Table 1 Selected mathematical modeling to demonstrate the basil drying process.
No. | Model name | Model equation* | Reference |
---|---|---|---|
1 | Newton (Lewis) | \(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-\text{k}\text{t}\right)\) | |
2 | Page | \(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{\text{n}}\right)\) | |
3 | Simplified Ficks Diffusion | \(\:\text{M}\text{R}=\text{a}\text{exp}\left(-\text{c}\left(\frac{\text{t}}{{\text{L}}^{2}}\right)\right)\) | |
4 | Approximation diffusion or (Diffusion Approach) | \(\:\text{M}\text{R}=\text{a}\text{exp}\left(-\text{k}\text{t}\right)+\left(1-\text{a}\right)\text{e}\text{x}\text{p}\left(-\text{k}\text{b}\text{t}\right)\) | |
5 | Logistics | \(\:\text{M}\text{R}=\:\frac{\text{b}}{1+\text{a}\text{exp}\left(\text{k}\text{t}\right)\:}\) | |
6 | Parabolic model | \(\:\text{M}\text{R}=\text{a}+\text{b}\text{t}+\text{c}{\text{t}}^{2}\) | |
7 | Combined Two-term and Page | \(\:\text{M}\text{R}=\text{a}\:\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{\text{n}}\right)+\text{b}\:\text{e}\text{x}\text{p}\left(-\text{h}{\text{t}}^{\text{n}}\right)\) | |
8 | Modified Henderson and Pabis | \(\:\text{M}\text{R}=\text{a}\text{exp}\left(-\text{k}\text{t}\right)+\text{b}\:\text{e}\text{x}\text{p}\left(-\text{g}\text{t}\right)+\text{c}\:\text{e}\text{x}\text{p}\left(-\text{h}\text{t}\right)\) | |
9 | Modified Midilli II | \(\:\text{M}\text{R}=\text{a}\:\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{\text{n}}\right)+\text{b}\) | |
10 | Modified Page III | \(\:\text{M}\text{R}=\text{k}\:\text{e}\text{x}\text{p}{\left(-\frac{\text{t}}{{\text{d}}^{2}}\right)}^{\text{n}}\) | |
11 | Modified Two Term III | \(\:\text{M}\text{R}=\text{a}\:\text{e}\text{x}\text{p}\left(-\text{k}\text{t}\right)+\left(1-\text{a}\right)\:\text{e}\text{x}\text{p}\left(-\text{k}\text{a}\text{t}\right)\) |