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Accurate segmentation of COVID-19 lesions from medical images is essential for achieving precise 
diagnosis and developing effective treatment strategies. Unfortunately, this task presents significant 
challenges, owing to the complex and diverse characteristics of opaque areas, subtle differences 
between infected and healthy tissue, and the presence of noise in CT images. To address these 
difficulties, this paper designs a new deep-learning architecture (named MD-Net) based on multi-
scale input layers and dense decoder aggregation network for COVID-19 lesion segmentation. In 
our framework, the U-shaped structure serves as the cornerstone to facilitate complex hierarchical 
representations essential for accurate segmentation. Then, by introducing the multi-scale input layers 
(MIL), the network can effectively analyze both fine-grained details and contextual information in 
the original image. Furthermore, we introduce an SE-Conv module in the encoder network, which can 
enhance the ability to identify relevant information while simultaneously suppressing the transmission 
of extraneous or non-lesion information. Additionally, we design a dense decoder aggregation (DDA) 
module to integrate feature distributions and important COVID-19 lesion information from adjacent 
encoder layers. Finally, we conducted a comprehensive quantitative analysis and comparison between 
two publicly available datasets, namely Vid-QU-EX and QaTa-COV19-v2, to assess the robustness 
and versatility of MD-Net in segmenting COVID-19 lesions. The experimental results show that the 
proposed MD-Net has superior performance compared to its competitors, and it exhibits higher 
scores on the Dice value, Matthews correlation coefficient (Mcc), and Jaccard index. In addition, we 
also conducted ablation studies on the Vid-QU-EX dataset to evaluate the contributions of each key 
component within the proposed architecture.
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The coronavirus disease 2019 (COVID-19) has emerged as an unparalleled global health crisis that poses a 
serious threat to human life and well-being. Since its initial appearance, the virus has spread rapidly across 
all continents and caused significant damage to countries around the world. This highly contagious disease 
poses a major challenge to public health systems, with symptoms including fever, cough, fatigue and respiratory 
distress, often accompanied by gastrointestinal disorders such as nasal congestion, rhinorrhea and diarrhea. If 
we can detect infected people in a timely manner, it will help curb the spread of novel coronavirus pneumonia, 
which requires an extremely sensitive and effective screening method that can identify both symptomatic 
cases and asymptomatic infected people and their close contacts. Currently, reverse transcription polymerase 
chain reaction (RT-PCR) is the gold standard for diagnosing COVID-19. Despite its widespread use, RT-PCR 
still has its limitations, including low sensitivity, high false-negative rates, and inability to detect the virus 
comprehensively. Moreover, the long turnaround time of RT-PCR results exacerbates the challenge of epidemic 
control, leaving health care workers vulnerable to infection during sampling and testing. Conversely, computed 
tomography (CT) technology offers a promising alternative for COVID-19 detection, leveraging its superior 
spatial resolution and detection efficiency. By analyzing characteristic lung images, such as subtle ground-glass 
opacities, interstitial changes, and bilateral lung infiltrates, CT scans provide valuable insights into disease 
progression and severity. However, the interpretation of CT images by radiologists presents multiple challenges, 
including a heavy workload, vulnerability to human error, and resource constraints exacerbated by a shortage 
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of experienced professionals during the pandemic. In response to these problems, it is particularly important 
to train the detection model based on deep learning technology and develop an effective auxiliary diagnostic 
system to assist professionals in the automatic analysis of CT images.

Currently, deep-learning technology has been at a relatively advanced level in the field of image segmentation. 
For example, convolutional neural networks (CNNs) feed the original image into the network and uses 
convolutional operations to carefully extract complex features embedded in the image. Subsequently, the network 
proceeds to assign class labels to each pixel block to produce the final split output. This property gives CNNs the 
ability to achieve segmentation with amazing precision and accuracy, but it also imposes a huge computational 
burden. Unlike traditional CNNs, full convolutional network (FCN)1 replaces fully connected layers with full 
convolutional layers, allowing them to seamlessly process input images of any size. However, the upsampling of 
FCN uses a large multiple, which may unintentionally damage the ability of the network to effectively integrate 
the context feature information, and reduce the accuracy of image segmentation. Building on the foundation laid 
by FCN, Ronneberger et al.2 proposed the pioneering U-Net using the symmetrical codec-decode structure. At 
its core, U-Net employs a coding structure comprising convolutional layers and pooling layers to extract features 
from input images. In the decoding stage, the encoded features undergo a process of recovery facilitated by up-
sampling operations, effectively reconstructing the image’s salient characteristics. Crucially, U-Net incorporates 
skip connections that facilitates the fusion of feature information from multiple levels within the network 
architecture. This efficiency not only streamlines the training process but also mitigates resource constraints, 
making U-Net an appealing choice for medical image segmentation tasks.

Although U-Net has demonstrated strong performance in medical image segmentation, it faces challenges in 
meeting the increasingly demanding requirements of modern medical applications. One of the key limitations 
lies in the restricted receptive field of convolutional layers, which hampers their ability to capture global context 
information essential for accurate segmentation. Additionally, the integration of features at different scales 
remains a complex task, especially when dealing with medical images that often exhibit varying anatomical 
structures and lesion sizes. To tackle these challenges, various advanced technologies are integrated with deep 
learning framework, such as self-supervised learning, contrastive learning, and transfer learning3–7. Among 
them, You et al.8 presented a new framework called CASTformer, which develops a class-aware transformation 
block that identifies and learns discriminant regions based on the semantic structure of an object. In addition, 
the authors introduced adversarial training strategies that enable transform-based discriminators to capture a 
rich mix of high-level semantic content and low-level anatomical details. Jin et al.9 introduced a novel two-stage 
network segmentation model that leverages a pseudo mask-guided feature aggregation technique. Instead of 
introducing extra components to handle uncertainty, the approach incorporated an uncertainty regularization 
strategy, which streamlines the process and reduces computational complexity. You et al.10,11 further introduced 
a contrastive voxel-wise representation learning approach aimed at improving the network’s capacity to 
effectively capture both low-level and high-level features. By leveraging detailed background information and 
rich anatomical structures, this method enhances the network’s ability to discriminate between different features 
across diverse scenarios. Additionally, it offers greater robustness against representation collapse, ensuring 
consistent performance and more reliable feature learning. Subsequently, You et al.12 introduced a comprehensive 
implicit neural rendering framework designed to enhance the process of medical image segmentation. This 
framework aims to improve the accuracy of segmentation by continuously aligning initial, coarse predictions 
with fuzzy representations derived from coordinate-based point data.

Additionally, various U-Net variants13–17 have been proposed and successfully applied to the segmentation 
of COVID-19 lesions. Among them, Chen et al.18 introduced a groundbreaking cascading architecture, which 
utilized the synergy of boundary monitoring, multi-scale attribute convolution, and dual attention mechanisms to 
achieve high-precision and efficient segmentation of COVID-19 lung infections. Building upon the foundational 
U-Net, Zhou et al.19 introduced a transformer module to address the challenge of capturing global context 
while maintaining the U-Net’s efficacy in handling local features. Drawing inspiration from the biological vision, 
Zhao et al.20 devised an innovative approach centered around spatial and channel-based attention networks. By 
designing specialized block for spatial intelligence and channel-based attention, it can extract pertinent features 
from areas afflicted by opacity at both the pixel and channel levels. To refine the complex segmentation process in 
medical imaging, Devi et al.21 introduced a pioneering framework specifically designed to segment COVID-19 
lung infections. The approach is innovative in the strategic integration of these multi-special blocks with 
convolutional blocks at the encoder and bridge phases of the architecture, so that context clues and COVID-19 
infection-specific characteristics can be fully exploited. To address the challenge posed by the ambiguity in both 
the shape and positioning of COVID-19 lesion areas, Liu et al.22 introduced a novel approach grounded in 
multi-scale representation learning, which provides a comprehensive solution to the problems encountered 
in identifying and characterizing COVID-19 lesion areas. Saha et al.23 utilized the power of deep learning to 
develop a deep neural network architecture for predicting COVID-19 that integrates deep supervision principles 
and strategically combines attention mechanisms among encoder, skip connection, and decoder components 
for dynamically regulating information flow and allocating focus to significant areas in the image. This attention 
mechanism not only enhances the network’s ability to recognize relevant features, but also effectively balances 
the integration of high and lower level functional components, thereby optimizing overall performance and 
segmentation accuracy. Fan et al.24 introduced a groundbreaking deep learning framework, known as Inf-Net. 
First, it uses parallel partial decoders to aggregate high-level features, which helps in generating comprehensive 
global feature maps. Next, two distinct attention mechanisms focuse on refining the core regions of infection, 
while the explicit edge attention sharpens the boundary delineation. This approach significantly reduces the 
need for large amounts of labeled data by allowing the network to primarily rely on unlabeled images while still 
maintaining high segmentation accuracy.
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Despite the continuous development of various innovative algorithms, researchers encounter significant 
challenges in effectively segmenting COVID-19 infected areas within lung CT images. Figure 1 illustrates chest 
CT scans from three different categories: normal, COVID-19 infection, and other diseases infections (such as 
non-COVID-19 infections, pneumonia and pulmonary edema). These non-COVID-19 infections and abnormal 
lung manifestations are often visually similar to COVID-19 infections, complicating the task of accurately 
segmenting affected areas in medical images. Therefore, the main challenges in segmenting such lesions arise 
from the following factors: (1) The infected areas are scattered rather than concentrated, and they are distributed 
in different areas of the lungs, which creates a big barrier to accurate detection. (2) There are many disjoint 
boundaries within the infected area, which complicates the task of segmentation. However, it is often difficult 
for traditional algorithms to produce clear and distinct boundaries, which leads to fuzzy segmentation results. 
(3) The complexity of the lung CT image background brings more complications because it is susceptible to 
various disturbances, such as non-COVID-19 inflamed areas, which adds another layer of complexity to the 
segmentation task. Therefore, how to solve these multifaceted problems is crucial to improve the accuracy and 
reliability of COVID-19 lung infection segmentation in CT imaging.

In response to address the above challenges, we introduced a new deep-learning architecture called MD-Net 
specifically designed to segment COVID-19 lesions. The basic goal of our framework is to integrate multi-scale 
input layers with a dense decoder aggregation network to increase the segmentation accuracy of lesion region by 
taking the advantages of both approaches. Our contributions are as follows: 

	(1)	� The multi-scale input layers are integrated into the architecture to allow a thorough examination of fine-
grained details and contextual information in the input image. This allows MD-Net to capture a wider range 
of features, enhancing its ability to distinguish between COVID-19 lesions and surrounding tissue.

	(2)	� The SE-Conv module is introduced into the encoder network to facilitate the identification of relevant 
lesion information while attenuating the transmission of irrelevant data. By selectively focusing salient fea-
tures and suppressing noise, the module contributes to the overall robustness and specificity of the segmen-
tation process.

	(3)	� A dense decoder aggregation module is presented, which effectively integrates the feature distribution and 
critical damage information of adjacent encoders. This module helps to integrate information extracted 
from different scales and spatial locations, making segmentation results more consistent and accurate.

Methods
In this section, we embark on a thorough exploration of the proposed MD-Net, delving into its intricacies to 
offer a comprehensive understanding. First, we delineate the overarching architecture of the network, and then 
the key modules are described to illustrate their capabilities and contributions. Finally, we will introduce the loss 
function.

Overall architecture
Among the various architectures used in medical image segmentation tasks, U-Net model has become the most 
widely used and influential model, which uses convolutional blocks as the main components of feature extraction 
and spatial resolution recovery in both its encoder and decoder paths. However, due to the fixed kernel size in 
convolution, it is difficult to simulate remote dependencies and global contexts in images, especially in COVID-19 
images. In addition, skipped connections in U-Net and its variants often involve directly adding or connecting 
corresponding feature maps from different levels and may not take full advantage of the complementary 
information that exists at various scales and depths of the network because they lack a global view of feature 
cross-fusion. Based on the above principles, we propose a new deep-learning architecture based on multi-scale 

Fig. 1.  The normal, COVID-19 and other diseases sample images.
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input layers and dense decoder aggregation network for COVID-19 lesion segmentation, as shown in Fig. 2. 
The MD-Net consists of a 5-layer encoder on the left and a 4-layer decoder on the right, each component to 
fulfill a specific role in the overall framework of the network. As the initial stage of information processing, 
encoders are tasked with extracting and abstracting significant features from input images through a series of 
hierarchical convolution and pooling operations. Instead, the decoder works in tandem with the encoder, aiming 
to reconstruct spatial information and semantic context from the extracted features. Compared to the traditional 
U-Net, an important innovation of MD-Net is the integration of a dense decoder aggregation (DDA) module in 
the jump connection. The DDA module performs meticulous analysis and fusion of feature maps from multiple 
encoder layers, enabling the network to capture complex spatial relationships and semantic nuances that are 
critical for accurate lesion detection and analysis. In addition, MD-Net further distinguishes itself by adopting 
the SE-Conv module, which differs from traditional convolution layers. The SE-Conv module gives MD-Net 
the ability to adaptively emphasize the information channel while attenuating the effects of redundant or noisy 
signals, thereby enhancing the discrimination and robustness of the network. To enhance the fine-grained detail 
and contextual information inherent in the original image, MD-Net introduces a multi-scale input layers as a key 
component of its architecture. Whereas traditional single-scale input configurations may miss key details or fail 
to capture contextual nuances, the multi-scale input layers enable MD-Net to process original images at multiple 
resolutions simultaneously. By adapting to different scales of input, the network can fully understand the spatial 
hierarchy and semantic relationships embedded in the input data. With these improvements, MD-Net strives to 
achieve a delicate balance between feature abstraction and information reconstruction, making it stand out in a 
variety of image segmentation tasks.

Multi-scale input layers
Multi-scale input is a complex technique for feeding images of different scales into a neural network, which is 
good at identifying nuances and subtleties in the input images. In the field of semantic segmentation, a large 
number of studies have proved the effectiveness of multi-scale input25,26 to improve segmentation quality. This 
technique not only refines the description of an object, but also ensures a fuller understanding of the object’s 
spatial background and structural complexity. In this paper, multi-scale images are input into each layer of MD-
Net network to make up for the lost feature information in the process of feature extraction. Initially, the input 
image undergoes a series of averaging pooling operations, down-sampling it to 1/2, 1/4 and 1/8 of its original 
size. Then SE-Conv operation is used to make the input image and the feature matrix of each layer have the 
same number of channels. Finally, the two feature matrices are fused to make up for the image information and 
suppress the redundancy of the input information.

SE-Conv module
The classical encoder–decoder architecture often faces limitations in its acceptable domain, which leads to 
two significant shortcomings. One is that it tends to produce locally constrained features. The second is that 
the broader context has been ignored. Taking inspiration from the work of Szegedy et al.27, we introduce an 
innovative SE-Conv module to replace the traditional double-convolution structure, as shown in Fig. 3. Firstly, 
the SE-Conv module employs a sequence of 3 × 3 convolution, 3 × 3 depthwise convolution, and 1 × 1 
pointwise convolution operations to generate feature maps spanning various spatial domains. Among them, 
the 3 × 3 convolution is effective at capturing spatial dependencies and small patterns in the input data, and 
it preserves spatial resolution to a certain extent. The depthwise convolution applies the 3 × 3 filter to each 
input channel separately, which reduces computational complexity while still allowing the model to capture 

Fig. 2.  The proposed MD-Net architecture.
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local dependencies within each channel. The pointwise convolution uses a 1 × 1 kernel to combine the output 
from depthwise convolution across channels, thus integrating information across channels without affecting 
the spatial resolution. Notably, the outputs of each convolution operation are concatenated along the channel 
dimension, yielding multi-scale feature maps that encapsulate both local details and global context. Moreover, 
we integrated the squeeze-and-excitation (SE) block into the SE-Conv module to selectively inhibit irrelevant 
features and amplify feature expression, as shown in Fig. 4. This strategic enhancement contributes significantly 
to the model’s discriminative power and efficacy in capturing intricate data patterns. Finally, to mitigate the 
issue of gradient vanishing stemming from network depth, we introduce residual structures within the SE-Conv 
module. These residual connections facilitate smoother gradient flow, thereby mitigating the adverse effects of 
network depth on training stability. The formula below serves as its representation of the above process.

	 Fconcat = Conv3×3(Fin) +Dwise3×3(Conv3×3(Fin)) + Pwise1×1(Dwise3×3(Conv3×3(Fin))), � (1)

	 FSE = SE(Fconcat), � (2)

	 Fout = Conv3×3(FSE) + Fin. � (3)

Overall, the proposed SE-Conv module offers a comprehensive solution to the limitations of traditional encoder–
decoder architectures. By employing a sequence of convolutional operations, incorporating the SE block, and 
introducing residual connections, SE-Conv module not only ensures robust feature extraction but also alleviates 
the inherent challenges posed by deep network architectures.

Dense decoder aggregation module
Numerous experiments have shown that the shallow layer of the network is good at capturing complex local 
details using its high-resolution and small receptive domain feature maps, while the deeper layer uses its broader 
receptive domain to extract semantic context and understand global patterns in input images. To make the most 
of the above features, we introduced an innovative approach called a dense decoder aggregation (DDA) module, 
as shown in Fig. 5. Unlike traditional skip connection, DDA modules employ a more complex mechanism for 
feature integration and optimization. In our method, the high-level features and low-level features are separately 
fed into the SE module, which dynamically recalibrates their importance based on channel-wise relationships. 
By intelligently fusing these complementary features, we ensure that crucial information is retained throughout 
the encoding process. Following the fusion stage, the feature maps undergo further refinement through 3 × 3 
convolution with expansion rates of 2 and 4, and subsequently joined along the channel dimensions, facilitating 
the integration of multi-scale information. To further refine the obtained results, a final convolution operation 
with a 3 × 3 kernel is applied. The calculation of the above process is described below.

	 F1 = SE(Fi) + SE(U(Fi+1)), � (4)

	 F2 = Conv3×3,d=2(F1) + Conv3×3,d=4(F1), � (5)

	 Fout = Conv3×3(F2). � (6)

Fig. 4.  The structure of SE module.

 

Fig. 3.  The structure of SE-Conv module.
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In summary, our approach leverages the SE module and a series of carefully orchestrated convolutional operations 
to mitigate information loss while enhancing feature representation and producing accurate output results.

Loss function
Selecting an appropriate loss function is crucial for optimizing machine learning models, as it directly influences 
the model’s ability to minimize the disparity between predicted and actual values. In our approach, we employed 
the Dice loss28,29 function to facilitate pixel-level binary classification, aiming to accurately identify and segment 
COVID-19 lesions within medical imaging data. The Dice loss is defined as follows:

	
LDice = 1− 2

∑N
i=1 yiŷi∑N

i=1 y
2
i +

∑N
i=1 ŷ

2
i

, � (7)

where N stands for the total number of pixels in the segmentation mask or image, ŷi symbolizes the true 
probability value assigned to pixel i , and yi denotes the predicted probability value assigned to the same pixel i 
by the segmentation model under evaluation.

Experimental results
Description of datasets
In assessing the efficacy of our proposed method, we conducted a rigorous evaluation using two widely 
recognized COVID-19 lesions segmentation datasets: Vid-QU-EX30 and QaTa-COV19-v231. These datasets, 
renowned for their comprehensive coverage and diverse array of COVID-19 lesions images, serve as invaluable 
benchmarks for gauging the performance and generalizability of our approach. Table  1 provides a detailed 
overview of the specifications associated with each dataset, including the number of images, resolution, and 
any pertinent metadata crucial for contextualizing the experimental results. In addition, to more intuitively 
understand the content and variability of these datasets. Figure 6 provides researchers with tangible examples of 
the COVID-19 lesions images used in our evaluation.

Vid-QU-EX
The researchers of Qatar University have compiled the Vid-QU-EX dataset specifically to address the urgent 
need for a comprehensive dataset in the context of COVID-19. It consists of 1864 training images, 466 validation 
images and 583 test images, and each image within the dataset is imbued with a wealth of information. 
Researchers seeking to delve deeper into the dataset’s intricacies and specifications can avail themselves of 
detailed information accessible via the provided link: https://www.kaggle.com/datasets/anasmohammedtahir/
covidqu.

QaTa-COV19-v2
A collaborative effort between the esteemed researchers at Qatar University and Tampere University has 
yielded the QaTa-COV19-v2 dataset, which consists of 5359 training images, 1786 validation images and 2113 
test images. This dataset represents a paradigm shift with its COVID-19 chest X-ray images to encompass 
the wide range of manifestations and changes observed in clinical practice. Unlike previous iterations, this 
dataset introduces a breakthrough feature, including a true segmentation mask for the COVID-19 pneumonia 
segmentation task. These masks serve as valuable annotations, providing pixel-scale descriptions of COVID-19 
pneumonia lesions in chest X-ray images. Detailed information is available at: https://www.kaggle.com/datasets/
aysendegerli/qatacov19-dataset/data.

Dataset Number Training set Validation set Test set

Vid-QU-EX 2913 1864 466 583

QaTa-COV19-v2 9258 5359 1786 2113

Table 1.  Descriptions of the datasets.

 

Fig. 5.  The structure of dense decoder aggregation module.
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Implementation details
Our research work is built on the powerful PyTorch platform, a dynamic framework renowned for its versatility 
and scalability in deep learning tasks. To execute our experiments with precision and efficiency, we harnessed 
the computational prowess of an NVIDIA Quadro RTX 6000 graphics card, equipped with a 24 GPU memory 
capacity that underpins the computational demands of our methodologies. Prior to commencing the training 
process, we meticulously prepared our dataset through a series of rigorous pre-processing procedures, and the 
images were cropped into small pieces of size 256 × 256 that were served as the foundational inputs to our 
method. During the training phase, we employed the Adam optimizer, a state-of-the-art optimization algorithm 
revered for its efficacy in converging towards optimal solutions. With hardware limitations in mind, the initial 
learning rate is set to 10-3, the batch-size to 32 and the epochs to 250. Figure 7 illustrates the fluctuation of loss 
and accuracy values throughout the iterative training and verification process. The training loss consistently 
decreases over time, indicating that the model is progressively learning from the data. It starts around 0.5 and 
declines steadily, reaching very low values (approximately 0.05) by the 250th epoch. The training accuracy rises 
quickly in the initial epochs, reaching about 95% accuracy after only 50 epochs. It continues to improve slightly 
as training progresses, reaching close to 99% towards the end of training. This indicates that the model is learning 
to classify the training data correctly with high precision. However, the validation loss and validation accuracy 
show a more fluctuating behavior, especially in the earlier epochs. Despite these fluctuations, the validation 
accuracy still stabilizes at around 95%, which shows relatively strong performance.

Evaluation metrics
To ensure a rigorous and unbiased assessment of our model’s performance, we employed a comprehensive 
suite of three key performance evaluation metrics: the Dice value32,33, Matthews correlation coefficient34,35, and 
Jaccard index36,37. These metrics serve as indispensable yardsticks for quantitatively gauging the efficacy and 
accuracy of our model’s predictions across various tasks and datasets, which are defined as:

	
Dice =

2TP

2TP + FN+FP
, � (8)

	
Mcc =

TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FN)(TN + FP )

, � (9)

	
Jaccard =

TP

TP + FN + FP
, � (10)

where TP and TN indicate instances correctly identified as positive and negative, FP and FN refer to instances 
incorrectly classified as positive and negative.

Fig. 6.  Challenging cases of COVID-19 lesion images. The first and second rows: original images and 
corresponding gold labels on the Vid-QU-EX dataset. The third and fourth rows: original images and 
corresponding gold labels on the QaTa-COV19-v2 dataset.

 

Scientific Reports |        (2024) 14:23729 7| https://doi.org/10.1038/s41598-024-74701-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Ablation studies
Table 2 provides a comprehensive overview of the meticulous ablation experiment carried out on the Vid-QU-
EX dataset. The evaluation criteria encompass Dice value, Matthews correlation coefficient, and Jaccard index, 
indicative of segmentation accuracy. The baseline model, represented by the U-Net architecture, serves as the 
foundation for comparison against a series of augmented models. The baseline model, represented by the U-Net 
architecture, serves as the foundation for comparison against a series of augmented models. Notably, the addition 
of SE-Conv, designed to recalibrate channel-wise feature responses, yields a noticeable improvement across 
all metrics. Similarly, MIL aims to help further improve performance by resolving label noise and ambiguity 

Method Dice Mcc Jaccard

Baseline (U-Net) 0.8265 0.7992 0.7051

Baseline+MIL 0.8333 0.8074 0.7155

Baseline+SE-Conv 0.8350 0.8090 0.7180

Baseline+DDA 0.8305 0.8046 0.7114

Baseline+MIL+DDA 0.8377 0.8127 0.7217

Baseline+MIL+SE-Conv 0.8404 0.8152 0.7257

Baseline+SE-Conv+DDA 0.8360 0.8106 0.7197

Baseline+MIL+DDA+SE-Conv (MD-Net) 0.8425 0.8176 0.7292

Table 2.  Ablation experiment of MD-Net on the Vid-QU-EX dataset (Bold represents the best result).

 

Fig. 7.  The changes process in loss and accuracy values during training and validation of MD-Net. The first 
row: results on the Vid-QU-EX dataset. The second row: results on the QaTa-COV19-v2 dataset.
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through instance-level monitoring. In addition, DDA facilitates adaptive enhancement strategies tailored 
to data set features. However, the most compelling findings emerge from the synergistic integration of these 
methodologies. The combination of Baseline+MIL+DDA+SE-Conv recorded the highest score in segmentation 
accuracy: Dice value was 0.8425, Mcc was 0.8176, and Jaccard index was 0.7292. This nuanced analysis not 
only validates the effectiveness of individual strategies, but also underscores the importance of their cohesive 
integration in advancing the latest semantic segmentation.

Furthermore, we present the visualization outcomes stemming from our meticulous module ablation 
experiment. As depicted in Fig. 8, the first row is the images of the test set, and the second row is the corresponding 
ground-truth label images. The third to last rows are the predicted segmentation visual renderings after the 
introduction of MIL, SE-Conv, DDA, MIL+DDA, MIL+SE-Conv, SE-Conv+DDA, MIL+DDA+SE-Conv, 
respectively. Through detailed comparative analysis of these segmentation visualizations, it is clear that the 
segmentation effect of the MD-Net network model is significantly better than that of the basic U-Net backbone 
network and the combination of MIL, SE-Conv and DDA networks. In addition, MD-Net shows commendable 
adaptability in handling complex and challenging scenes characterized by low contrast and blurred boundaries. 

Fig. 8.  Visualization of ablation results on the Vid-QU-EX dataset. (a,b) original images and corresponding 
gold labels on the Vid-QU-EX dataset. (c–j) are the results of Baseline, Baseline+MIL, Baseline+SE-
Conv, Baseline+DDA, Baseline+MIL+DDA, Baseline+MIL+SE-Conv, Baseline+SE-Conv+DDA, 
Baseline+MIL+DDA+SE-Conv.
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This adaptability is due to MD-Net’s inherent ability to seamlessly blend deep and shallow features extracted 
from feature maps in its decoding structure, thus helping to obtain more precise target region boundaries.

Comparisons with the state-of-the-art methods
To validate the effectiveness of our proposed method in accurately segmenting infected areas within CT images, 
we conducted a comprehensive evaluation using various models on the Vid-QU-EX dataset. The comparison 
networks included U-Net, Attention-U-Net, DCANet, M-Net, DCSAU-Net, MCDAU-Net, META-Unet, 
MSRAformer, Swin-Transformer, MCAFNet, MDUNet, and DualA-Net, all of which were conducted under the 
same experimental environment. Following 250 iterations of training with meticulously processed COVID-19 
datasets, we conducted rigorous testing and compared the segmentation results of different networks based 
on meticulously recorded numerical evaluation indicators. As shown in Table  3, U-Net initially displayed 
commendable performance across all metrics, boasting Dice score of 0.8265, Mcc of 0.7992, and Jaccard index 
of 0.7051. When analyzing the performance metrics, it is evident that MSRAformer, Swin-Transformer, and 
DualA-Net consistently underperform in comparison to the traditional U-Net across several key evaluation 
measures. Attention-U-Net, DCANet, M-Net, DCSAU-Net, MCDAU-Net, META-Unet, MCAFNet, and 
MDUNet outperform U-Net across all metrics, with improvements in Dice, MCC, and Jaccard index. However, 
the MD-Net achieves the best results in the three evaluation indicators of Dice score, Mcc and Jaccard index, 
which indicated that the segmentation results of the MD-Net had a high similarity with the real labeled lesion 
areas. Moreover, the boundary similarity between the segmentation results and the real labeled areas was also 
high. Notably, our MD-Net demonstrates robust capabilities in accurately identifying COVID-19 lesion areas, 
and even has decent segmentation performance for accurately delineating smaller areas.

In order to compare each model more clearly, we made a visual analysis of the segmentation results, as shown in 
Fig. 9. In the COVID-19 lesion segmentation task, the U-Net network has obvious over-segmentation problems, 
resulting in rough edges, uneven contours, and insufficient placement of details. Taking inspiration from the 
effectiveness of the attention mechanism, Attention-U-Net managed to achieve performance comparable to 
U-Net. However, despite this improvement, U-Net and Attention-U-Net still fall short in providing satisfactory 
segmentation results. Transformer models such as MSRAformer and Swin-Transformer excel at capturing global 
context information through remote dependencies in the image. However, in the COVID-19 focus segmentation 
task, their inability to focus on local features with sufficient precision resulted in inaccurate or incomplete 
segmentation. DCANet, MCDAU-Net, META-Unet and DualA-Net have difficulty in effectively preserving edge 
detail textures, resulting in blurred images and instances of missing or error-detecting areas. Due to multi-scale 
and attentional mechanisms, MCAFNet and MDUNet are able to produce visually clearer and more accurate 
segmentation maps, but they can struggle when small, irregular areas of infection are often involved. In contrast, 
M-Net, a variant of U-Net, has emerged as a promising solution by integrating multi-scale input layers and side 
output layers, yielding commendable results. In addition, by the introduction of primary feature conservation 
mechanism, DCSAU-Net cleverly utilizes both low-level and high-level semantic information, showing excellent 
segmentation performance. However, the MD-Net method is able to segment even the smallest infections 
scattered throughout the COVID-19 lesion region, which highlights the superior accuracy of our method.

Second, we performed the evaluation on the QaTa-COV19-v2 dataset, and the results were shown in Table 4. 
Notably, our model achieved impressive scores on key evaluation metrics, with Dice scores of 0.8395, Mcc of 
0.8232, and Jaccard Index of 0.7311. These measures serve as robust indicators of the model’s ability to accurately 
portray diseased areas, even in areas with low contrast. Compared to U-Net, MD-Net demonstrated notable 
improvements across all metrics, with increases of 1.02% in Dice score, 1.33% in Mcc, and 1.67% in Jaccard index. 
Furthermore, when compared to the sub-optimal DCANet method, MD-Net exhibited marginal yet noteworthy 
improvements. The Dice score, Mcc, and Jaccard index increased by 0.08%, 0.03%, and 0.08%, respectively. 
However, although the improvement in accuracy is small, it has superior advantages in terms of parameters 
and efficiency. Thus, based on a comprehensive evaluation considering both performance and computational 

Method Dice Mcc Jaccard Params (M) FPS

U-Net2 0.8265 0.7992 0.7051 1.9447 245.7538

Attention-U-Net38 0.8389 0.8133 0.7236 34.8786 141.7379

DCANet39 0.8317 0.8051 0.7132 36.6003 31.9992

M-Net40 0.8378 0.8123 0.7220 9.3277 189.9465

DCSAU-Net41 0.8417 0.8167 0.7280 2.5988 54.4532

MCDAU-Net42 0.8351 0.8093 0.7185 12.9797 66.2665

META-Unet43 0.8317 0.8050 0.7131 21.6960 86.8963

MSRAformer44 0.7942 0.7628 0.6603 68.0315 23.1412

Swin-Transformer45 0.7944 0.7625 0.6599 36.7198 58.9808

MCAFNet46 0.8360 0.8099 0.7194 9.0615 81.3309

MDUNet47 0.8315 0.8049 0.7131 11.5519 38.5120

DualA-Net48 0.8236 0.7957 0.7013 2.5788 52.7225

MD-Net 0.8425 0.8176 0.7292 8.5747 73.0779

Table 3.  Results of different models on the Vid-QU-EX dataset.
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complexity, MD-Net emerges as the optimal choice. Its ability to achieve high segmentation accuracy while 
maintaining reasonable computational demands positions it as a promising solution for the precise detection 
and segmentation of COVID-19 lesions in medical imaging applications.

Furthermore, we complement our quantitative analysis with a visual examination of the segmentation 
outcomes generated by our model, as illustrated in Fig. 10. After closely examining the visual results, it was clear 
that MD-Net does an excellent job of capturing local detail with amazing accuracy. Overall, our model had the 
best results in COVID-19 lesions, confirming that our model had better generalization. Through a combination 

Fig. 9.  Visualization of different models on the Vid-QU-EX dataset. The first and second rows: original images 
and corresponding gold labels on the Vid-QU-EX dataset. The third to last rows are the predicted results of 
U-Net, Attention-U-Net, DCANet, M-Net, DCSAU-Net, MCDAU-Net, META-Unet, MSRAformer, Swin-
Transformer, MCAFNet, MDUNet, DualA-Net and MD-Net.
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of quantitative and qualitative evaluations, we affirm the advantages of MD-Net as a universal and reliable tool 
for COVID-19 lesion segmentation in medical imaging.

Efficiency analysis
To ensure a fair and thorough comparison, we performed an extensive efficiency analysis across thirteen 
state-of-the-art models, utilizing both the number of parameters (Params) and frames per second (FPS) as 
key evaluation criteria, as indicated in Tables  3 and 4. U-Net stands out as a model that optimally balances 
computational resources, with relatively low parameters, minimal model size, and high FPS, positioning it as 
one of the most computationally efficient networks in our study. Similarly, DCSAU-Net and DualA-Net are 
efficient models that use fewer parameters and require shorter training times, which enhances their suitability 
for real-time applications. Despite their advanced architecture, models like MSRAformer and Swin-Transformer 
demand significantly higher computational resources, both in terms of parameters and extended training times. 
However, this increased complexity does not necessarily translate into superior segmentation performance. In 
contrast, MD-Net offers a compelling alternative by striking an ideal balance between precision and efficiency. 
With a compact network size of just 8.5747 MB and an impressive frame rate of 73 to 75 milliseconds per frame, 
MD-Net proves to be a highly practical solution that provides advanced capabilities for diagnosing COVID-19 
lesions without requiring a significant amount of computing power.

Conclusion
This paper introduces MD-Net, a novel deep learning architecture specifically designed to segment COVID-19 
lesions from medical images. By addressing the challenges posed by opaque regions, subtle organizational 
differences, and image noise, MD-Net utilizes a U-shaped structure to enhance multi-scale input layers, SE-Conv 
module, and dense decoder aggregation network. Through comprehensive quantitative analysis of Vid-QU-EX 
and QaTa-COV19-v2 datasets and comparison with existing methods, MD-Net showed higher performance 
on Dice value, Matthews correlation coefficient and Jaccard index. The experimental results not only show 
the robustness and versatility of MD-Net, but also highlight its effectiveness in capturing fine-grained detail 
and contextual information, which is critical for accurately segmenting lesions. In addition, ablation studies 
conducted on the Vid-QU-EX dataset provided insights into the effectiveness of key components integrated into 
MD-Net, further validating its advantages over competing approaches. MD-Net represents a significant advance 
in the field of segmentation of COVID-19 lesions and provides a powerful tool for accurate diagnosis and the 
development of effective treatment strategies.

Method Dice Mcc Jaccard Params (M) FPS (ms)

U-Net2 0.8293 0.8099 0.7144 1.9447 247.7885

Attention-U-Net38 0.8344 0.8150 0.7197 34.8786 141.8865

DCANet39 0.8387 0.8229 0.7303 36.6003 34.4124

M-Net40 0.8366 0.8203 0.7289 9.3277 191.6864

DCSAU-Net41 0.8354 0.8166 0.7237 2.5988 56.7778

MCDAU-Net42 0.8339 0.8153 0.7228 12.9797 66.9488

META-Unet43 0.8379 0.8193 0.7251 21.6960 90.1669

MSRAformer44 0.7843 0.7628 0.6538 68.0315 23.1379

Swin-Transformer45 0.7900 0.7658 0.6578 36.7198 60.9945

MCAFNet46 0.8397 0.8211 0.7284 9.0615 81.2885

MDUNet47 0.8399 0.8213 0.7279 11.5519 38.2567

DualA-Net48 0.8282 0.8083 0.7111 2.5788 53.3254

MD-Net 0.8395 0.8232 0.7311 8.5747 75.0257

Table 4.  Results of different models on the QaTa-COV19-v2 dataset.
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Data availability
The authors have used publicly available data in this manuscript. The dataset link is mentioned in the paper.
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Fig. 10.  Visualization of different models on the QaTa-COV19-v2 dataset. The first and second rows: original 
images and corresponding gold labels on the Vid-QU-EX dataset. The third to last rows are the predicted 
results of U-Net, Attention-U-Net, DCANet, M-Net, DCSAU-Net, MCDAU-Net, META-Unet, MSRAformer, 
Swin-Transformer, MCAFNet, MDUNet, DualA-Net and MD-Net.
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