
, where spearson(Sa, Sb) is the Pearson similarity between Sa and Sb. Since Eq. (4) represents the probability 
that spectrum Sg generated by adding noise to spectrum S1 satisfies spearson (S1, Sg) < spearson(S2, Sg)
, Eq.  (4) can be calculated based on the probability distribution of spearson (S2, Sg)− spearson (S1, Sg) and 
the cumulative probability that it is greater than 0. Given that the absorbance at each energy point follows a 
normal distribution, the probability distribution of each element in Sg can be represented as Sgi ∼ N

(
µgi, σ

2
gi
)

. Assuming that the absorbance at each energy point follows an independent normal distribution, the required 
mean value and norm for standardizing Sg can be approximated as constant values µ g and Ng. In this case, the 
probability distribution of spearson (S2, Sg)− spearson (S1, Sg) can be written as in Eq. (5).

	
spearson (S2, Sg)− spearson (S1, Sg) ∼=

∑
i

(S ′
2i − S ′

1i)

Ng
Sgi −

∑
i

(S ′
2i − S ′

1i)
µg

Ng
∼ N(µ, σ2)� (5)

where

	
µ =

∑
i

(S ′
2i − S ′

1i)

Ng
µ gi −

∑
i
(S ′

2i − S ′
1i)

µ g

Ng
, σ 2 =

∑
i

(
(S ′

2i − S ′
1i)

Ng

)2

σ 2
gi.

As a result, Eq. (4) can be approximated by the cumulative probability of spearson (S2, Sg)− spearson (S1, Sg) 
which follows a normal distribution.

Generation of the candidate site points for Voronoi tessellation
The threshold of similarity calculated by Eq. (1) is set to 0.0001 for the reduction of site points; therefore, the 
candidate points are generated such that the similarity between the points is larger than this threshold over the 
entire spectral feature space. Selecting two spectra with duplicates from the standardized spectra data set and 
performing a one-to-one linear combination, we initially chose 1891 spectra as the candidates. As mentioned in 
the Results section, the intrinsic dimensionality of the spectral feature space is 3, which means that points of the 
spectral feature space can be represented by a linear combination of approximately three spectra in the data set. 
Hence, the following operation was repeated 10,000 times to generate the site points: We randomly selected three 
spectra from the data set, and then, the spectra were generated by linear combination using randomly generated 
weights. The similarities between the generated spectrum and the candidate site points can be calculated by 
Eq. (1). If the similarity was less than 0.01 (> 0.0001), the spectrum was added to the candidate site points. As a 
result, we obtained 5967 candidate points.

Adding noise to the synthetic data
Gaussian noise was added to the reference and transmitted X-ray counts to calculate the simulated absorbance 
to approximate the noise generated in actual measurements. The conditions used in the analysis when reducing 
the number of site points were ( cref, µ tlow, µ thigh) = ( 2.7× 104, 0.36, 1.56) which is the condition of our 
G-XRM experiment. Additionally, highly noisy data were generated under the conditions ( cref, µ tlow, µ thigh) 
= ( 2.0× 104, 0.5, 2.5).

Data availability
Minimum datasets generated and/or analyzed during the current study and the implementation of our method 
are available in the GitHub repository https://github.com/quantumbeam/Clustering-Method-for-Massive-Spec-
tral-Image-Data.  All datasets used and/or analyzed during the current study available from the corresponding 
author on reasonable request.
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