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Sepsis-associated encephalopathy (SAE) is a frequent and severe complication in septic patients, 
characterized by diffuse brain dysfunction resulting from systemic inflammation. Accurate prediction of 
long-term mortality in these patients is critical for improving clinical outcomes and guiding treatment 
strategies. We conducted a retrospective cohort study using the MIMIC IV database to identify adult 
patients diagnosed with SAE. Patients were randomly divided into a training set (70%) and a validation 
set (30%). Least absolute shrinkage and selection operator regression and multivariate logistic 
regression were employed to identify significant predictors of 1-year mortality, which were then used 
to develop a prognostic nomogram. The model’s discrimination, calibration, and clinical utility were 
assessed using the area under the receiver operating characteristic curve (AUC), calibration plots, and 
decision curve analysis, respectively. A total of 3,882 SAE patients were included in the analysis. The 
nomogram demonstrated strong predictive performance with AUCs of 0.881 (95% CI: 0.865, 0.896) in 
the training set and 0.859 (95% CI: 0.830, 0.888) in the validation set. Calibration plots indicated good 
agreement between predicted and observed 1-year mortality rates. The decision curve analysis showed 
that the nomogram provided greater net benefit across a range of threshold probabilities compared 
to traditional scoring systems such as Glasgow Coma Scale and Sequential Organ Failure Assessment. 
Our study presents a robust and clinically applicable nomogram for predicting 1-year mortality in 
SAE patients. This tool offers superior predictive performance compared to existing severity scoring 
systems and has significant potential to enhance clinical decision-making and patient management in 
critical care settings.
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MIMIC-IV	� Medical Information Mart for Intensive Care IV
OR	� odd ratio
ROC	� receiver operating characteristic
RRT	� Renal Replacement Therapy
SAE	� Sepsis-Associated Encephalopathy
SAPS II	� Simplified Acute Physiology Score II
SOFA	� Sequential Organ Failure Assessment
TRIPOD	� Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagno-

sis

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection1. The 
nervous system is often the first organ system to exhibit functional impairment due to sepsis, leading to sepsis-
associated encephalopathy (SAE)2. SAE manifests as diffuse brain dysfunction stemming from the systemic 
inflammatory response to sepsis, with clinical presentations ranging from mild delirium to severe coma, and is 
associated with increased mortality and long-term physical, mental, and cognitive impairments3–5. 

The severity of SAE correlates with short-term mortality, with more severe consciousness disorders indicating 
a poorer prognosis3. Notably, even mild mental status changes are independently linked to an increased risk of 
short-term mortality3. Beyond short-term outcomes, acute sepsis-related neurological disorders are the organ 
dysfunction most closely associated with long-term mortality and are a key mediator of adverse long-term 
outcomes following sepsis6. Among sepsis survivors who experienced acute neurological dysfunction, the 1-year 
mortality rate is increased by an absolute 6% compared to those without such dysfunction6. Long-term prognosis 
is a crucial outcome, reflecting the overall burden of the disease. Accurate prediction of long-term mortality 
rates enhances doctor-patient communication and informs sustainable medical management decisions7.

As the number of sepsis survivors rises5,8, identifying risk factors associated with the long-term prognosis of 
SAE patients, particularly those that are conventional, readily available, and cost-effective, is vital for developing 
optimized treatment strategies and assessing patient outcomes. This study aims to identify predictive factors for 
1-year mortality in SAE patients and to establish and validate a 1-year mortality prediction model in the form of 
a nomogram, thereby providing clinicians with a valuable tool for evaluating patient prognosis.

Methods
Database and study design
The study utilized the Medical Information Mart for Intensive Care IV (MIMIC IV, Version 2.1) database, which 
contains de-identified health data from over 40,000 patients admitted to the Beth Israel Deaconess Medical 
Center (BIDMC) in Boston, Massachusetts, from 2008 to 20199. MIMIC IV includes comprehensive information 
on patient demographics, vital signs, laboratory test results, medications, procedures, and clinical outcomes, 
making it a valuable resource for conducting epidemiological and clinical research in critical care settings7.

The MIMIC IV database is de-identified in accordance with the Health Insurance Portability and 
Accountability Act, thereby safeguarding patient privacy. Consequently, its utilization for research does not 
necessitate additional patient consent. Researchers obtained access to the MIMIC IV data by completing the 
requisite data use agreement and the Collaborative Institutional Training Initiative Program’s course on “Data or 
Specimens Only Research.” The Institutional Review Board of BIDMC reviewed and approved the processes for 
patient data collection and the establishment of research resources, granting exemptions for informed consent 
and endorsing data-sharing protocols. Given the retrospective design of this study, and to uphold patient 
confidentiality while ensuring compliance with authorized use of the MIMIC IV database, no further ethical 
approval was required. All methods were performed in accordance with relevant guidelines and regulations.

In alignment with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) guidelines10, this study aimed to develop and validate a prognostic model for 1-year 
mortality in patients with SAE. The study involved screening adult patients with SAE from the MIMIC IV 
database, ensuring the exclusion of encephalopathy attributable to non-septic causes. Patients were randomly 
assigned to either a training set or a validation set. Least absolute shrinkage and selection operator (LASSO) 
regression and multivariate binary logistic regression analyses were conducted on the training set to identify 
significant risk factors for 1-year mortality. These identified risk factors were then utilized to construct a 
mortality prediction model, represented as a nomogram. The model’s performance was rigorously assessed by 
evaluating its discrimination, calibration, and clinical utility in both the training and validation cohorts.

Patient selection
The study cohort comprised patients with SAE who were admitted to the intensive care unit (ICU) for the 
first time. The inclusion criteria were as follows: (1) Sepsis 3.0 criteria: patients diagnosed with or suspected 
of infection and an increase of at least 2 points in the Sequential Organ Failure Assessment (SOFA) score; (2) 
Diagnosis of SAE on the first day of ICU admission, defined by a Glasgow Coma Scale (GCS) score of < 15, a 
positive Confusion Assessment Method for the ICU, or corresponding International Classification of Diseases 
codes (2930, 2931, F05). The exclusion criteria included: (1) Any record of subsequent ICU admissions; (2) 
ICU stays shorter than 24 h; (3) Non-septic conditions; (4) Patients with clear consciousness and no delirium 
symptoms; (5) Underlying dementia; (6) Primary brain injuries such as traumatic brain injury, ischemic stroke, 
hemorrhagic stroke, intracranial infection, or epilepsy; (7) Hypoxic-ischemic encephalopathy; (8) Hypertensive 
encephalopathy; (9) Metabolic or toxic encephalopathy; (10) Mental and behavioral disorders due to alcohol, 
drugs, or psychoactive substances; (11) Severe electrolyte and metabolic imbalances, including hyponatremia 
(< 120 mmol/L), hyperglycemia (> 180  mg/dL), hypoglycemia (< 54  mg/dL), and partial pressure of carbon 
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dioxide (PaCO2) ≥ 80 mmHg; (12) Patients aged 89 years or older. A total of 3882 patients meeting the inclusion 
criteria were selected for analysis (Fig. 1).

Data extraction and preprocessing
Research data were extracted from the MIMIC IV database, encompassing variables such as age, gender, weight, 
marital status, race, underlying comorbidities, and the Charlson Comorbidity Index (CCI). Clinical data from 
the first day of ICU admission included vital signs, key laboratory parameters, the use of invasive mechanical 
ventilation, renal replacement therapy (RRT), vasoactive medications, albumin administration, the GCS 
score, and other critical care scoring indices. Vasoactive medications comprised norepinephrine, epinephrine, 
dopamine, dobutamine, vasopressin, and milrinone. For variables with multiple measurements, the MIMIC 
concept was utilized to systematically extract the minimum, maximum, and average values where applicable. 
Time-related indicators were extracted to calculate ICU mortality, in-hospital mortality, 28-day mortality, 1-year 
mortality, length of hospital stay (LOS), and ICU LOS. The primary outcome measure was the 1-year mortality, 
determined by the survival status one year post ICU admission.

Data processing were conducted using Stata software (version 17.0, Stata Corporation LLC, College Station, 
USA). Outliers were identified through histogram analysis and addressed using the Winsorization technique via 
the Winsor2 command. Missing data were imputed using multiple imputation methods to ensure robust and 
accurate analysis.

Study cohorts
Using R software (version 4.3.2, R Foundation for Statistical Computing, Vienna, Austria), the cohort of 3,882 
patients with SAE was randomly divided into a training set (70%) and a validation set (30%) for the development 
and validation of predictive models, with the random seed set to 3684. The ‘gtsummary’ package was employed 
to perform univariate analyses on both the training and validation sets, assessing differences between the two 
groups and verifying the effectiveness of the randomization process. This approach ensures that both subsets 
are representative of the overall patient population, thereby supporting the robustness of the predictive models.

Model development
Following the implementation of the ‘glmnet’ R package, regression analysis was performed. LASSO regression 
was utilized on the training set to discern significant risk factors for 1-year mortality. This technique facilitates 
feature selection by constraining less significant coefficients to zero, thereby enhancing model interpretability. 
Subsequently, the variables identified through LASSO regression were further analyzed using multivariate 
binary logistic regression to determine independent risk factors for 1-year mortality in patients with SAE. The 
‘car’ R package was employed to calculate the variance inflation factor. Odds ratios (ORs) and 95% confidence 
intervals (CIs) were computed for each risk factor to quantify their association with 1-year mortality. This process 
culminated in the development of a robust mortality prediction model based on these identified risk factors.

Figure 1.  Selection Process and Exclusion Criteria for Research Subjects. CAM-ICU, Confusion Assessment 
Method for the ICU; GCS, Glasgow Coma Scale; MIMIC-IV, medical information mart for intensive care IV; 
ICD, International Classification of Diseases; ICU, intensive care unit; PaCO2, Partial pressure of CO2; SAE, 
Sepsis-Associated Encephalopathy.
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Nomogram construction and validation
Using the “rms” R package, a nomogram was developed from the final mortality prediction model based on 
logistic regression to visually represent the prediction model. This nomogram enables clinicians to estimate the 
probability of 1-year mortality for individual patients with SAE based on their specific clinical characteristics.

The discrimination, calibration, and clinical applicability of the mortality prediction model were assessed 
in both the training and validation sets. The “riskRegression” package was utilized to construct receiver 
operating characteristic (ROC) curves for the nomogram, SOFA, GCS score, Acute Physiology Score III (APS 
III), and Logistic Organ Dysfunction System (LODS), allowing evaluation of the model’s discriminative ability. 
Calibration curves were generated using the “val.prob” function to assess the agreement between predicted 
and observed outcomes. The “rmda” package facilitated decision curve analysis to evaluate clinical utility and 
ascertain the model’s net benefit across a range of threshold probabilities. Statistical significance was defined as 
a p-value < 0.05.

Results
Baseline characteristics
Comprehensive baseline characteristics of SAE patients in the entire cohort, as well as the training (n = 2751) and 
validation (n = 1131) subsets, are delineated in Table 1. Following extensive univariate analysis, no statistically 
significant disparities (P > 0.05) were observed across various demographic factors, comorbidities, disease 
severity indices, vital signs, essential laboratory parameters, or therapeutic interventions between the training 
and validation cohorts. Notably, the absence of significant discrepancies, particularly in 1-year mortality, 
underscores the rigorous adherence to scientific principles governing random allocation, thereby ensuring 
comparability across the cohorts. Patients with SAE were categorized into survival and death groups based on 
their 1-year survival outcomes. The supplementary materials provide a comprehensive comparison and analysis 
of the baseline characteristics of these two groups within both the training and validation sets.

Development of the nomogram
To identify predictors of 1-year mortality in patients with SAE, we evaluated numerous clinical variables. 
Using LASSO regression combined with 10-fold cross-validation, we initially screened for potential predictive 
factors (Fig. 2a and b). These preliminary factors were then subjected to binary multivariate regression analysis, 
resulting in the identification of 16 factors that were significantly associated with 1-year mortality in SAE 
patients (P < 0.05) (Fig. 3). Based on these predictive factors, a prognostic nomogram for 1-year mortality in 
SAE patients was subsequently developed (Fig. 4).

Nomogram discrimination
The developed prognostic nomogram demonstrated robust discrimination performance, with an area under 
the receiver operating characteristic (ROC) curve of 0.881 (95% CI, 0.865 to 0.896) in the training set and 
0.859 (95% CI, 0.830 to 0.888) in the validation set (Fig.  5). These results indicate a high level of accuracy 
in predicting 1-year mortality among patients with SAE. Importantly, the discrimination performance of the 
constructed nomogram exceeded that of the GCS score and other commonly utilized disease severity scoring 
systems, underscoring its superior prognostic utility (Fig. 5). This enhanced predictive capability can provide 
clinicians with a more reliable tool for risk stratification and individualized patient management, ultimately may 
improving clinical outcomes for patients with SAE.

Nomogram calibration
Calibration curves were drawn for the nomograms in both the training and validation sets to evaluate the accuracy 
of the prognostic nomogram. The analysis revealed a significant alignment between the predicted mortality rate 
and the actual 1-year mortality rate, underscoring the robust calibration performance of the model across both 
datasets (Fig. 6a, b). This consistency highlights the reliability of the nomogram in providing accurate mortality 
predictions for patients with SAE, thereby enhancing its clinical applicability for risk assessment and patient 
management.

Nomogram clinical utility
Decision curve analysis (DCA) was employed to assess the clinical utility of the developed nomogram. Our 
nomogram demonstrated superior clinical utility compared to both the GCS score and other commonly used 
disease severity scoring systems (Fig. 7). This analysis underscores the enhanced practicality of our nomogram 
in clinical settings, providing clinicians with a more effective tool for prognostic assessment and patient 
management.

Discussion
In this study, we developed and validated a prognostic nomogram to predict 1-year mortality in patients with 
SAE using a comprehensive set of clinical variables. Our findings demonstrate that the nomogram exhibits 
robust discriminative ability and calibration performance, surpassing traditional scoring systems such as the 
GCS score and other common disease severity indices. By integrating easily obtainable clinical parameters, 
our model provides clinicians with a practical and reliable tool for risk stratification in SAE, facilitating more 
informed decision-making and personalized patient management. These results underscore the importance of 
incorporating multifaceted clinical data to enhance prognostic accuracy and improve outcomes in critically ill 
patients with sepsis.
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Characteristics All patients (n = 3882) Training set (n = 2751) Validation set (n = 1131) P-value

Male, No. (%) 2,338 (60%) 1,671 (61%) 667 (59%) 0.307

Age, median (IQR) 67.26 (56.56, 76.43) 67.40 (56.43, 76.44) 66.90 (56.92, 76.39) 0.885

Height, median (IQR) (cm) 170.00 (163.00, 178.00) 170.00 (163.00, 178.00) 170.00 (161.50, 178.00) 0.285

Weight, median (IQR) (kg) 80.30 (68.10, 95.30) 81.00 (68.90, 95.55) 80.00 (67.10, 95.00) 0.067

Race, No. (%)

White 2,705 (70%) 1,925 (70%) 780 (69%) 0.534

Hispanic 111 (2.9%) 74 (2.7%) 37 (3.3%) 0.323

Black 201 (5.2%) 147 (5.3%) 54 (4.8%) 0.467

Asian 100 (2.6%) 73 (2.7%) 27 (2.4%) 0.634

Other 765 (20%) 532 (19%) 233 (21%) 0.369

Marital Status, No. (%)

Married 1,935 (50%) 1,384 (50%) 551 (49%) 0.368

Single 941 (24%) 673 (24%) 268 (24%) 0.612

Widowed 416 (11%) 283 (10%) 133 (12%) 0.178

Divorced 269 (6.9%) 184 (6.7%) 85 (7.5%) 0.357

Other 321 (8.3%) 227 (8.3%) 94 (8.3%) 0.951

First Care Unit, No. (%)

Medical ICU 503 (13%) 362 (13%) 141 (12%) 0.560

Surgical ICU 389 (10%) 287 (10%) 102 (9.0%) 0.182

Medical ICU/Surgical ICU 447 (12%) 307 (11%) 140 (12%) 0.280

Neuro Surgical ICU 18 (0.5%) 13 (0.5%) 5 (0.4%) 0.899

Trauma Surgical ICU 401 (10%) 281 (10%) 120 (11%) 0.713

Other ICU 2,124 (55%) 1,501 (55%) 623 (55%) 0.767

Underlying Diseases, No. (%)

Myocardial Infarction 701 (18%) 493 (18%) 208 (18%) 0.729

Congestive Heart Failure 1,025 (26%) 709 (26%) 316 (28%) 0.164

Chronic Pulmonary Disease 1,049 (27%) 729 (26%) 320 (28%) 0.253

Diabetes Without Chronic Complication 712 (18%) 502 (18%) 210 (19%) 0.815

Diabetes With Chronic Complication 201 (5.2%) 141 (5.1%) 60 (5.3%) 0.818

Rheumatic Disease 143 (3.7%) 94 (3.4%) 49 (4.3%) 0.169

Peptic Ulcer Disease 99 (2.6%) 78 (2.8%) 21 (1.9%) 0.079

Peripheral Vascular Disease 550 (14%) 393 (14%) 157 (14%) 0.743

Paraplegia 54 (1.4%) 40 (1.5%) 14 (1.2%) 0.601

Metastatic Solid Tumor 211 (5.4%) 146 (5.3%) 65 (5.7%) 0.583

Malignant Cancer 211 (5.4%) 146 (5.3%) 65 (5.7%) 0.583

CCI, median (IQR) 5.00 (3.00, 7.00) 5.00 (3.00, 7.00) 5.00 (3.00, 7.00) 0.342

Vital Indicators, median (IQR)

Heart Rate (beats/min) * 70.00 (61.00, 80.00) 70.00 (61.00, 80.00) 70.00 (61.00, 79.00) 0.994

Heart Rate (beats/min) *** 101.00 (90.00, 115.00) 101.00 (90.00, 116.00) 100.00 (90.00, 115.00) 0.352

Heart Rate (beats/min) ** 84.00 (76.00, 95.00) 84.00 (76.00, 95.00) 84.00 (76.50, 95.00) 0.903

MAP (mmHg) * 58.00 (52.00, 63.00) 58.00 (52.00, 63.00) 57.50 (52.00, 63.00) 0.620

MAP (mmHg) *** 98.00 (89.00, 109.00) 98.00 (89.00, 109.00) 98.00 (89.00, 109.00) 0.627

MAP (mmHg) ** 74.54 (69.92, 79.65) 74.66 (70.10, 79.75) 74.28 (69.62, 79.50) 0.159

Respiratory Rate (breaths/min) * 12.00 (9.00, 14.00) 12.00 (9.00, 14.00) 12.00 (9.00, 14.00) 0.559

Respiratory Rate (breaths/min) *** 27.00 (23.00, 31.00) 27.00 (23.00, 31.00) 27.00 (24.00, 31.00) 0.152

Respiratory Rate (breaths/min) ** 18.11 (16.19, 20.66) 18.06 (16.17, 20.65) 18.23 (16.21, 20.71) 0.292

Temperature (°C) * 36.33 (35.70, 36.61) 36.33 (35.67, 36.61) 36.33 (35.70, 36.61) 0.720

Temperature (°C) *** 37.40 (37.00, 37.94) 37.40 (37.00, 37.94) 37.40 (37.00, 37.94) 0.799

Temperature (°C) ** 36.83 (36.56, 37.17) 36.83 (36.56, 37.17) 36.83 (36.57, 37.18) 0.587

First day Urine Output (mL) 1720.00 (1142.25, 2468.75) 1710.00 (1140.00, 2475.00) 1765.00 (1175.00, 2445.50) 0.449

Laboratory Indicators, median (IQR)

Hemoglobin (g/L) * 93.00 (82.00, 107.00) 94.00 (82.00, 107.00) 93.00 (82.00, 106.00) 0.423

Hemoglobin (g/L) *** 112.00 (101.00, 126.00) 113.00 (101.00, 126.00) 112.00 (101.00, 126.00) 0.545

Platelets (K/uL) * 145.00 (107.00, 203.00) 145.00 (107.00, 200.00) 147.00 (108.00, 206.00) 0.129

Platelets (K/uL) *** 189.00 (145.00, 253.00) 188.00 (144.00, 249.00) 192.00 (148.00, 259.00) 0.051

White Blood Cells (K/uL) * 10.00 (7.30, 13.00) 9.90 (7.20, 13.00) 10.00 (7.50, 12.90) 0.547

Continued
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Our research has made substantial advancements compared to previous studies on prognostic models for 
SAE. Earlier studies primarily concentrated on short-term outcomes and, although useful for immediate clinical 
decision-making, often lacked the ability to predict long-term outcomes, particularly for SAE patients11–15. For 
instance, using the MIMIC III database, a user-friendly nomogram was created to predict 30-day mortality risk 
in SAE patients, with an AUC of 0.763 [0.736–0.791]11, indicating moderate predictive performance. Another 
study developed a nomogram based on clinical data to predict in-hospital mortality in SAE patients12. However, 
this model included the Simplified Acute Physiology Score II (SAPS II) score as a predictive variable, necessitating 
its prior completion, thereby increasing the model’s complexity and limiting its practical application.

Characteristics All patients (n = 3882) Training set (n = 2751) Validation set (n = 1131) P-value

White Blood Cells (K/uL) *** 14.70 (11.10, 19.00) 14.50 (11.00, 19.10) 15.10 (11.30, 18.95) 0.182

Anion Gap (mmol/L) * 11.00 (10.00, 13.00) 11.00 (10.00, 13.00) 12.00 (10.00, 13.00) 0.373

Anion Gap (mmol/L) *** 14.00 (12.00, 16.00) 14.00 (12.00, 17.00) 14.00 (12.00, 16.00) 0.839

Creatinine (µmmol/L) * 70.72 (61.88, 97.24) 70.72 (61.88, 97.24) 70.72 (61.88, 97.24) 0.851

Creatinine (µmmol/L) *** 88.40 (70.72, 123.76) 88.40 (70.72, 123.76) 88.40 (70.72, 123.76) 0.447

Glucose (mmol/L) * 6.06 (5.28, 6.94) 6.06 (5.28, 6.94) 6.06 (5.22, 6.94) 0.996

Glucose (mmol/L) *** 7.06 (6.06, 8.17) 7.06 (6.06, 8.17) 7.22 (6.11, 8.28) 0.077

Sodium (mEq/L) * 137.00 (135.00, 139.00) 137.00 (135.00, 139.00) 137.00 (135.00, 139.00) 0.386

Sodium (mEq/L) *** 140.00 (138.00, 142.00) 140.00 (138.00, 142.00) 140.00 (138.00, 142.00) 0.335

Potassium (mEq/L) * 4.00 (3.60, 4.30) 4.00 (3.60, 4.30) 4.00 (3.60, 4.30) 0.783

Potassium (mEq/L) *** 4.50 (4.20, 4.90) 4.50 (4.20, 4.90) 4.50 (4.20, 4.90) 0.196

Prothrombin Time (sec) * 13.40 (12.30, 14.90) 13.40 (12.30, 14.90) 13.40 (12.30, 14.80) 0.945

Prothrombin Time (sec) *** 15.30 (13.60, 17.50) 15.30 (13.60, 17.50) 15.30 (13.60, 17.50) 0.982

Partial Thromboplastin Time (sec) * 28.90 (26.20, 33.00) 28.80 (26.20, 33.00) 29.00 (26.20, 33.25) 0.473

Partial Thromboplastin Time (sec) *** 33.70 (29.10, 43.70) 33.70 (29.00, 43.69) 33.80 (29.35, 44.00) 0.481

Lactate (mmol/L) * 1.30 (0.92, 1.70) 1.30 (0.93, 1.70) 1.30 (0.91, 1.70) 0.705

Lactate (mmol/L) *** 2.20 (1.50, 3.16) 2.20 (1.50, 3.11) 2.20 (1.50, 3.20) 0.204

PH * 7.32 (7.27, 7.37) 7.32 (7.27, 7.37) 7.33 (7.27, 7.37) 0.992

PH *** 7.43 (7.39, 7.47) 7.43 (7.39, 7.47) 7.43 (7.39, 7.47) 0.384

PaCO2 (mmHg) * 35.00 (31.00, 39.00) 35.00 (32.00, 39.00) 35.00 (31.00, 39.00) 0.680

PaCO2 (mmHg) *** 46.00 (41.00, 52.00) 46.00 (41.00, 52.00) 46.00 (41.00, 52.00) 0.802

Intervention Measures, No. (%)

Vasoactive Agent Use 2,420 (62%) 1,695 (62%) 725 (64%) 0.146

Albumin Use 95 (2.4%) 70 (2.5%) 25 (2.2%) 0.540

Renal Replacement Therapy 126 (3.2%) 96 (3.5%) 30 (2.7%) 0.181

Invasive Mechanical Ventilation 2,380 (61%) 1,684 (61%) 696 (62%) 0.850

Supplemental Oxygen Therapy 2,337 (60%) 1,667 (61%) 670 (59%) 0.433

Disease severity Score, median (IQR)

First day GCS * 14.00 (9.00, 14.00) 14.00 (9.00, 14.00) 13.00 (8.00, 14.00) 0.162

First day SOFA 6.00 (4.00, 9.00) 6.00 (4.00, 9.00) 6.00 (4.00, 9.00) 0.173

First day APS III 46.00 (33.00, 69.00) 46.00 (32.00, 69.00) 46.00 (33.00, 70.00) 0.591

First day SAPS II 38.00 (29.00, 48.00) 37.00 (29.00, 48.00) 38.00 (30.00, 49.00) 0.112

First day OASIS 35.00 (29.00, 41.00) 35.00 (29.00, 41.00) 35.00 (29.00, 41.00) 0.562

First day LODS 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 0.297

Outcomes

1-year Mortality (%) 786 (20%) 557 (20%) 229 (20%) > 0.999

ICU Mortality (%) 320 (8.2%) 238 (8.7%) 82 (7.3%) 0.149

Hospital Mortality (%) 385 (9.9%) 279 (10%) 106 (9.4%) 0.466

ICU LOS (days) 3.16 (1.59, 6.13) 3.13 (1.54, 6.04) 3.23 (1.77, 6.24) 0.170

Hospital LOS (days) 8.34 (5.42, 14.15) 8.26 (5.41, 13.83) 8.61 (5.42, 15.26) 0.108

Table 1.  Baseline characteristics of patients with SAE in the overall cohort, Training Set, and Validation Set. *: 
Minimum recorded values of indicators during the first 24 h of ICU admission; **: Mean values of indicators 
during the first 24 h of ICU admission; ***: Maximum recorded values of indicators during the first 24 h of 
ICU admission. CCI, Charlson Comorbidity Index; ICU, Intensive Care Unit; IQR, Interquartile Range; GCS, 
Glasgow Coma Scale; APS III, Acute Physiology score III; SOFA, Sequential Organ Failure Assessment; LODS, 
logistic organ dysfunction system; MAP, Mean arterial pressure; PaCO2, partial pressure of CO2; SAE, Sepsis-
Associated Encephalopathy. SAPS II, simplified Acute Physiology score II; OASIS, Oxford Acute Severity of 
Illness score; LOS, length of Stay.
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Moreover, sophisticated machine learning methods have been employed to construct mortality prediction 
models, effectively predicting the 30-day mortality rate or ICU mortality rate in SAE patients13,14. Among these 
models, the APS III score emerged as a significant predictor, yet its necessity for model use adds complexity, 
hindering clinical adoption. A notable effort involved a stacking ensemble model that achieved a high AUC 

Figure 3.  Multivariate Binary Logistic Regression Analysis for Predicting 1-Year Mortality in SAE Patients. 
This forest plot displays the results of the multivariate binary logistic regression analysis, identifying 
independent predictors of 1-year mortality among SAE patients in the training set. Each predictor is 
represented with its corresponding odds ratio and 95% confidence interval, providing a clear visualization of 
the significant factors contributing to the 1-year mortality risk. PaCO2, Partial pressure of CO2; SAE, Sepsis-
Associated Encephalopathy. *: Minimum recorded values of indicators during the first 24 h of ICU admission; 
**: Mean values of indicators during the first 24 h of ICU admission; ***: Maximum recorded values of 
indicators during the first 24 h of ICU admission.

 

Figure 2.  Feature Selection Process Using LASSO Regression and Tenfold Cross-Validation. (a) The graph 
illustrates the relationship between the coefficients of clinical features and the lambda values in LASSO 
regression. (b) The graph presents the tenfold cross-validation curve for LASSO regression, which aids in 
model selection. This figure provides a comprehensive view of the feature selection process and the criteria 
used for determining the optimal model parameters. LASSO, least absolute shrinkage and selection operator 
regression; λ, lambda.
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(0.807) in the test set and 0.671 in external validation for predicting ICU mortality risk in SAE patients using 
common clinical variables15.

In contrast, our nomogram, based on logistic regression, leverages common clinical features as predictive 
factors, making it both interpretable and straightforward. This simplicity enhances its clinical applicability and 
ease of use. By focusing on easily obtainable clinical features and ensuring transparency in how these factors 
influence mortality, our model offers a significant improvement in both predictive performance and practical 
implementation, facilitating broader clinical adoption.

Figure 4.  Nomogram for Predicting 1-Year Mortality in Patients with SAE. The nomogram operates by 
assigning points to specific variables based on their respective values. The total points are then summed and 
the corresponding 1-year mortality rate is determined by referencing the total point axis. The red dots in the 
figure represent a specific case of an SAE patient with the following characteristics: no history of malignant 
tumors, a Charlson Comorbidity Index score of 5, weight of 86.2 kg, maximum heart rate of 114 beats per 
minute, average respiration rate of 18 breaths per minute, average body temperature of 36.7 degrees Celsius, 
first day urine output of 1621 mL, maximum hemoglobin value of 150 g/dL, anion gap of 18 mmol/L, 
maximum partial thromboplastin time of 29.2 s, minimum prothrombin time of 11.3 s, maximum lactate value 
of 0.9 mmol/L, minimum lactate value of 0.6 mmol/L, PaCO2 of 29 mmHg, and minimum Glasgow Coma 
Scale score of 14. The patient also received treatment with supplemental oxygen. The total score for this patient 
was calculated to be 625, corresponding to a 1-year mortality rate of 4.38%. PaCO2, Partial pressure of CO2; 
SAE, Sepsis-Associated Encephalopathy. *: Minimum recorded values of indicators during the first 24 h of ICU 
admission; **: Mean values of indicators during the first 24 h of ICU admission; ***: Maximum recorded values 
of indicators during the first 24 h of ICU admission.
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In our predictive model, key risk factors for 1-year mortality in SAE patients include a history of malignancy, 
higher CCI scores, elevated minimum lactate levels, lower mean body temperature, and decreased maximum 
lactate levels. Conversely, SAE patients receiving oxygen supplementation exhibited lower 1-year mortality rates. 
Cancer patients are more susceptible to sepsis than the general population, with sepsis being a leading cause of 
ICU admissions among these individuals16. Compared to non-cancer sepsis patients, those with cancer have a 
significantly higher risk of late mortality (OR = 2.46, 95% CI: 1.42–4.25, I²=99%)17. Cancer patients undergo 

Figure 6.  Calibration Curve of the Established Nomogram. The graph displays the calibration curves for the 
established nomogram, illustrating the agreement between predicted and observed 1-year mortality rates in 
the training set (a) and validation set (b). The curves demonstrate good consistency, indicating the nomogram’s 
reliable predictive performance in both datasets.

 

Figure 5.  Comparison of Model Accuracy in Predicting 1-Year Mortality in SAE Patients. The graph compares 
the accuracy of different models in predicting the 1-year mortality rate of patients with sepsis-associated 
encephalopathy (SAE) in the training set (a) and validation set (b). The established nomogram demonstrated 
the highest area under the receiver operating characteristic curve in both datasets, indicating superior 
predictive performance compared to other models. APS III, Acute Physiology Score III; AUC, area under the 
receiver operating characteristic curve; GCS, Glasgow Coma Scale; LODS, Logistic Organ Dysfunction System; 
SAE, Sepsis-Associated Encephalopathy; SOFA, Sequential Organ Failure Assessment.
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complex immune alterations, with treatments often inducing local or systemic inflammation as a result of tissue 
damage and the death of cancer cells18. Both chronic host state dysregulation due to cancer and acute host 
response dysregulation due to sepsis mediate mortality in sepsis patients with pre-existing malignant cancer16.

The CCI is a well-established predictor of outcomes in sepsis19, with comorbidities being a significant 
determinant of infection-related in-hospital mortality20. Accumulation of comorbid conditions is closely linked 
to increased severity of acute organ dysfunction, underscoring the critical role of comorbidities in the clinical 
course and prognosis of septic patients21. Consequently, the CCI serves as a valuable tool in stratifying risk 
and guiding clinical decision-making in patients with sepsis, underscoring the necessity of comprehensive 
comorbidity assessment in improving prognostication and individualized patient care.

Body temperature is inversely correlated with the prognosis of patients with sepsis-associated encephalopathy 
(SAE), aligning with previous research findings. A systematic review of 42 studies reported mortality rates of 
22.2% for septic patients with a fever > 38 °C, 31.2% for normothermic patients, and 47.3% for hypothermic 
patients (< 36.0  °C)22. Fever appears to enhance the innate immune response, and many bacteria exhibit 
reduced replication at higher temperatures23. Conversely, hypothermia is common in sepsis and is associated 
with increased mortality24. Therefore, interventions aimed at warming patients with hypothermic sepsis may 
improve prognosis.

The measurement of serum lactate levels is a critical component in the clinical management of critically 
ill patients, particularly those with sepsis or septic shock1. Various metabolic changes in sepsis can elevate 
blood lactate levels, such as increased glycolysis, heightened Na-K pump activity stimulated by catecholamines, 
alterations in pyruvate dehydrogenase activity, and decreased lactate clearance due to impaired liver perfusion25. 
Elevated lactate levels are recognized as an independent risk factor for mortality in sepsis patients26, whereas 
lower lactate concentrations are associated with better outcomes25. Lactate clearance, defined by the change 
in lactate levels between two time points, is an efficient and cost-effective parameter that holds promise as a 
target for quantitative recovery27. Early lactate clearance-guided therapy has been linked to reduced mortality 
in sepsis27. Our study indicates that lower maximum lactate levels are associated with an increased risk of 
long-term mortality. This finding may initially seem counterintuitive, as elevated lactate levels are typically 
associated with worse outcomes. However, the interpretation of lactate levels must consider the overall clinical 
context and trends rather than isolated values. In this study, the association between lower maximum lactate 
levels and higher minimum lactate levels as indicators of poor prognosis in SAE patients indeed suggests a 
complex relationship. Specifically, when both lower maximum and higher minimum lactate levels are observed, 
it implies that the peak lactate level on the first day of ICU admission is relatively close to the trough, which 
may indicate suboptimal lactate clearance. This pattern could be indicative of inadequate metabolic recovery or 
persistent underlying issues, even if initial improvements are apparent. Thus, in the presence of other indicators 
of poor clinical progression, lower maximum lactate levels might reflect more complex clinical conditions that 

Figure 7.  Decision Curve Analysis (DCA) for Predicting 1-Year Mortality in SAE Patients. The graph presents 
the DCA for various models predicting 1-year mortality in patients with SAE in the training set (a) and 
validation set (b). The curves assess the clinical utility of the models. The established nomogram demonstrates 
significantly higher clinical utility compared to other models in both datasets, indicating its superior 
performance in practical application. APS III, Acute Physiology Score III; AUC, area under the receiver 
operating characteristic curve; GCS, Glasgow Coma Scale; LODS, Logistic Organ Dysfunction System; SAE, 
Sepsis-Associated Encephalopathy; SOFA, Sequential Organ Failure Assessment.
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contribute to increased mortality risk. Unfortunately, due to the variability in timing for lactate remeasurement 
among patients and the absence of standardized protocols, precise lactate clearance rate data are not available 
in the MIMIC database. This limitation prevents us from obtaining standard lactate clearance rates and further 
elucidating their direct relationship with SAE mortality. We acknowledge this gap and agree that future research 
is needed to investigate the exact relationship between standard lactate clearance rates and SAE mortality. Such 
studies could provide valuable insights into the role of lactate dynamics in predicting outcomes and guide more 
effective management strategies for SAE patients.

The clinical implications of this study are substantial. The developed nomogram, based on readily available 
clinical variables, provides a practical and reliable tool for predicting 1-year mortality in patients with SAE. 
By incorporating this predictive model into clinical practice, healthcare providers can more accurately stratify 
patients based on their risk, facilitating personalized treatment strategies and informed decision-making. This 
model aids in identifying high-risk patients who may benefit from intensified monitoring and therapeutic 
interventions, thereby potentially improving clinical outcomes. Furthermore, the nomogram’s superior 
performance compared to traditional scoring systems underscores its value in enhancing prognostic accuracy. 
The use of decision curve analysis further emphasizes the model’s clinical utility, demonstrating its ability to 
offer significant net benefits across a range of threshold probabilities. Ultimately, the adoption of this predictive 
tool in clinical settings could lead to improved resource allocation, better patient management, and enhanced 
communication between clinicians and patients regarding prognosis and care plans.

This study offers several advantages. Firstly, the use of the MIMIC IV database, which includes a large and 
diverse patient cohort, enhances the generalizability and robustness of our research findings. The combination 
of LASSO regression and multivariate logistic regression ensures rigorous selection of predictive factors, thereby 
ensuring the correlation and accuracy of identified risk factors. Moreover, the development of nomograms 
incorporates a range of readily available clinical variables, making them practical tools for use across various 
clinical settings. The validation of the nomograms in both the training and validation cohorts underscores their 
reliability and robustness. Additionally, the inclusion of decision curve analysis to assess clinical utility provides 
valuable insights into the practical benefits of nomograms, highlighting their superior performance in predicting 
1-year mortality rates in patients with sepsis-associated encephalopathy compared to traditional scoring systems. 
Therefore, this study not only introduces a novel predictive model but also establishes a benchmark for future 
research aimed at enhancing prognostic tools for critically ill patients.

Several limitations should be noted in this study. Firstly, the retrospective nature of our analysis may 
introduce inherent biases, including selection and information biases, potentially affecting the generalizability 
of our findings. Prospective studies are warranted to further validate the established nomogram. Additionally, 
while the comprehensive use of the MIMIC IV database provides robust data, its restriction to a single healthcare 
system may limit the applicability of our results to broader populations and settings. Therefore, we plan to 
conduct external validation of our prediction model in diverse settings. Furthermore, although the nomogram 
demonstrates strong predictive performance, it relies on variables available within the database. During variable 
selection, we carefully considered factors such as the feasibility of data collection, accessibility, and economic 
considerations. Finally, while our study included a wide array of clinical variables, the MIMIC-IV database 
has inherent limitations, including the absence of certain potential predictive factors such as some biomarkers, 
genetic data, electroencephalography, and cranial imaging examinations. These limitations underscore the 
need for further research to explore these additional factors and enhance our understanding of SAE. Future 
prospective studies should address these limitations and validate our findings across various medical contexts 
and patient populations.

Conclusion
In conclusion, this study successfully developed and validated a robust nomogram for predicting 1-year mortality 
in patients with SAE. Utilizing a large and diverse cohort from the MIMIC IV database, our model demonstrated 
superior predictive performance compared to traditional scoring systems, underscoring its potential utility 
in clinical practice. The inclusion of easily obtainable clinical variables ensures the model’s practicality and 
accessibility, making it a valuable tool for risk stratification and personalized patient management. Furthermore, 
the decision curve analysis highlighted the clinical relevance and net benefit of the nomogram, affirming its 
potential to enhance prognostic accuracy and inform therapeutic decision-making. Future studies should focus 
on external validation and the incorporation of additional predictive factors to further refine and validate the 
model.

Data availability
The anonymised data collected are available as open data via the MIMIC data repository: https://physionet.org/
content/mimiciv/2.1.
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