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Comprehensive risk factor-based
nomogram for predicting one-year
mortality in patients with sepsis-
associated encephalopathy
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Rui Ye'*, Chunxiao Fang?, Wei Hu'*“ & Yanan Dai'**

Sepsis-associated encephalopathy (SAE) is a frequent and severe complication in septic patients,
characterized by diffuse brain dysfunction resulting from systemic inflammation. Accurate prediction of
long-term mortality in these patients is critical for improving clinical outcomes and guiding treatment
strategies. We conducted a retrospective cohort study using the MIMIC IV database to identify adult
patients diagnosed with SAE. Patients were randomly divided into a training set (70%) and a validation
set (30%). Least absolute shrinkage and selection operator regression and multivariate logistic
regression were employed to identify significant predictors of 1-year mortality, which were then used
to develop a prognostic nomogram. The model’s discrimination, calibration, and clinical utility were
assessed using the area under the receiver operating characteristic curve (AUC), calibration plots, and
decision curve analysis, respectively. A total of 3,882 SAE patients were included in the analysis. The
nomogram demonstrated strong predictive performance with AUCs of 0.881 (95% Cl: 0.865, 0.896) in
the training set and 0.859 (95% CI: 0.830, 0.888) in the validation set. Calibration plots indicated good
agreement between predicted and observed 1-year mortality rates. The decision curve analysis showed
that the nomogram provided greater net benefit across a range of threshold probabilities compared

to traditional scoring systems such as Glasgow Coma Scale and Sequential Organ Failure Assessment.
Our study presents a robust and clinically applicable nomogram for predicting 1-year mortality in

SAE patients. This tool offers superior predictive performance compared to existing severity scoring
systems and has significant potential to enhance clinical decision-making and patient management in
critical care settings.
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BIDMC Beth Israel Deaconess Medical Center

CCI Charlson Comorbidity Index
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ICU Intensive Care Unit

LASSO Least Absolute Shrinkage and Selection Operator regression
LODS Logistic Organ Dysfunction System

LOS length of stay
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MIMIC-IV Medical Information Mart for Intensive Care IV

OR odd ratio

ROC receiver operating characteristic

RRT Renal Replacement Therapy

SAE Sepsis-Associated Encephalopathy

SAPSII Simplified Acute Physiology Score II

SOFA Sequential Organ Failure Assessment

TRIPOD Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagno-

S1S

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection'. The
nervous system is often the first organ system to exhibit functional impairment due to sepsis, leading to sepsis-
associated encephalopathy (SAE)2. SAE manifests as diffuse brain dysfunction stemming from the systemic
inflammatory response to sepsis, with clinical presentations ranging from mild delirium to severe coma, and is
associated with increased mortality and long-term physical, mental, and cognitive impairments®~>.

The severity of SAE correlates with short-term mortality, with more severe consciousness disorders indicating
a poorer prognosis®. Notably, even mild mental status changes are independently linked to an increased risk of
short-term mortality’. Beyond short-term outcomes, acute sepsis-related neurological disorders are the organ
dysfunction most closely associated with long-term mortality and are a key mediator of adverse long-term
outcomes following sepsis®. Among sepsis survivors who experienced acute neurological dysfunction, the 1-year
mortality rate is increased by an absolute 6% compared to those without such dysfunction®. Long-term prognosis
is a crucial outcome, reflecting the overall burden of the disease. Accurate prediction of long-term mortality
rates enhances doctor-patient communication and informs sustainable medical management decisions’.

As the number of sepsis survivors rises>®, identifying risk factors associated with the long-term prognosis of
SAE patients, particularly those that are conventional, readily available, and cost-effective, is vital for developing
optimized treatment strategies and assessing patient outcomes. This study aims to identify predictive factors for
1-year mortality in SAE patients and to establish and validate a 1-year mortality prediction model in the form of
a nomogram, thereby providing clinicians with a valuable tool for evaluating patient prognosis.

Methods

Database and study design

The study utilized the Medical Information Mart for Intensive Care IV (MIMIC IV, Version 2.1) database, which
contains de-identified health data from over 40,000 patients admitted to the Beth Israel Deaconess Medical
Center (BIDMC) in Boston, Massachusetts, from 2008 to 2019°. MIMIC IV includes comprehensive information
on patient demographics, vital signs, laboratory test results, medications, procedures, and clinical outcomes,
making it a valuable resource for conducting epidemiological and clinical research in critical care settings’.

The MIMIC IV database is de-identified in accordance with the Health Insurance Portability and
Accountability Act, thereby safeguarding patient privacy. Consequently, its utilization for research does not
necessitate additional patient consent. Researchers obtained access to the MIMIC IV data by completing the
requisite data use agreement and the Collaborative Institutional Training Initiative Program’s course on “Data or
Specimens Only Research” The Institutional Review Board of BIDMC reviewed and approved the processes for
patient data collection and the establishment of research resources, granting exemptions for informed consent
and endorsing data-sharing protocols. Given the retrospective design of this study, and to uphold patient
confidentiality while ensuring compliance with authorized use of the MIMIC IV database, no further ethical
approval was required. All methods were performed in accordance with relevant guidelines and regulations.

In alignment with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) guidelines'’, this study aimed to develop and validate a prognostic model for 1-year
mortality in patients with SAE. The study involved screening adult patients with SAE from the MIMIC IV
database, ensuring the exclusion of encephalopathy attributable to non-septic causes. Patients were randomly
assigned to either a training set or a validation set. Least absolute shrinkage and selection operator (LASSO)
regression and multivariate binary logistic regression analyses were conducted on the training set to identify
significant risk factors for 1-year mortality. These identified risk factors were then utilized to construct a
mortality prediction model, represented as a nomogram. The model’s performance was rigorously assessed by
evaluating its discrimination, calibration, and clinical utility in both the training and validation cohorts.

Patient selection

The study cohort comprised patients with SAE who were admitted to the intensive care unit (ICU) for the
first time. The inclusion criteria were as follows: (1) Sepsis 3.0 criteria: patients diagnosed with or suspected
of infection and an increase of at least 2 points in the Sequential Organ Failure Assessment (SOFA) score; (2)
Diagnosis of SAE on the first day of ICU admission, defined by a Glasgow Coma Scale (GCS) score of <15, a
positive Confusion Assessment Method for the ICU, or corresponding International Classification of Diseases
codes (2930, 2931, F05). The exclusion criteria included: (1) Any record of subsequent ICU admissions; (2)
ICU stays shorter than 24 h; (3) Non-septic conditions; (4) Patients with clear consciousness and no delirium
symptoms; (5) Underlying dementia; (6) Primary brain injuries such as traumatic brain injury, ischemic stroke,
hemorrhagic stroke, intracranial infection, or epilepsy; (7) Hypoxic-ischemic encephalopathy; (8) Hypertensive
encephalopathy; (9) Metabolic or toxic encephalopathy; (10) Mental and behavioral disorders due to alcohol,
drugs, or psychoactive substances; (11) Severe electrolyte and metabolic imbalances, including hyponatremia
(<120 mmol/L), hyperglycemia (> 180 mg/dL), hypoglycemia (<54 mg/dL), and partial pressure of carbon
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dioxide (PaCO2) >80 mmHg; (12) Patients aged 89 years or older. A total of 3882 patients meeting the inclusion
criteria were selected for analysis (Fig. 1).

Data extraction and preprocessing

Research data were extracted from the MIMIC IV database, encompassing variables such as age, gender, weight,
marital status, race, underlying comorbidities, and the Charlson Comorbidity Index (CCI). Clinical data from
the first day of ICU admission included vital signs, key laboratory parameters, the use of invasive mechanical
ventilation, renal replacement therapy (RRT), vasoactive medications, albumin administration, the GCS
score, and other critical care scoring indices. Vasoactive medications comprised norepinephrine, epinephrine,
dopamine, dobutamine, vasopressin, and milrinone. For variables with multiple measurements, the MIMIC
concept was utilized to systematically extract the minimum, maximum, and average values where applicable.
Time-related indicators were extracted to calculate ICU mortality, in-hospital mortality, 28-day mortality, 1-year
mortality, length of hospital stay (LOS), and ICU LOS. The primary outcome measure was the 1-year mortality,
determined by the survival status one year post ICU admission.

Data processing were conducted using Stata software (version 17.0, Stata Corporation LLC, College Station,
USA). Outliers were identified through histogram analysis and addressed using the Winsorization technique via
the Winsor2 command. Missing data were imputed using multiple imputation methods to ensure robust and
accurate analysis.

Study cohorts

Using R software (version 4.3.2, R Foundation for Statistical Computing, Vienna, Austria), the cohort of 3,882
patients with SAE was randomly divided into a training set (70%) and a validation set (30%) for the development
and validation of predictive models, with the random seed set to 3684. The ‘gtsummary’ package was employed
to perform univariate analyses on both the training and validation sets, assessing differences between the two
groups and verifying the effectiveness of the randomization process. This approach ensures that both subsets
are representative of the overall patient population, thereby supporting the robustness of the predictive models.

Model development

Following the implementation of the ‘glmnet’ R package, regression analysis was performed. LASSO regression
was utilized on the training set to discern significant risk factors for 1-year mortality. This technique facilitates
feature selection by constraining less significant coefficients to zero, thereby enhancing model interpretability.
Subsequently, the variables identified through LASSO regression were further analyzed using multivariate
binary logistic regression to determine independent risk factors for 1-year mortality in patients with SAE. The
‘car’ R package was employed to calculate the variance inflation factor. Odds ratios (ORs) and 95% confidence
intervals (Cls) were computed for each risk factor to quantify their association with 1-year mortality. This process
culminated in the development of a robust mortality prediction model based on these identified risk factors.

ICU admissions in First ICU admissions ExclusionlcriterialC
MIMIC-IV database » with sepsis
(n=73141) (n=20324) Dementia (n=1541)
# Traumatic brain injury (n=1046)
Ischemic stroke (n=1036)

Subarachnoid hemorrhage (n=262)
Intracranial hemorrhage without
Subarachnoid hemorrhage (n=461)
Intracranial infections (n=794)
Epilepsy (n=616)

Underlying SAE
patients (n=15599)

SAE finally enrolled
(n=3882)

Exclusion criteria A

. o Hypoxic ischemic encephalopathy (n=214)
Multiple ICU admissions (n=22207) Hypertensive encephalopathy (n=12)

ICU stay < 24h (n=10619) Metabolic/toxic encephalopathy (n=1588)
Non-septic patients (n=19991)

Psychoactive substance (n=169)

Exclusion criteria B Hyponatremia <120 mmol/I (n=76)
Hyperglycemia >180 mg/dl (n=2133)
Hypoglycemia <54 mg/dl (n=118)
PaCO2 = 80 mmHg (n=1500)

GCS 15, CAM-ICU (-) and Non-delirium patients
confirmed by ICD coding (n=4725)

Age >89 years (n=151)

Figure 1. Selection Process and Exclusion Criteria for Research Subjects. CAM-ICU, Confusion Assessment
Method for the ICU; GCS, Glasgow Coma Scale; MIMIC-IV, medical information mart for intensive care I'V;
ICD, International Classification of Diseases; ICU, intensive care unit; PaCO2, Partial pressure of CO2; SAE,
Sepsis-Associated Encephalopathy.
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Nomogram construction and validation
Using the “rms” R package, a nomogram was developed from the final mortality prediction model based on
logistic regression to visually represent the prediction model. This nomogram enables clinicians to estimate the
probability of 1-year mortality for individual patients with SAE based on their specific clinical characteristics.
The discrimination, calibration, and clinical applicability of the mortality prediction model were assessed
in both the training and validation sets. The “riskRegression” package was utilized to construct receiver
operating characteristic (ROC) curves for the nomogram, SOFA, GCS score, Acute Physiology Score III (APS
I1I), and Logistic Organ Dysfunction System (LODS), allowing evaluation of the model’s discriminative ability.
Calibration curves were generated using the “val.prob” function to assess the agreement between predicted
and observed outcomes. The “rmda” package facilitated decision curve analysis to evaluate clinical utility and
ascertain the model’s net benefit across a range of threshold probabilities. Statistical significance was defined as
a p-value <0.05.

Results

Baseline characteristics

Comprehensive baseline characteristics of SAE patients in the entire cohort, as well as the training (n=2751) and
validation (n=1131) subsets, are delineated in Table 1. Following extensive univariate analysis, no statistically
significant disparities (P>0.05) were observed across various demographic factors, comorbidities, disease
severity indices, vital signs, essential laboratory parameters, or therapeutic interventions between the training
and validation cohorts. Notably, the absence of significant discrepancies, particularly in 1-year mortality,
underscores the rigorous adherence to scientific principles governing random allocation, thereby ensuring
comparability across the cohorts. Patients with SAE were categorized into survival and death groups based on
their 1-year survival outcomes. The supplementary materials provide a comprehensive comparison and analysis
of the baseline characteristics of these two groups within both the training and validation sets.

Development of the nomogram

To identify predictors of 1-year mortality in patients with SAE, we evaluated numerous clinical variables.
Using LASSO regression combined with 10-fold cross-validation, we initially screened for potential predictive
factors (Fig. 2a and b). These preliminary factors were then subjected to binary multivariate regression analysis,
resulting in the identification of 16 factors that were significantly associated with 1-year mortality in SAE
patients (P<0.05) (Fig. 3). Based on these predictive factors, a prognostic nomogram for 1-year mortality in
SAE patients was subsequently developed (Fig. 4).

Nomogram discrimination

The developed prognostic nomogram demonstrated robust discrimination performance, with an area under
the receiver operating characteristic (ROC) curve of 0.881 (95% CI, 0.865 to 0.896) in the training set and
0.859 (95% ClI, 0.830 to 0.888) in the validation set (Fig. 5). These results indicate a high level of accuracy
in predicting 1-year mortality among patients with SAE. Importantly, the discrimination performance of the
constructed nomogram exceeded that of the GCS score and other commonly utilized disease severity scoring
systems, underscoring its superior prognostic utility (Fig. 5). This enhanced predictive capability can provide
clinicians with a more reliable tool for risk stratification and individualized patient management, ultimately may
improving clinical outcomes for patients with SAE.

Nomogram calibration

Calibration curves were drawn for the nomograms in both the training and validation sets to evaluate the accuracy
of the prognostic nomogram. The analysis revealed a significant alignment between the predicted mortality rate
and the actual 1-year mortality rate, underscoring the robust calibration performance of the model across both
datasets (Fig. 6a, b). This consistency highlights the reliability of the nomogram in providing accurate mortality
predictions for patients with SAE, thereby enhancing its clinical applicability for risk assessment and patient
management.

Nomogram clinical utility

Decision curve analysis (DCA) was employed to assess the clinical utility of the developed nomogram. Our
nomogram demonstrated superior clinical utility compared to both the GCS score and other commonly used
disease severity scoring systems (Fig. 7). This analysis underscores the enhanced practicality of our nomogram
in clinical settings, providing clinicians with a more effective tool for prognostic assessment and patient
management.

Discussion

In this study, we developed and validated a prognostic nomogram to predict 1-year mortality in patients with
SAE using a comprehensive set of clinical variables. Our findings demonstrate that the nomogram exhibits
robust discriminative ability and calibration performance, surpassing traditional scoring systems such as the
GCS score and other common disease severity indices. By integrating easily obtainable clinical parameters,
our model provides clinicians with a practical and reliable tool for risk stratification in SAE, facilitating more
informed decision-making and personalized patient management. These results underscore the importance of
incorporating multifaceted clinical data to enhance prognostic accuracy and improve outcomes in critically ill
patients with sepsis.
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Characteristics All patients (n=3882) Training set (n=2751) Validation set (n=1131) | P-value
Male, No. (%) 2,338 (60%) 1,671 (61%) 667 (59%) 0.307
Age, median (IQR) 67.26 (56.56, 76.43) 67.40 (56.43, 76.44) 66.90 (56.92, 76.39) 0.885
Height, median (IQR) (cm) 170.00 (163.00, 178.00) 170.00 (163.00, 178.00) 170.00 (161.50, 178.00) 0.285
Weight, median (IQR) (kg) 80.30 (68.10, 95.30) 81.00 (68.90, 95.55) 80.00 (67.10, 95.00) 0.067
Race, No. (%)

White 2,705 (70%) 1,925 (70%) 780 (69%) 0.534
Hispanic 111 (2.9%) 74 (2.7%) 37 (3.3%) 0.323
Black 201 (5.2%) 147 (5.3%) 54 (4.8%) 0.467
Asian 100 (2.6%) 73 (2.7%) 27 (2.4%) 0.634
Other 765 (20%) 532 (19%) 233 (21%) 0.369
Marital Status, No. (%)

Married 1,935 (50%) 1,384 (50%) 551 (49%) 0.368
Single 941 (24%) 673 (24%) 268 (24%) 0.612
Widowed 416 (11%) 283 (10%) 133 (12%) 0.178
Divorced 269 (6.9%) 184 (6.7%) 85 (7.5%) 0.357
Other 321 (8.3%) 227 (8.3%) 94 (8.3%) 0.951
First Care Unit, No. (%)

Medical ICU 503 (13%) 362 (13%) 141 (12%) 0.560
Surgical ICU 389 (10%) 287 (10%) 102 (9.0%) 0.182
Medical ICU/Surgical ICU 447 (12%) 307 (11%) 140 (12%) 0.280
Neuro Surgical ICU 18 (0.5%) 13 (0.5%) 5(0.4%) 0.899
Trauma Surgical ICU 401 (10%) 281 (10%) 120 (11%) 0.713
Other ICU 2,124 (55%) 1,501 (55%) 623 (55%) 0.767
Underlying Diseases, No. (%)

Myocardial Infarction 701 (18%) 493 (18%) 208 (18%) 0.729
Congestive Heart Failure 1,025 (26%) 709 (26%) 316 (28%) 0.164
Chronic Pulmonary Disease 1,049 (27%) 729 (26%) 320 (28%) 0.253
Diabetes Without Chronic Complication | 712 (18%) 502 (18%) 210 (19%) 0.815
Diabetes With Chronic Complication 201 (5.2%) 141 (5.1%) 60 (5.3%) 0.818
Rheumatic Disease 143 (3.7%) 94 (3.4%) 49 (4.3%) 0.169
Peptic Ulcer Disease 99 (2.6%) 78 (2.8%) 21 (1.9%) 0.079
Peripheral Vascular Disease 550 (14%) 393 (14%) 157 (14%) 0.743
Paraplegia 54 (1.4%) 40 (1.5%) 14 (1.2%) 0.601
Metastatic Solid Tumor 211 (5.4%) 146 (5.3%) 65 (5.7%) 0.583
Malignant Cancer 211 (5.4%) 146 (5.3%) 65 (5.7%) 0.583
CCI, median (IQR) 5.00 (3.00, 7.00) 5.00 (3.00, 7.00) 5.00 (3.00, 7.00) 0.342
Vital Indicators, median (IQR)

Heart Rate (beats/min) * 70.00 (61.00, 80.00) 70.00 (61.00, 80.00) 70.00 (61.00, 79.00) 0.994
Heart Rate (beats/min) *** 101.00 (90.00, 115.00) 101.00 (90.00, 116.00) 100.00 (90.00, 115.00) 0.352
Heart Rate (beats/min) ** 84.00 (76.00, 95.00) 84.00 (76.00, 95.00) 84.00 (76.50, 95.00) 0.903
MAP (mmHg) * 58.00 (52.00, 63.00) 58.00 (52.00, 63.00) 57.50 (52.00, 63.00) 0.620
MAP (mmHg) *** 98.00 (89.00, 109.00) 98.00 (89.00, 109.00) 98.00 (89.00, 109.00) 0.627
MAP (mmHg) ** 74.54 (69.92, 79.65) 74.66 (70.10, 79.75) 74.28 (69.62, 79.50) 0.159
Respiratory Rate (breaths/min) * 12.00 (9.00, 14.00) 12.00 (9.00, 14.00) 12.00 (9.00, 14.00) 0.559
Respiratory Rate (breaths/min) *** 27.00 (23.00, 31.00) 27.00 (23.00, 31.00) 27.00 (24.00, 31.00) 0.152
Respiratory Rate (breaths/min) ** 18.11 (16.19, 20.66) 18.06 (16.17, 20.65) 18.23 (16.21, 20.71) 0.292
Temperature (°C) * 36.33 (35.70, 36.61) 36.33 (35.67, 36.61) 36.33 (35.70, 36.61) 0.720
Temperature (°C) *** 37.40 (37.00, 37.94) 37.40 (37.00, 37.94) 37.40 (37.00, 37.94) 0.799
Temperature (°C) ** 36.83 (36.56, 37.17) 36.83 (36.56, 37.17) 36.83 (36.57, 37.18) 0.587
First day Urine Output (mL) 1720.00 (1142.25, 2468.75) | 1710.00 (1140.00, 2475.00) | 1765.00 (1175.00, 2445.50) | 0.449
Laboratory Indicators, median (IQR)

Hemoglobin (g/L) * 93.00 (82.00, 107.00) 94.00 (82.00, 107.00) 93.00 (82.00, 106.00) 0.423
Hemoglobin (g/L) *** 112.00 (101.00, 126.00) 113.00 (101.00, 126.00) 112.00 (101.00, 126.00) 0.545
Platelets (K/uL) * 145.00 (107.00, 203.00) 145.00 (107.00, 200.00) 147.00 (108.00, 206.00) 0.129
Platelets (K/uL) *** 189.00 (145.00, 253.00) 188.00 (144.00, 249.00) 192.00 (148.00, 259.00) 0.051
White Blood Cells (K/uL) * 10.00 (7.30, 13.00) 9.90 (7.20, 13.00) 10.00 (7.50, 12.90) 0.547

Continued
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Characteristics All patients (n=3882) Training set (n=2751) Validation set (n=1131) | P-value
White Blood Cells (K/uL) *** 14.70 (11.10, 19.00) 14.50 (11.00, 19.10) 15.10 (11.30, 18.95) 0.182
Anion Gap (mmol/L) * 11.00 (10.00, 13.00) 11.00 (10.00, 13.00) 12.00 (10.00, 13.00) 0.373
Anion Gap (mmol/L) *** 14.00 (12.00, 16.00) 14.00 (12.00, 17.00) 14.00 (12.00, 16.00) 0.839
Creatinine (ummol/L) * 70.72 (61.88, 97.24) 70.72 (61.88, 97.24) 70.72 (61.88, 97.24) 0.851
Creatinine (ummol/L) *** 88.40 (70.72, 123.76) 88.40 (70.72, 123.76) 88.40 (70.72, 123.76) 0.447
Glucose (mmol/L) * 6.06 (5.28, 6.94) 6.06 (5.28, 6.94) 6.06 (5.22, 6.94) 0.996
Glucose (mmol/L) *** 7.06 (6.06, 8.17) 7.06 (6.06, 8.17) 7.22 (6.1, 8.28) 0.077
Sodium (mEq/L) * 137.00 (135.00, 139.00) 137.00 (135.00, 139.00) 137.00 (135.00, 139.00) 0.386
Sodium (mEq/L) *** 140.00 (138.00, 142.00) 140.00 (138.00, 142.00) 140.00 (138.00, 142.00) 0.335
Potassium (mEq/L) * 4.00 (3.60, 4.30) 4.00 (3.60, 4.30) 4.00 (3.60, 4.30) 0.783
Potassium (mEq/L) *** 4.50 (4.20, 4.90) 4.50 (4.20, 4.90) 4.50 (4.20, 4.90) 0.196
Prothrombin Time (sec) * 13.40 (12.30, 14.90) 13.40 (12.30, 14.90) 13.40 (12.30, 14.80) 0.945
Prothrombin Time (sec) *** 15.30 (13.60, 17.50) 15.30 (13.60, 17.50) 15.30 (13.60, 17.50) 0.982
Partial Thromboplastin Time (sec) * 28.90 (26.20, 33.00) 28.80 (26.20, 33.00) 29.00 (26.20, 33.25) 0.473
Partial Thromboplastin Time (sec) *** 33.70 (29.10, 43.70) 33.70 (29.00, 43.69) 33.80 (29.35, 44.00) 0.481
Lactate (mmol/L) * 1.30 (0.92, 1.70) 1.30 (0.93, 1.70) 1.30 (0.91, 1.70) 0.705
Lactate (mmol/L) *** 2.20 (1.50, 3.16) 2.20 (1.50, 3.11) 2.20 (1.50, 3.20) 0.204
PH* 7.32(7.27,7.37) 7.32(7.27,7.37) 7.33(7.27,7.37) 0.992
PH 7.43 (7.39,7.47) 7.43 (7.39, 7.47) 7.43 (7.39,7.47) 0.384
PaCO2 (mmHg) * 35.00 (31.00, 39.00) 35.00 (32.00, 39.00) 35.00 (31.00, 39.00) 0.680
PaCO2 (mmHg) *** 46.00 (41.00, 52.00) 46.00 (41.00, 52.00) 46.00 (41.00, 52.00) 0.802
Intervention Measures, No. (%)

Vasoactive Agent Use 2,420 (62%) 1,695 (62%) 725 (64%) 0.146
Albumin Use 95 (2.4%) 70 (2.5%) 25 (2.2%) 0.540
Renal Replacement Therapy 126 (3.2%) 96 (3.5%) 30 (2.7%) 0.181
Invasive Mechanical Ventilation 2,380 (61%) 1,684 (61%) 696 (62%) 0.850
Supplemental Oxygen Therapy 2,337 (60%) 1,667 (61%) 670 (59%) 0.433
Disease severity Score, median (IQR)

First day GCS * 14.00 (9.00, 14.00) 14.00 (9.00, 14.00) 13.00 (8.00, 14.00) 0.162
First day SOFA 6.00 (4.00, 9.00) 6.00 (4.00, 9.00) 6.00 (4.00, 9.00) 0.173
First day APS III 46.00 (33.00, 69.00) 46.00 (32.00, 69.00) 46.00 (33.00, 70.00) 0.591
First day SAPS IT 38.00 (29.00, 48.00) 37.00 (29.00, 48.00) 38.00 (30.00, 49.00) 0.112
First day OASIS 35.00 (29.00, 41.00) 35.00 (29.00, 41.00) 35.00 (29.00, 41.00) 0.562
First day LODS 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 0.297
Outcomes

1-year Mortality (%) 786 (20%) 557 (20%) 229 (20%) >0.999
ICU Mortality (%) 320 (8.2%) 238 (8.7%) 82 (7.3%) 0.149
Hospital Mortality (%) 385 (9.9%) 279 (10%) 106 (9.4%) 0.466
ICU LOS (days) 3.16 (1.59, 6.13) 3.13 (1.54, 6.04) 3.23(1.77,6.24) 0.170
Hospital LOS (days) 8.34 (5.42, 14.15) 8.26 (5.41, 13.83) 8.61 (5.42, 15.26) 0.108

Table 1. Baseline characteristics of patients with SAE in the overall cohort, Training Set, and Validation Set. *:
Minimum recorded values of indicators during the first 24 h of ICU admission; **: Mean values of indicators
during the first 24 h of ICU admission; ***: Maximum recorded values of indicators during the first 24 h of
ICU admission. CCI, Charlson Comorbidity Index; ICU, Intensive Care Unit; IQR, Interquartile Range; GCS,
Glasgow Coma Scale; APS III, Acute Physiology score III; SOFA, Sequential Organ Failure Assessment; LODS,
logistic organ dysfunction system; MAP, Mean arterial pressure; PaCO2, partial pressure of CO2; SAE, Sepsis-
Associated Encephalopathy. SAPS 11, simplified Acute Physiology score II; OASIS, Oxford Acute Severity of
Illness score; LOS, length of Stay.

Our research has made substantial advancements compared to previous studies on prognostic models for
SAE. Earlier studies primarily concentrated on short-term outcomes and, although useful for immediate clinical
decision-making, often lacked the ability to predict long-term outcomes, particularly for SAE patients'!~!°. For
instance, using the MIMIC III database, a user-friendly nomogram was created to predict 30-day mortality risk
in SAE patients, with an AUC of 0.763 [0.736-0.791]'1, indicating moderate predictive performance. Another
study developed a nomogram based on clinical data to predict in-hospital mortality in SAE patients'2. However,
this model included the Simplified Acute Physiology Score I (SAPSII) score as a predictive variable, necessitating
its prior completion, thereby increasing the model’s complexity and limiting its practical application.
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Figure 2. Feature Selection Process Using LASSO Regression and Tenfold Cross-Validation. (a) The graph
illustrates the relationship between the coefficients of clinical features and the lambda values in LASSO
regression. (b) The graph presents the tenfold cross-validation curve for LASSO regression, which aids in
model selection. This figure provides a comprehensive view of the feature selection process and the criteria
used for determining the optimal model parameters. LASSO, least absolute shrinkage and selection operator

regression; A, lambda.

Variable N Odds Ratio P
Malignant Cancer No 2469 * Reference
Yes 282 — 8 — | 1.95(1.39, 2.73) <0.001
Weight (kg) 2751 l 0.99 (0.98,0.99)  <0.001
Charlson Comorbidity Index 2751 ] 1.37 (1.31, 1.45) <0.001
Heart Rate (beats/min) *** 2751 - 1.01 (1.01, 1.02) <0.001
Respiratory Rate (breaths/min) ** 2751 I 1.08 (1.04, 1.11) <0.001
Temperature (°C) ** 2751 —— 0.64 (0.51, 0.81) <0.001
First day Urine Output (ml) 2751 i 1.00 (1.00, 1.00) <0.001
Hemoglobin (g/dL) *** 2751 ‘ 0.99 (0.99, 1.00) 0.02
Anion Gap (mmol/L) *** 2751 I 1.08 (1.05, 1.11) <0.001
Prothrombin Time (sec) * 2751 l 1.09 (1.06, 1.12) <0.001
Partial Thromboplastin Time (sec) *** 2751 l 1.01 (1.00, 1.01) <0.001
Lactate (mmol/L) * 2751 —— 1.56 (1.30, 1.87) <0.001
Lactate (mmol/L) *** 2751 - 0.76 (0.68, 0.84) <0.001
PaCO2 (mmHg) * 2751 l 1.03 (1.02, 1.05) <0.001
First day Supplemental Oxygen TherapyNo 1084 i Reference
Yes 1667 | — @ — I 0.42 (0.33, 0.54) <0.001
First day Glasgow Coma Scale * 2751 L] ; 0.91 (0.88, 0.94) <0.001

Figure 3. Multivariate Binary Logistic Regression Analysis for Predicting 1-Year Mortality in SAE Patients.
This forest plot displays the results of the multivariate binary logistic regression analysis, identifying
independent predictors of 1-year mortality among SAE patients in the training set. Each predictor is
represented with its corresponding odds ratio and 95% confidence interval, providing a clear visualization of
the significant factors contributing to the 1-year mortality risk. PaCO2, Partial pressure of CO2; SAE, Sepsis-
Associated Encephalopathy. *: Minimum recorded values of indicators during the first 24 h of ICU admission;
**: Mean values of indicators during the first 24 h of ICU admission; ***: Maximum recorded values of
indicators during the first 24 h of ICU admission.

Moreover, sophisticated machine learning methods have been employed to construct mortality prediction
models, effectively predicting the 30-day mortality rate or ICU mortality rate in SAE patients'>!%. Among these
models, the APS III score emerged as a significant predictor, yet its necessity for model use adds complexity,
hindering clinical adoption. A notable effort involved a stacking ensemble model that achieved a high AUC
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Figure 4. Nomogram for Predicting 1-Year Mortality in Patients with SAE. The nomogram operates by
assigning points to specific variables based on their respective values. The total points are then summed and
the corresponding 1-year mortality rate is determined by referencing the total point axis. The red dots in the
figure represent a specific case of an SAE patient with the following characteristics: no history of malignant
tumors, a Charlson Comorbidity Index score of 5, weight of 86.2 kg, maximum heart rate of 114 beats per
minute, average respiration rate of 18 breaths per minute, average body temperature of 36.7 degrees Celsius,
first day urine output of 1621 mL, maximum hemoglobin value of 150 g/dL, anion gap of 18 mmol/L,
maximum partial thromboplastin time of 29.2 s, minimum prothrombin time of 11.3 s, maximum lactate value
of 0.9 mmol/L, minimum lactate value of 0.6 mmol/L, PaCO2 of 29 mmHg, and minimum Glasgow Coma
Scale score of 14. The patient also received treatment with supplemental oxygen. The total score for this patient
was calculated to be 625, corresponding to a 1-year mortality rate of 4.38%. PaCO2, Partial pressure of CO2;
SAE, Sepsis-Associated Encephalopathy. *: Minimum recorded values of indicators during the first 24 h of ICU
admission; **: Mean values of indicators during the first 24 h of ICU admission; ***: Maximum recorded values
of indicators during the first 24 h of ICU admission.

(0.807) in the test set and 0.671 in external validation for predicting ICU mortality risk in SAE patients using
common clinical variables'®.

In contrast, our nomogram, based on logistic regression, leverages common clinical features as predictive
factors, making it both interpretable and straightforward. This simplicity enhances its clinical applicability and
ease of use. By focusing on easily obtainable clinical features and ensuring transparency in how these factors
influence mortality, our model offers a significant improvement in both predictive performance and practical
implementation, facilitating broader clinical adoption.
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Figure 5. Comparison of Model Accuracy in Predicting 1-Year Mortality in SAE Patients. The graph compares
the accuracy of different models in predicting the 1-year mortality rate of patients with sepsis-associated
encephalopathy (SAE) in the training set (a) and validation set (b). The established nomogram demonstrated
the highest area under the receiver operating characteristic curve in both datasets, indicating superior
predictive performance compared to other models. APS III, Acute Physiology Score III; AUC, area under the
receiver operating characteristic curve; GCS, Glasgow Coma Scale; LODS, Logistic Organ Dysfunction System;
SAE, Sepsis-Associated Encephalopathy; SOFA, Sequential Organ Failure Assessment.
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Figure 6. Calibration Curve of the Established Nomogram. The graph displays the calibration curves for the
established nomogram, illustrating the agreement between predicted and observed 1-year mortality rates in
the training set (a) and validation set (b). The curves demonstrate good consistency, indicating the nomogram’s
reliable predictive performance in both datasets.

In our predictive model, key risk factors for 1-year mortality in SAE patients include a history of malignancy,
higher CCI scores, elevated minimum lactate levels, lower mean body temperature, and decreased maximum
lactate levels. Conversely, SAE patients receiving oxygen supplementation exhibited lower 1-year mortality rates.
Cancer patients are more susceptible to sepsis than the general population, with sepsis being a leading cause of
ICU admissions among these individuals'®. Compared to non-cancer sepsis patients, those with cancer have a
significantly higher risk of late mortality (OR=2.46, 95% CI: 1.42-4.25, I°’=99%)". Cancer patients undergo
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Figure 7. Decision Curve Analysis (DCA) for Predicting 1-Year Mortality in SAE Patients. The graph presents
the DCA for various models predicting 1-year mortality in patients with SAE in the training set (a) and
validation set (b). The curves assess the clinical utility of the models. The established nomogram demonstrates
significantly higher clinical utility compared to other models in both datasets, indicating its superior
performance in practical application. APS III, Acute Physiology Score III; AUC, area under the receiver
operating characteristic curve; GCS, Glasgow Coma Scale; LODS, Logistic Organ Dysfunction System; SAE,
Sepsis-Associated Encephalopathy; SOFA, Sequential Organ Failure Assessment.

complex immune alterations, with treatments often inducing local or systemic inflammation as a result of tissue
damage and the death of cancer cells'®. Both chronic host state dysregulation due to cancer and acute host
response dysregulation due to sepsis mediate mortality in sepsis patients with pre-existing malignant cancer!®.

The CCI is a well-established predictor of outcomes in sepsis'®, with comorbidities being a significant
determinant of infection-related in-hospital mortality*’. Accumulation of comorbid conditions is closely linked
to increased severity of acute organ dysfunction, underscoring the critical role of comorbidities in the clinical
course and prognosis of septic patients?!. Consequently, the CCI serves as a valuable tool in stratifying risk
and guiding clinical decision-making in patients with sepsis, underscoring the necessity of comprehensive
comorbidity assessment in improving prognostication and individualized patient care.

Body temperature is inversely correlated with the prognosis of patients with sepsis-associated encephalopathy
(SAE), aligning with previous research findings. A systematic review of 42 studies reported mortality rates of
22.2% for septic patients with a fever>38 °C, 31.2% for normothermic patients, and 47.3% for hypothermic
patients (<36.0 °C)?%. Fever appears to enhance the innate immune response, and many bacteria exhibit
reduced replication at higher temperatures?. Conversely, hypothermia is common in sepsis and is associated
with increased mortality?’. Therefore, interventions aimed at warming patients with hypothermic sepsis may
improve prognosis.

The measurement of serum lactate levels is a critical component in the clinical management of critically
ill patients, particularly those with sepsis or septic shock!. Various metabolic changes in sepsis can elevate
blood lactate levels, such as increased glycolysis, heightened Na-K pump activity stimulated by catecholamines,
alterations in pyruvate dehydrogenase activity, and decreased lactate clearance due to impaired liver perfusion?.
Elevated lactate levels are recognized as an independent risk factor for mortality in sepsis patients?S, whereas
lower lactate concentrations are associated with better outcomes®. Lactate clearance, defined by the change
in lactate levels between two time points, is an efficient and cost-effective parameter that holds promise as a
target for quantitative recovery”. Early lactate clearance-guided therapy has been linked to reduced mortality
in sepsis”’. Our study indicates that lower maximum lactate levels are associated with an increased risk of
long-term mortality. This finding may initially seem counterintuitive, as elevated lactate levels are typically
associated with worse outcomes. However, the interpretation of lactate levels must consider the overall clinical
context and trends rather than isolated values. In this study, the association between lower maximum lactate
levels and higher minimum lactate levels as indicators of poor prognosis in SAE patients indeed suggests a
complex relationship. Specifically, when both lower maximum and higher minimum lactate levels are observed,
it implies that the peak lactate level on the first day of ICU admission is relatively close to the trough, which
may indicate suboptimal lactate clearance. This pattern could be indicative of inadequate metabolic recovery or
persistent underlying issues, even if initial improvements are apparent. Thus, in the presence of other indicators
of poor clinical progression, lower maximum lactate levels might reflect more complex clinical conditions that
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contribute to increased mortality risk. Unfortunately, due to the variability in timing for lactate remeasurement
among patients and the absence of standardized protocols, precise lactate clearance rate data are not available
in the MIMIC database. This limitation prevents us from obtaining standard lactate clearance rates and further
elucidating their direct relationship with SAE mortality. We acknowledge this gap and agree that future research
is needed to investigate the exact relationship between standard lactate clearance rates and SAE mortality. Such
studies could provide valuable insights into the role of lactate dynamics in predicting outcomes and guide more
effective management strategies for SAE patients.

The clinical implications of this study are substantial. The developed nomogram, based on readily available
clinical variables, provides a practical and reliable tool for predicting 1-year mortality in patients with SAE.
By incorporating this predictive model into clinical practice, healthcare providers can more accurately stratify
patients based on their risk, facilitating personalized treatment strategies and informed decision-making. This
model aids in identifying high-risk patients who may benefit from intensified monitoring and therapeutic
interventions, thereby potentially improving clinical outcomes. Furthermore, the nomogram’s superior
performance compared to traditional scoring systems underscores its value in enhancing prognostic accuracy.
The use of decision curve analysis further emphasizes the model’s clinical utility, demonstrating its ability to
offer significant net benefits across a range of threshold probabilities. Ultimately, the adoption of this predictive
tool in clinical settings could lead to improved resource allocation, better patient management, and enhanced
communication between clinicians and patients regarding prognosis and care plans.

This study offers several advantages. Firstly, the use of the MIMIC IV database, which includes a large and
diverse patient cohort, enhances the generalizability and robustness of our research findings. The combination
of LASSO regression and multivariate logistic regression ensures rigorous selection of predictive factors, thereby
ensuring the correlation and accuracy of identified risk factors. Moreover, the development of nomograms
incorporates a range of readily available clinical variables, making them practical tools for use across various
clinical settings. The validation of the nomograms in both the training and validation cohorts underscores their
reliability and robustness. Additionally, the inclusion of decision curve analysis to assess clinical utility provides
valuable insights into the practical benefits of nomograms, highlighting their superior performance in predicting
1-year mortality rates in patients with sepsis-associated encephalopathy compared to traditional scoring systems.
Therefore, this study not only introduces a novel predictive model but also establishes a benchmark for future
research aimed at enhancing prognostic tools for critically ill patients.

Several limitations should be noted in this study. Firstly, the retrospective nature of our analysis may
introduce inherent biases, including selection and information biases, potentially affecting the generalizability
of our findings. Prospective studies are warranted to further validate the established nomogram. Additionally,
while the comprehensive use of the MIMIC IV database provides robust data, its restriction to a single healthcare
system may limit the applicability of our results to broader populations and settings. Therefore, we plan to
conduct external validation of our prediction model in diverse settings. Furthermore, although the nomogram
demonstrates strong predictive performance, it relies on variables available within the database. During variable
selection, we carefully considered factors such as the feasibility of data collection, accessibility, and economic
considerations. Finally, while our study included a wide array of clinical variables, the MIMIC-IV database
has inherent limitations, including the absence of certain potential predictive factors such as some biomarkers,
genetic data, electroencephalography, and cranial imaging examinations. These limitations underscore the
need for further research to explore these additional factors and enhance our understanding of SAE. Future
prospective studies should address these limitations and validate our findings across various medical contexts
and patient populations.

Conclusion

In conclusion, this study successfully developed and validated a robust nomogram for predicting 1-year mortality
in patients with SAE. Utilizing a large and diverse cohort from the MIMIC IV database, our model demonstrated
superior predictive performance compared to traditional scoring systems, underscoring its potential utility
in clinical practice. The inclusion of easily obtainable clinical variables ensures the model’s practicality and
accessibility, making it a valuable tool for risk stratification and personalized patient management. Furthermore,
the decision curve analysis highlighted the clinical relevance and net benefit of the nomogram, affirming its
potential to enhance prognostic accuracy and inform therapeutic decision-making. Future studies should focus
on external validation and the incorporation of additional predictive factors to further refine and validate the
model.

Data availability
The anonymised data collected are available as open data via the MIMIC data repository: https://physionet.org/
content/mimiciv/2.1.
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