Table 5 Displacements of the nodes astride the crack for the simulation with subdivisions and different numbers of Gauss points in each subdivision (\(50 \times 100\) mesh).

From: Improvements for the solution of crack evolution using extended finite element method

 

b/t nodes

\(u_\textrm{1b}\)(cm)

\(u_\textrm{1t}\)(cm)

\(\epsilon _1\)

\(u_\textrm{2b}\)(cm)

\(u_\textrm{2t}\)(cm)

\(\epsilon _2\)

7 Gauss p.

2500/2551

0

0

0

−1.103182172

1.100747027

0.22%

2501/2552

−0.079746755

−0.079180418

0.71%

−1.047816074

1.045023662

0.26%

2502/2553

−0.135731272

−0.135579677

0.11%

−0.921772297

0.918329593

0.37%

2503/2554

−0.226823294

−0.219024456

3.34%

−0.606235018

0.600139992

1.00%

9 Gauss p.

2500/2551

0

0

0

−1.104810713

1.104597641

0.02%

2501/2552

−0.079195404

−0.079345270

0.18%

−1.049607296

1.049299125

0.03%

2502/2553

−0.134739447

−0.135225055

0.36%

−0.922963798

0.923387653

0.04%

2503/2554

−0.223244723

−0.222162317

0.48%

−0.606416333

0.605154475

0.21%

13 Gauss p.

2500/2551

0

0

0

−1.09989233

1.099285495

0.05%

2501/2552

-0.079135863

−0.078932963

0.25%

−1.044555398

1.043760466

0.07%

2502/2553

−0.134435475

−0.134254384

0.13%

−0.918179068

0.916062984

0.23%

2503/2554

−0.22133777

−0.219840794

0.67%

−0.598295641

0.595914318

0.39%