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The epidermal infiltration of neutrophils is a hallmark of psoriasis (PSO) and its activation leads to 
the release of neutrophil extracellular traps (NETs). However, the molecular mechanism of NETs-
related genes (NETRGs) has not been extensively studied in PSO. To define NETs-related-biomarkers 
for PSO. The GSE13355 and GSE78097 datasets, and NETRGs gene set were included in this study. 
The datasets used in this study were all microarray data. The weighted gene co-expression network 
analysis (WGCNA) and machine learning algorithms were used to mine key genes. Later on, single-
gene gene set enrichment analysis (GSEA) and immune infiltration analysis were implemented. Finally, 
the expression of key genes was verified using quantitative real-time fluorescence PCR (qRT-PCR). A 
total of 3 key genes (S100A9, CLEC7A, and CXCR4) were derived, and they all had excellent diagnostic 
performance. The single-gene GSEA enrichment results indicated that the key genes were mainly 
enriched in the chemokine signaling pathway and humoral immune response in the high-expression 
group, while focal adhesion was enriched in the low-expression group. The correlation analysis 
indicated that all key genes were strongly negatively correlated with resting mast cells and TGF-β 
family member receptor, while they were strongly positively correlated with activated CD4 memory 
T cells and antigen processing and presentation. Lastly, the experimental results showed that the 
expression trends of key genes were consistent with public database. In this study, we successfully 
screened three potential PSO diagnostic genes (S100A9, CLEC7A and CXCR4) that were closely 
related to NETs, and these findings not only provided new molecular marker candidates for the precise 
diagnosis of PSO patients, but also revealed possible future therapeutic targets. However, further in-
depth research and validation were necessary.
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Psoriasis (PSO) is a chronic autoimmune skin disease characterized by erythema and plaques1. It is considered 
that interaction of activated keratinocytes with infiltrated immune cells in the skin is the major driver of PSO 
pathogenesis1–3. PSO can occur on any part of the body, most commonly affecting trunk, gluteal fold and 
scalp4,5. PSO can be diagnosed clinically in most patient, while a skin biopsy ought to be required in the patients 
of atypical presentation. Treatment for patients with mild PSO mainly of topical therapy, such as corticosteroids, 
Vitamin D analogues, Calcineurin inhibitors, kertolytics and targeted light therapy. For patients with moderated 
to severe PSO, treatments for PSO do not include phototherapy, but include oral systemic therapy and biologic 
therapy5. In real-world applications of PSO, treatment satisfaction, effectiveness and safety can be increased 
by adding antimetabolites medication to biologics, but they can not cure disease completely6. Therefore, it is 
necessary to find the new biomarkers to diagnose PSO as soon as possible.

Neutrophils as the first line of defense in innate immunity, which are the most abundant immune cells in 
humans7,8. Neutrophils can contribute to various tissue repair, but exaggerated neutrophils activation are linked 
to immunopathology of various diseases8,9. Neutrophils may undergo a process of cell death after activation, 
which called NETosis. It is called as neutrophil extracellular traps (NETs), where intra-nuclear material is 
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extruded to extracellular. NETs are considered as DNA structures10. The structure of NETs contain decondensed 
DNA, granular proteins and histones, released from neutrophils by stimulation11. NETs could entrap 
microorganisms10. A large amount of inflammatory mediators are exposed and media ted the inflammatory 
responses in the formation of NETs1. The NETs contribute to autoinflammatory diseases, and it can be initiated 
by stimulation, such as immune complexes, autoantibodies14. Some recent studies have indicated that patients 
with PSO exhibit a unique circulation of leukocytes and the increased neutrophil counts in many studies12. 
Recent studies have demonstrated that NETs exist in PSO skin and induces the production of inflammatory 
cytokines1. And it also can promote Th17 cell differentiation, driving the immune disorder in PSO patients13. 
However, the role of NETs in pathogenesis of PSO is still unclear enough.

This study was carried out based on PSO transcriptome data in the public database. Three key genes related 
with NETs were screened and its diagnosis values were explored by a series of bioinformatics tools such as 
analyzing differentially expressed genes and weighted correlation network analysis (WGCNA). Moreover, we 
also explored the related pathways and molecular mechanisms, which provided the basis for investigating the 
molecular mechanisms based on NETs and PSO.

Materials and methods
Source of data
The GSE13355 and GSE78097 datasets were sourced from the GEO database. The GSE13355 dataset, including 
58 PSO samples and 64 control samples, was utilized as a training cohort. The GSE78097 dataset, includin 27 
PSO samples and 6 control samples, was utilized as a validation cohort. The datasets used in this study were all 
microarray data, and the sample types were all tissue samples. Then, 136 neutrophil extracellular traps-related 
genes (NETRGs) (Supplementary Table 1) were obtained from previous report14.

Identification of DEGs
Differential expressed genes (DEGs) between the PSO and control groups were selected by the limma package 
(v 3.48.3) with adjusted P value < 0.05 and |log2FC|> 115. The results were illustrated by the ggplot2 package 
(v 3.3.5) and pheatmap package (v 1.0.12) respectively16. Then, the Uniform Manifold Approximation and 
Projection (UMAP) was performed on all samples based on the DEGs.

Filtering for key module genes by WGCNA
The co-expression network was constructed by WGCNA (v 1.70–3) in the training cohort17. Firstly, the samples 
were clustered and outliers were removed to ensure the accuracy of the analysis. Then, the optimal soft threshold 
(β) were chosen to make the network approximated a scale-free distribution. In the following, the cluster 
dendrogram was gained via calculating adjacency and similarity. The modules were partitioned by dynamic 
tree cutting algorithm. The MEDissThres was then set to 0.5 to merge similar modules. Next, we evaluated the 
correlation between each module and PSO, and selected the module with the highest absolute value of correlation 
coefficient with PSO as the key module. Finally, the genes in the key module with |GS|> 0.5, P value ≤ 0.05, and 
|MM|> 0.5 were identified as key module genes for follow-up analysis.

Screening and functional enrichment of candidate genes
The candidate genes were filtered by overlapping key module genes, DEGs, and NETRGs. Then, chromosomal 
localization analysis of candidate genes was performed by the RCircos package (v 1.2.2). A PPI network was 
created on the basis of candidate genes via the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses of candidate genes were implemented via clusterProfiler 
package (v 4.0.2)18. A significant enrichment analysis result was defined with adjusted P value < 0.05 and a count 
value ≥ 1.

Machine learning screening and performance evaluation of key genes
Two machine learning models were constructed based on candidate genes to screen key genes separately. LASSO 
regression profiling was carried out using the glmnet package (v 4.1–4) to obtain LASSO-feature genes19. Next, 
SVM analysis was performed, and the recursive feature elimination (RFE) method was used to obtain the 
importance ranking of each genes and the rate of error for each iteration of the combination. Finally, the genes 
included in the portfolio with the lowest error rate were selected as SVM-RFE-feature genes. The key genes were 
screened by overlapping LASSO-feature genes and SVM-RFE-feature genes. To explore the ability of key genes 
to distinguish between control and PSO groups, ROC curves were plotted. Then, the AUC values of ROC curve 
were computed using the pROC package (v 1.18.0)20. Finally, the expression levels of key genes between control 
and PSO groups were compared in the training and the validation cohorts, respectively.

Construction of the nomogram
In this study, the nomogram was structured and visualized on the basis of key genes by rms package (v 6.1–0). 
Next, calibration curve was plotted to judge the model prediction performance.

Single-gene GSEA analysis
The samples were classified into high- and low-expression groups using the median value of key genes 
expression. Then, single-gene GSEA was performed to find the enriched regulatory pathways and biological 
functions between the high- and low-expression groups via clusterProfiler (v 4.0.2) and org.Hs.eg.db (v 3.13.0) 
package with |NES|> 1, q < 0.25, and NOM P value < 0.0518. The top 10 results for GO and KEGG significance 
were visualized separately.
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Immuno-infiltration analysis
The proportion of 22 immune cell subtypes were computed for each samples by the CIBERSORT algorithm in 
the training cohort21. Afterwards, the differential immune cells between PSO and control groups were compared 
and box-plot was plotted. Meanwhile, the correlation analysis was performed between immune cells and key 
genes. In addition, the difference in each immune response score between the PSO and control groups was 
computed using the GSVA package and the results were presented by box plot. The immune response geneset 
was obtained from the ImmPort database22. Finally, the correlation between key genes and differential immune 
responses was analyzed by the Spearman method.

Construction of ceRNA network
The miRWalk database was used to predict miRNAs targeting key genes. Meanwhile, the miRDB database was 
utilized for targeting miRNA prediction for key genes. The common miRNAs (co-miRNAs) were obtained by 
taking the intersection of the predicted miRNAs from the two databases. Next, the miRTarBase database was 
utilized to predict target lncRNAs targeting the co-miRNAs. Finally, a sankey diagram of the lncRNA-miRNA-
mRNA network was constructed on the basis of these miRNAs and lncRNAs using the Sangerbox.

Construction of key gene-drug interaction network
The drugs targeting the key genes were predicted through the DGIdb database (https://dgidb.org). A key gene-
drug network was constructed based on the predicted results.

Construction of key gene-disease relationship networks
The diseases associated with key genes were obtained using the DisGeNET database and a network of key gene-
disease relationships was constructed (Score gda > 0.1).

RNA isolation and quantitative real-time polymerase chain reaction (qRT-PCR)
Ethical approval for this study was obtained from the ethics committee of the second hospital of Hebei Medical 
University (2023-R331). Tissues of PSO samples were diagnosed as PSO by biopsy. Tissues of control samples 
were all from healthy samples. Twenty tissues (10 PSO samples, and 10 control samples) were lysed with TRIzol 
reagent and total RNA was isolated following the manufacturer’s instructions. The concentration of RNA was 
measured with a NanoPhotometer N50. Then, RNA was reverse transcribed into cDNA using the SureScript 
First strand cDNA synthesis kit (Servicebio, Wuhan, China). The qRT-PCR reaction consisted of 3 µL of reverse 
transcription product, 5 µL of 2xUniversal Blue SYBR Green qPCR Master Mix, and 1 µL each of forward and 
reverse primer. All primer sequence information were shown in Supplementary Table 2. The GAPDH gene 
served as an internal control, and the relative expression of genes was determined using the 2-ΔΔCT method23. 
Graphpad Prism 5 was used to make the graph and calculate the p-value.

Ethical approval
This study was performed in line with the principles of the Declaration of Helskinki. Ethical approval for this 
study was obtained from the ethics committee of the second hospital of Hebei Medical University (2023-R331). 
Informed consent was obtained from all subjects and/or their legal guardians.

Statistical analysis
All bioinformatics analyses were carried out in R language. Spearman correlation analysis was used to conduct 
the correlation analysis.

Results
Identification of DEGs and immune infiltration analysis
In total, 597 DEGs between the PSO and control groups were gained, including 407 up-regulated genes and 190 
down-regulated genes (Fig. 1A,B, Supplementary Table 3). Immediately after, the results of UMAP indicated that 
the DEGs were able to distinguish the two groups of samples excellently (Fig. 1C).

Identification of key module genes
To probe for genes associated with PSO, we performed WGCNA analysis. Sample clustering results showed there 
were no outlier samples (Fig. 2A). With a soft threshold equal to 5, R^2 = 0.85 (red line), and average connectivity 
close to 0, the interactions between genes maximally conform to a scale-free distribution (Fig. 2B). A total of 12 
modules were obtained by the dynamic tree cut algorithm (Fig. 2C). After merging similar modules 8 modules 
were obtained (Fig.  2D). Of these, MEturquoise (Cor = 0.95, P = 2e-61) showed the highest correlation with 
PSO (Fig. 2E). Therefore this module was considered as key module. Finally, the 5084 genes in this module were 
defined as key module genes for subsequent analysis (Fig. 2F).

Identification and functional annotation of candidate genes
A total of 14 candidate genes (S100A12, S100A9, CLEC7A, CXCR4, IL36RN, CD274, LTF, MMP9, F3, IRF1, 
CXCL1, S100A8, CCL2, and LYZ) were filtered by overlapping 136 NETRGs, 5084 key module genes, and 597 
DEGs (Fig. 3A). The results of chromosomal localization analysis indicated that the majority of candidate genes 
were located on autosomes (Fig. 3B). The PPI network had 14 points and 35 edges (CCL2-S100A9, CXCR4-
MMP9, LYZ-S100A8 and so on) (Fig. 3C). In addition, the results of the enrichment analysis indicated that 
the candidate genes implicated 270 GO entries and 6 KEGG pathways24–26. The candidate genes were mainly 

Scientific Reports |        (2024) 14:23848 3| https://doi.org/10.1038/s41598-024-75069-x

www.nature.com/scientificreports/

https://dgidb.org
http://www.nature.com/scientificreports


enriched to GO entries such as defense response to fungus, neutrophil chemotaxistc, etc. (Fig. 3D, Supplementary 
Table 4). KEGG enrichment results included TNF signaling pathway, etc. (Fig. 3E, Supplementary Table 4)24,26.

Identification and expression of key genes
A total of 4 LASSO-feature genes (S100A12, S100A9, CLEC7A, and CXCR4) were screened by LASSO regression 
analysis (Fig. 4A,B). The error rate and the correct rate were computed and found that the SVM model had the 
lowest error rate and the highest correct rate when it contained 4 genes (Fig. 4C,D). Therefore, these 4 genes 
were selected as SVM-RFE-feature genes (S100A9, CXCR4, IL36RN, and CLEC7A) for further analysis. Hence, 
a total of 3 key genes (S100A9, CLEC7A, and CXCR4) were screened by overlapping LASSO-feature genes and 
SVM-RFE-feature genes (Fig. 4E).

The results of ROC curves for the training cohort demonstrated the excellent diagnostic performance of the 
key genes with AUC values equal to 1 (Fig. 5A). The diagnostic effectiveness of key genes was well demonstrated 
in the validation cohort (Fig. 5B). Then, the expression of key genes in PSO group was significantly higher than 
that in control group in the training cohort, and the trend of expression in the validation cohort was consistent 
with it (Fig. 5C,D).

Construction of the nomogram
The nomogram on the basis of 3 key genes was utilized to predict the risk of developing PSO in patients (Fig. 5E). 
As illustrated by the calibration curve, the precision of the nomogram was excellent (Fig. 5F).

GSEA analysis of two different expression subgroups
The main outcomes of KEGG enrichment in the high-expression group included cell cycle, chemokine signaling 
pathway, etc. (Supplementary Fig. 1A–C, Supplementary Table 5)24–26. GSEA results indicated that the signature 
were mainly enriched to KEGG terms in low-expression groups such as focal adhesion, etc. (Supplementary 
Fig.  1A–C, Supplementary Table 5)24,26. The major results of GO enrichment in the low-expression group 
consisted of extracellular matrix structural constituent, etc. (Supplementary Fig. 1D–F, Supplementary Table 
6). The signature were mainly enriched to GO terms in high-expression groups such as antimicrobial humoral 
response, humoral immune response, etc. (Supplementary Fig. 1D–F, Supplementary Table 6).

Fig. 1.  Differential expression analysis in the GSE13355 dataset. (A, B) The volcano map (A) and heat map 
(B) of differentially expressed genes (DEGs) between psoriasis (PSO) and control groups. (C) The Uniform 
Manifold Approximation and Projection (UMAP) results of DEGs.
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Immune-related analyses of key genes
The bars showed the proportion of the 22 immune cells in each sample (Fig. 6A). In total, 18 immune cells 
(CD8 T cells, resting mast cells, resting NK cells, neutrophils, etc.) were significantly different between the 
PSO and control groups (Fig. 6B). The correlation analysis indicated that all key genes were strongly negatively 
correlated with resting mast cells, while they were strongly positively correlated with activated CD4 memory 
T cells (Fig. 6C). There were 15 differential immune responses (interferons, BCR signaling pathway, cytokines, 
etc.) between the POS and control groups identified by the Wilcoxon test (Fig. 6D). The correlation analysis 

Fig. 2.  Identification of PSO-related module genes. (A) The clustering dendrogram of samples with trait 
heatmap. (B) Selection of the optimal soft-thresholding (power). (C) Clustering of module eigengenes. (D) 
Hierarchical clustering of genes and module identification. (E) Heatmap of the relationships between gene 
modules and PSO. (F) The scatter plot of the relationship between module membership (MM) and gene 
significance (GS) in the midnightblue module.
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Fig. 3.  Identification of candidate key genes and functional enrichment analysis. (A) The venn diagram 
of 14 candidate genes. (B) The chromosomal localization results of 14 candidate genes. (C) The protein–
protein interaction (PPI) network of candidate key genes. (D) The Gene Ontology (GO) terms enriched in 
candidate genes. BP, biological progress (BP); CC, cellular component; MF, molecular function. (E) The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways enriched in candidate genes.
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illustrated that key genes had a strong negative correlation with TGF-β family member receptor, which had a 
strong positive correlation with antigen processing and presentation (Fig. 6E).

The ceRNA regulatory network of key genes
Based on key genes we obtained 5 co-miRNAs (hsa-miR-660-3p, hsa-miR-9-5p, hsa-miR-663b, hsa-miR-613, 
and hsa-miR-342-3p) and 6 lncRNAs (MALAT1, C17orf102, C1orf147, ELFN2, TMEM105, and SNHG16). The 
specific mRNA-miRNA pairs were CXCR4-hsa-miR-9-5p, etc., and the lncRNA-miRNA pairs were SNHG16-
hsa-let-7b-5p, etc. (Supplementary Fig. 2A).

Prediction of therapeutic agents of key genes
Through DGIdb database, 3 key genes were found that targeted by 30 therapeutic drugs (Supplementary 
Fig.  2B). The network included 2 drugs (Tasquinimod and Paquinimod) for S100A9, 8 drugs (Ellagic acid, 
Tamatinib and so on) for CLEC7A, and 20 drugs (Mavorixafor, Chembl2347633, Cisplatin and so on) for 
CXCR4 (Supplementary Fig. 2B).

Establishment of key gene-disease networks
The network included 55 diseases (WHIM syndrome, Rheumatoid Arthritis, Malignant neoplasm of breast, 
Neoplasm Metastasis, etc.) and 3 key genes (Supplementary Table 7). Of these, 9 diseases (Malignant tumor of 
colon, Schizophrenia, Celiac Disease, Colonic Neoplasms, etc.) were related to S100A9, 5 diseases (Aspergillosis, 
Candidiasis, Chronic Mucocutaneous, Candidiasis, Familial, 2, Hepatitis, and Onychomycosis) were related to 
CLEC7A and 41 diseases (Neoplasm Metastasis, Breast Carcinoma, Mammary Neoplasms, etc.) were related to 
CXCR4 (Supplementary Fig. 3A).

Expression validation of 3 key genes
In this study, 10 pairs of PSO and control tissue samples were collected and qRT-PCR was performed to elucidate 
the changes in expression of key genes in the PSO and control groups. The expression levels of key genes were 
significantly lower in control samples than in PSO tissues, which was consistent with results from public database 
(Supplementary Fig. 3B).

Discussion
PSO is a prevalent skin disease, mediated by T cells. T cells, especially neutrophils could trigger NETosis and 
neutrophil migration27. A large amount of inflammatory mediators could be exposed and an inflammatory 
responses might be mediated while NETs are forming. And many recent studies have shown that NETs may 
be exist in PSO lesions 1. Aberrant gene expression is clearly closely related to many pathological processes 

Fig. 4.  Identification of key genes by machine learning algorithms. (A, B) The error plot for tenfold cross-
validation (B) and the plot of gene coefficients (B) in least absolute shrinkage and selection operator (LASSO) 
analysis. (C, D) The genes filtered by support vector machine recursive feature elimination (SVM-RFE). (E) 
The venn diagram of 3 key genes.
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in PSO. The absence in melanoma 2 (AIM2) is a susceptibility gene locus for psoriasis has been proven28. 
The formation of NETs and high expression of the AIM2 gene can be detected in psoriasis. And it might be 
considered that NETs promote the expression of AIM2 gene by activation of keratinocytes29. In addition, the 
high expression of FOSL1 gene is the markers of psoriasis 29,30. The transcription factor PPAR-γ is a proportional 
network that combines multiple transcription factors. The transcription factor PPAR-γ could appear upstream 
of AP1 and NF-κB. And PPAR-γ can be under the control of FOXO131. Otherwise, IL-23R, IL-23 and FTO, 
MC4R and LNPEP, AGT, eNOS genes are shared genetic background with psoriasis, atherosclerosis, obesity 
and hypertension, respectively32–38. Therefore, the NETs-related PSO diagnostic genes were screened using a 
bioinformatics approach in this study. Meanwhile, this study performed integrated bioinformatic analysis of 
changes in the expression of crucial genes to reveal potential pathways and gene interactions involved after the 
development of PSO based on RNA-seq results.

BP annotation revealed that the DEGs of PSO were significantly enriched in the defense response to fungus, 
response to fungus, antimicrobial humoral response, humoral immune response, response to lipopolysaccharide, 
response to molecule of bacterial origin, leukocyte migration and regulation of cysteine-type endopeptidase 
activity, which are all related to immune responses. PSO is a chronic T cell-mediated inflammatory skin disease, 
with innate immunity playing an essential role39. The genes identified here suggested that immune response 

Fig. 5.  Analysis of key genes and creation of the nomogram. (A, B) The receiver operating characteristic 
(ROC) curves of key genes in the GSE13355 (A) and GSE78097 (B) datasets. (C,D) The expression levels of key 
genes between PSO and control groups in the GSE13355 (C) and GSE78097 (D) datasets. (E) The nomogram 
established based on three key genes. (F) The calibration curve of the nomogram.
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activation acts as an essential trigger in PSO and NETs. KEGG enrichment analysis showed that the IL-17 
signaling pathway and TNF signaling pathway were the most important pathways in PSO24,26. IL-17 signaling 
pathway activation would contribute to the coordinate local of tissue inflammation, and activated T cells mainly 
secreted IL-17 cytokines as the key mediators in PSO40. Thus, the IL-17 signaling pathway may strongly correlate 
with PSO development. Th17 cells can secrete IL-17 and TNF-α, which can induce keratinocyte proliferation, 
increase the expression of endothelial adhesion molecules and angiogenic mediators, causing the immune cells 
to infiltrate into PSO skin5.

IL-10 are considered as one of the IL-10 gene cluster, the other three genes are IL-19, IL-20 and IL-24, which 
were formed as IL-19 subfamily. IL-19 subfamily have been indicated the role in the pathogenesis of psoriasis41. 
As it is known, IL-19 is proinflammatory cytokine, which may have role in the development of psoriasis, but 

Fig. 6.  Immune infiltration analysis. (A) The distribution of 22 immune cells in the samples. (B) The 
discrepancies of immune cells between PSO and control samples. ns, not significant; ** p < 0.01; ***p < 0.001; 
****p < 0.0001. (C) The relevance of key genes to differential immune cells. Red circles represent positively 
correlation and blue circles represent negatively correlation. *p < 0.05; ** p < 0.01. (D) Comparison of the 
scores of immune pathways between PSO and control groups. ns, not significant; ****p < 0.0001. (E) The 
relevance of key genes to differential immune pathways. Red circles represent positively correlation and blue 
circles represent negatively correlation. *p < 0.05; ** p < 0.01.
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also induces TNF-α and IL-6 production and apoptosis in monocytes. Previously, associated with IL-19 and 
IL-20 genes, ​C​A​C​C​G​G​A​A haplotype was related to an increased risk of psoriasis42. Working together with IL-
19 and IL-36, IL-22 plays an essential role in epidermal hyperplasia and parakeratosis43. IL-22 is required for 
the pathogenesis and development of psoriasis. And deficiency of IL-22 caused a significant decrease in dermal 
inflammation induced by IL-2344. IL-22 is considered as an essential cytokine for psoriasis, but the clinical 
trial all failed because of the unreachable expected endpoints 44. Latest research found that patients who have 
the deficiency of autoantibody to both IL-12B/IL-22 or IL-12B/IL-17A tended to have higher PASI score45. It 
suggests that low-level antibody of IL-22 might be associated with the development of psoriasis. These findings 
point to a critical role of IL-22 in pathogenesis of psoriasis together, suggesting that targeted IL-22 therapeutic 
agents are expected to be a promising new strategy for the treatment of psoriasis.

In our study, the top three DEGs in the miRNA-gene network were S100A9, CLEC7A, and CXCR4. S100A9 is 
one of calcium-binding proteins up-regulated in inflammatory conditions46,47. The S100A9 proteins are related 
to abnormal keratinocyte differentiation located with the epidermal differentiation complex on chromosome 
1q2148. In inflammatory condition, the main S100A9 expressing cells are neutrophils, keratinocytes and 
macrophages47,49,50. S100A9 is expressed in high amounts in monocytes and neutrophils, but not in macrophages, 
lymphocytes or dendritic cells in mature tissues51. S100A9 accounting for 40% of cytosolic proteins in 
neutrophils46,52. The animal studies have shown that S100A9 is associated with PSO-like epidermal and its 
absence lead to more severe PSO46. S100A9 in epidermal modulates neutrophils recruitment to inflammatory 
sites, and neutrophil-related proteins and pathways in skin are affected by S100A9 in epidermis46. During the 
skin inflammation, cytokine and chemokine expressions are modulated by epidermal S100A946. It is reported 
that S100A9 expression is induced in inflammatory activation of keratinocytes51. Whereas S100A9 is highly 
up-regulated in skin lesions of psoriasis patients, it is reported that a significant increase of S100A9 expression 
in keratinocytes51. Obvious studies have discovered that Dectin-1 receptor is encoded by the CLEC7A gene, 
and its decrease could mediate the induction of regulatory dendritic cells (DCs)53. Otherwise, CLEC7A gene 
is expressed on neutrophils, macrophages and monocytes, and it has been shown to recognize a broad range 
of fungi and bacteria, causing cancer and autoimmune disorders54. It is considered that the CLEC7A gene 
encodes the Dectin-1 receptor and is highly associated with the production of IL-1β55. Obvious findings have 
revealed that the transcripts of CLEC7A is highly correlated with interleukins and chemokines56. The Dectin-1 
protein forming the cell walls of fungi and pathogenic bacteria, takes efforts to against fungal infections through 
immune signaling and pathogenic recognition57. Therefore, down-regulated of CLEC7A may correlate with the 
development of PSO. Elevated level of CLEC7A gene transcripts is associated with defective production of IL-
10. IL-10 is considered a potent regulatory cytokine with proinflammatory role56. Only the psoriatic fibroblasts 
express CXCL12, which contribute to the recruitment of CXCR4 + Tc17 cells58. So we can concentrate on the 
relationship between CXCR4 gene and PSO.

Additionally, some research found that the expression of autophagy-related genes could be considered as 
potential biomarkers for diagnosis of psoriasis, such as BIRC5, NAMPT and BCL2)59. And it has been reported 
that ATG16L1 gene contributes to the psoriasis60. Some autophagy-related genes, like ATG16L1 and BIRC5, have 
significant diagnostic value in early psoriasis vulgaris. They might influence pathological progress of psoriasis by 
regulating the process of autophagy60,61. Therefore, we plan to explore the role of autophagy genes like ATG16L1 
in psoriasis and their interaction network to fully understand the pathogenesis of psoriasis in future.

To explore possible effective treatments for PSO, we used the DGIdb database to determine therapeutic 
drugs or molecular compounds that could restore dysregulated expression of DEGs. Almost of the predicted 
drugs have been used in clinical treatment for PSO, and further studies are urgently needed to evaluate their 
capacity for clinical application. Previous studies have often focused on a single method or datasets, lacking of 
comprehensiveness and systematic system. Our study used powerful data-driven approach, like WGCNA and 
machine learning algorithm. And our study integrated two high-quality datasets of GSE13355 and GSE78097 
and identified three biomarkers. But our study has some limitations. Further studies should be done to 
investigate and verify whether the three biomarkers identified in our study are involved in PSO and explore 
their potential mechanisms. Besides, given that we only performed transcriptomic analysis of PSO, it would 
be helpful if other omics analysis, proteomics and metabomomics, could be performed to fully understand the 
biological mechanism of psoriasis. Given the limited sample size for our current RNA-seq analysis, we recognize 
that expanding the sequencing scale, such as adding additional RNA-seq datasets, and conducting a large range 
of studies are essential to further validate and deepen our findings. Finally, whether the discovered biomarkers 
can distinguish between psoriasis and other skin diseases remains to be further explored. In the future, in 
order to further validate the specificity and sensitivity of these biomarkers, we could add datasets and conduct 
comparative analysis with other skin diseases to explore the commonality and differences of biomarkers between 
different diseases.

In summary, we revealed the PSO-related pathways, predicted possible regulatory mechanisms, and explored 
promising drugs for PSO. Thus, our study provided potential targets for future research.

Data availability
The gene expression profiles of GSE13355 and GSE78097 were downloaded from Gene Expression Omnibus 
GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE13355, and https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc = GSE78097).
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