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We present an analytical solution for a quantum system characterized by a double Λ five-level atom 
interacting with an intensity-dependent coupling regime, influenced by a nonlinear Kerr-like medium. 
We also derive the constants of motion through Heisenberg’s equations. Furthermore, the dynamical 
evolution of the entanglement and quantum coherence between the atom and the field is discussed 
using linear entropy and l1-norm of coherence. Through a comprehensive examination of the quantum 
system, it is observed that both the detuning and the Kerr-like parameters exert a significant impact 
on the degree of entanglement and coherence. However, the impacts of detuning and the Kerr effect 
become less pronounced when the photon multiplicity is high. In addition, we conduct a comparison 
between the five-level atomic system and a four-level system, revealing that the number of energy 
levels has a profound impact on the behavior of entanglement and coherence. These findings highlight 
the importance of atomic structure and photon multiplicity in controlling and optimizing quantum 
processes, particularly in applications involving quantum communication and information processing.
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In recent years, the study of atom-field interaction has gained great importance in quantum computation1–4, 
quantum teleportation5,6, and quantum cryptography7,8. The quantum mechanical perspective of atom-field 
interaction reveals novel features that underscore the inherently quantum nature of both the field and the atom. 
The Jaynes-Cummings (JC) model9 is a fundamental theoretical model in quantum optics that describes the 
interaction between a two-level quantum system and a single mode of a quantized electromagnetic field. The 
JC model has been extended and generalized in various ways10–12 to accommodate more complex scenarios in 
quantum optics. These extensions play a crucial role in advancing our understanding of quantum coherence 
and collective phenomena in complex quantum optical setups beyond the original JC model. The intensity-
dependent JC model proposed in Refs.13,14 has found applications in the study of quantum optics and cavity 
quantum electrodynamics (QED) under strong coupling regimes15. Fang et al. studied the properties of the 
entropy and phase of the field in the two-photon JC model with an added Kerr medium16. Besides, Abdel-
Aty investigated the entanglement degree of a three-level atom interacting with pair-coherent states17. A three-
level atom with Λ, V, and Ξ configurations interacting with a single mode cavity field has been discussed in18. 
Recently, Rizk et al.19 presented an analytical solution for Ξ-type 3-level atom interacting nonlinearly with a 
cavity field through a Kerr-like medium under intrinsic noise. Notice, the models that explain how four-level 
ladder-type20,21, N-type22,23 and W-type24 atomic systems interact with the electromagnetic cavity field have 
been studied.

A Λ five-level atom holds high significance in the realm of quantum optics and quantum information 
processing due to its intricate energy level structure and rich quantum dynamics25–28. Moreover, the optical 
switching in a five-level atom in a novel configuration of electromagnetically induced transparency has been 
investigated in Ref.29. A detailed theoretical study of the electromagnetically induced transparency in a Λ type 
five-level atom along with some applications has been conducted in Ref.30. Interestingly, the dual Λ configurations, 
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each comprising three ground-state sub-levels and two excited-state levels, introduce a higher degree of 
complexity compared to a single-Λ system31. Thus, understanding the dynamics of a double Λ five-level atom is 
crucial for exploring advanced quantum coherence phenomena, such as multilevel quantum interference32 and 
enhanced quantum information processing capabilities33. Specifically, Salah et al.33 investigated the dynamics 
of a five-level Λ-configuration atom interacting with a two-mode quantized field, incorporating the effects 
of damping and nonlinearity34. The interaction was analyzed using the generalized nonlinear JC model and 
the Schrödinger equation’s analytical solution. They explored the wave function of the system under specific 
conditions and examined several physical aspects of the atom-field interaction, focusing on entanglement and 
non-classical statistical features. The mentioned study demonstrated that the choice of physical parameters in 
the interaction process-such as the strength of the Kerr medium, the level of detuning, and the nature of the 
intensity-dependent coupling-plays a crucial role in determining the system’s behavior. Notable applications of 
such systems have been extended to quantum communication35, where the intricate level structure allows for the 
creation of entangled states and the implementation of novel quantum protocols.

On one hand, Abdel-Aty36 explored the evolution of field quantum entropy and the entanglement dynamics 
between the atom and the field in a three-level atom system, incorporating an additional Kerr-like medium 
for one mode. On the other hand, the authors of Ref.31 delved into investigating a double Λ five-level atom’s 
interaction with a single-mode electromagnetic cavity field, specifically in the non-resonant case. Motivated by 
this, we extend the model in another direction.

In this paper, we present an analytical solution for the quantum system involving a double Λ five-level atom 
interacting within an intensity-dependent coupling regime, while considering the influence of a nonlinear 
Kerr-like medium. Note that a nonlinear Kerr-like medium is a type of optical medium where the refractive 
index changes in response to the intensity of light passing through it and follows a behavior similar to the Kerr 
effect but with possible deviations37,38. This property is fundamental to many nonlinear optical phenomena and 
applications. We observe that both the detuning parameters and the Kerr-like parameter exert a detrimental 
influence on the degree of entanglement and coherence in the system. Entanglement and coherence are 
fundamental concepts in quantum information theory that reflect the non-classical correlations in quantum 
systems39–44. Entanglement measures quantify the degree of entanglement between subsystems and play a 
key role in quantum computing and communication. Coherence measures45,46, on the other hand, assess the 
superposition of quantum states, which is essential for understanding quantum resources. Both measures are 
pivotal for evaluating the potential of quantum systems in various applications, such as quantum error correction 
and cryptography. Understanding and accurately measuring entanglement and coherence are critical to the 
advancement of quantum technologies. Notice that entanglement is a strict subset of quantum coherence40,44. 
Indeed, coherence can occur within a single system or between subsystems, while entanglement is a special type 
of coherence that involves correlations across multiple quantum systems. Thus, while entanglement represents a 
more constrained form of coherence, the broader concept of coherence can describe a wider range of quantum 
phenomena. For this reason, we explore the dynamical evolution of the entanglement and coherence between 
the atom and the field by examining the linear entropy and l1-norm of quantum coherence.

The organization of this work is as follows. In “Description of the theoretical model”, we introduce the model 
and formulate the expressions for the Hamiltonian governing the dynamics of the system. In “Analytical solution 
of the model”, we elucidate the dynamical evolution and present the wavefunction describing the proposed 
quantum system. The “Entanglement and quantum coherence” delves into the discussion of entanglement 
and coherence among the various components of the system. The main results of the paper are discussed in 
“Numerical results”. Finally, conclusions are presented in “Conclusion”.

Description of the theoretical model
In alignment with the insights gleaned from the Ref.31, our focus is on the dynamics of a double Λ five-level 
atom interacting with a coherent cavity field via k-photon process (intensity-dependent coupling regime) and 
the Kerr medium. Hence, adopting the rotating wave approximation (RWA), the Hamiltonian can be expressed 
as (setting ℏ = 1)

	
Ĥ =

5∑
j=1

ωjσ̂jj + Ωâ†â + Ĥaf .� (1)

Here, ωj  denotes the energies associated with the |j⟩ levels of the atom, where j = 1, 2, . . . , 5. The atomic 
operators, represented by σ̂ij = |i⟩⟨j| with i, j = 1, 2, . . . , 5, adhere to the relation [σ̂ij, σ̂kl] = σ̂ilδjk − σ̂kjδli, 
where δij  is the Kronecker delta. The operators â† and â pertain to the creation and annihilation, respectively, of 
the quantized field characterized by frequency Ω. The Hamiltonian Ĥaf  represents the interaction between the 
Λ-type five-level atom and the field, expressed by (see Fig. 1)

	 Ĥaf = χn(n− 1) + R̂ (λ1σ̂12 + λ2σ̂13 + λ3σ̂15 + λ4σ̂34) + h.c.,� (2)

where χ represents the nonlinear Kerr parameter, R̂ = âkF (n̂) is the deformed annihilation operator with the 
nonlinear function F (n̂) which is based on the intensity of the light (number of photons n̂ = â†â), k (a positive 
integer) takes into account the multiplicity of photons, and λi are the coupling constants between atom and the 
field. It is crucial to note that our considered model encompasses many other models. In the case where χ = 0, 
F (n̂) = Î , and k = 1, the system corresponds to the one described in Ref.31. Consequently, the intensity-coupling 
regime accurately reflects the conditions outlined in the selected references13,14. The model successfully captures 
multiple configurations of the three-level atom interacting with a single-mode cavity field. Specifically, we get 
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Λ and Ξ configurations elucidated in Refs.47,48 when λ3 = λ4 = 0 and λ1 = λ3 = 0, respectively. Moreover, the 
four-level atomic system discussed in Refs.49–51 can also be explained with our model when λ3 = 0.

One approach to propose the dynamical operators is solving the Heisenberg equations of motion 
(
idÔdt = [Ô, Ĥ ]

)
 

for n̂ = â†â and σ̂jj  operators as follows

	

i
dn̂

dt
=− kR̂ (λ1σ̂12 + λ2σ̂13 + λ3σ̂15 + λ4σ̂34) + kR̂† (λ1σ̂21 + λ2σ̂31 + λ3σ̂51 + λ4σ̂43) ,

i
dσ̂11
dt

=R̂ (λ1σ̂12 + λ2σ̂13 + λ3σ̂15)− R̂† (λ1σ̂21 + λ2σ̂31 + λ3σ̂51) ,

i
dσ̂22
dt

=− λ1

(
R̂σ̂12 − R̂†σ̂21

)
,

i
dσ̂33
dt

=− λ2

(
R̂σ̂13 − R̂†σ̂31

)
+ λ4

(
R̂σ̂34 − R̂†σ̂43

)
,

i
dσ̂44
dt

=− λ4

(
R̂σ̂34 − R̂†σ̂43

)
,

i
dσ̂55
dt

=− λ3

(
R̂σ̂15 − R̂†σ̂51

)
.

� (3)

Thus, the constants of motion are

	 â†â− k(σ̂22 − σ̂33 − 2σ̂44 − σ̂55) = N̂ ,� (4)

where N̂  is the constant operator of motion. Utilizing this conserved quantity, we can represent the total 
Hamiltonian Ĥ  in the following form

	
Ĥ =ΩN̂ + ω1Î +

4∑
j=1

∆jσ̂j+1 j+1 + Ĥaf , � (5)

where ∆j are the detuning parameters

	 ∆1 = ω21 + kΩ, ∆2 = ω31 − kΩ, ∆3 = ω41 − 2kΩ, ∆4 = ω51 − kΩ,

with ωij = ωi − ωj and Î =
∑5

j=1 σ̂jj.

Henceforth, we neglect the first two terms since they are constants, and the remaining terms represent the 
interaction between the atom and the field. Consequently, the interaction Hamiltonian can be expressed in the 
following form

	
Ĥ = χn(n− 1) +

4∑
j=1

∆jσ̂j+1 j+1 + âkF (n̂) (λ1σ̂12 + λ2σ̂13 + λ3σ̂15 + λ4σ̂34) + F (n̂)(âk)† (λ1σ̂21 + λ2σ̂31 + λ3σ̂51 + λ4σ̂43) . � (6)

Fig. 1.  A schematic representation of a Λ-type five-level atom within a single-mode cavity field, filled with 
a Kerr medium, is illustrated in the diagram. Here is a diagram representing a five-level atomic system with 
all five atomic energy levels labeled by |1⟩, |2⟩, |3⟩, |4⟩, and |5⟩. The green arrows indicate possible transitions 
between these levels.
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Subsequently, our focus will be on deriving the exact solution for this model, particularly the wavefunction. Let 
us consider the scenario where the atom is initially in its excited state, and the field is in a coherent state. The 
initial state is then defined as

	
|Ψ(0)⟩ =

∞∑
n=0

qn|1⟩ ⊗ |n⟩,� (7)

where qn =
αn0√
n!
exp[−|α0|2/2] represents the amplitude of the state |n⟩, which corresponds to the Fock states of 

the mode field and α0 is the initial mean photon number.

Analytical solution of the model
In our proposed quantum system, the Λ-atom absorbs and emits k photons in the cavity field and the basis for the 
wavefunction consists of the states |1, n⟩, |2, n + k⟩, |3, n + k⟩, |4, n + 2k⟩, and |5, n + k⟩. So, the wavefunction 
for the proposed quantum system at any time can be expressed as

	
|Ψ(t)⟩ =

∑
n

qn

[
X1(n, t)|1, n⟩ +X2(n + k, t)|2, n + k⟩ +X3(n + k, t)|3, n + k⟩ +X4(n + 2k, t)|4, n + 2k⟩ +X5(n + k, t)|5, n + k⟩

]
, � (8)

 where Xj(n, t) denotes the probability amplitude that describes the probability of finding the atom in the state 
|j⟩. In order to deduce the dynamical evolution of the considered model, it is imperative to determine the 
coefficients Xj  (where j = 1, 2, . . . , 5) by solving the interaction picture of the time-dependent Schrödinger 
equation. Thus, employing the Schrödinger equation, we can articulate the coupled system of differential 
equations for the probability amplitudes arising from the actions of the atomic and field operators as follows

	

i
d

dt




X1

X2

X3

X4

X5




=




Υ1 f1 f2 0 f3
f1 Υ2 0 0 0

f2 0 Υ3 f4 0

0 0 f4 Υ4 0

f3 0 0 0 Υ5







X1

X2

X3

X4

X5




, � (9)

where

	

Υ1 =χn(n− 1), Υ2 = ∆1 + χ(n + k)(n + k − 1), Υ3 = ∆2 + χ(n + k)(n + k − 1),

Υ4 =∆3 + χ(n + 2k)(n + 2k − 1), Υ5 = ∆4 + χ(n + k)(n + k − 1),

f1 =λ1γ+F (n + k), f2 = λ2γ+F (n + k), f3 = λ3γ+F (n + k), f4 = λ4γ−F (n + 2k),

� (10)

with

	
γ+ =

√
(n + k)!

n!
and γ− =

√
(n + 2k)!

(n + k)!
.� (11)

The analytical solution of the Eq. (9) can be deduced by applying the method employed in Ref.52. Thus, we obtain

	




X1(n, t)

X2(n + k, t)

X3(n + k, t)

X4(n + 2k, t)

X5(n + k, t)




=




η11 η12 η13 η14 η15
η21 η22 η23 η24 η25
η31 η32 η33 η34 η35
η41 η42 η43 η44 η45
η51 η52 η53 η54 η55







eiµ1t

eiµ2t

eiµ3t

eiµ4t

eiµ5t




, � (12)

where

	




η1a
η2a
η3a
η4a
η5a




=
1

µabµacµadµaf




α1 β1 γ1 δ1 ϵ1
α2 β2 γ2 δ2 ϵ2
α3 β3 γ3 δ3 ϵ3
α4 β4 γ4 δ4 ϵ4
α5 β5 γ5 δ5 ϵ5




×




1

µb + µc + µd

µbµc + µbµd + µbµf + µcµd + µcµf + µdµf

µbµcµd + µbµcµf + µcµdµf

µbµcµdµf




,

with µab = µa − µb where a ̸= b ̸= c ̸= d ̸= f , and
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


α1

α2

α3

α4

α5




=




Γ2
1 + f 2

1Υ
2
12 + f 2

2Υ
2
13 + f3Υ

2
15 + f 2

2f
2
4

f1

Γ2Υ12 + f 2

2Υ13 + f 2
3Υ15


f2


Γ3Υ13 + f 2

1Υ12 + f 2
3Υ15 + f 2

4Υ3


f2f4


Γ1 + f 2

4 + Υ 2
4 + Υ13a34


f3


Γ4Υ15 + f 2

1Υ12 + f 2
2Υ13






,




γ1
γ2
γ3
γ4
γ5




=




Γ1

f1Υ12

f2Υ13

f2f4
f3Υ15




,




β1
β2
β3
β4
β5




=




Γ1Υ1 + f 2
1Υ12 + f 2

2Υ13 + f 2
3Υ15

f1Γ1 + f1Υ2Υ12

f2Γ1 + f 2
4 + f2Υ3Υ13

f2f4Υ4 + f2f4Υ13

f3Γ1 + f3Υ5Υ15




,




δ1
δ2
δ3
δ4
δ5




=




Υ1

f1
f2
0

f3




,




ϵ1
ϵ2
ϵ3
ϵ4
ϵ5




=




1

0

0

0

0




,

in which

	 Γ1 =f
2
1 + f 2

2 + f 2
3 + Υ 2

1 , Γ2 = Γ1 + f 2
1 + Υ 2

2 , Γ3 = Γ1 + f 2
2 + f 2

4 + Υ 2
3 , Γ4 = Γ1 + f 2

3 + Υ 2
5 ,

with

	 Υ1j = Υ1 + Υj, (j = 2, 3, 5).

The roots µj satisfy the fourth-order equation

	 µ4 + x1µ
3 + x2µ

2 + x3µ + x4 = 0,� (13)

where

	

x1 =
5∑

k=1

Υk,

x2 =
∑
i<j

ΥiΥj −
∑
i

f 2
i ,

x3 =
∑
i<j<k

ΥiΥjΥk − f 2
4Υ1 − Υ2(f

2
2 + f 2

3 + f 2
4 )− Υ3(f

2
1 + f 2

3 )− Υ4(f
2
1 + f 2

2 + f 2
3 )− Υ5(f

2
1 + f 2

2 + f 2
5 ),

x4 =
∑

i<j<k<l

ΥiΥjΥkΥl + (f 2
1 + f 2

3 )f
2
4 − (f 2

2 + f 2
3 )Υ2Υ4 − (f 2

1 + f 2
3 )Υ3Υ4 − (f 2

2 + f 2
4 )Υ2Υ5

− (f 2
1 + f 2

2 )Υ4Υ5 − f 2
4Υ1Υ2 − f 2

3Υ2Υ3 − f 2
4Υ1Υ5 − f 2

1Υ3Υ5,

x5 =Υ1Υ2Υ3Υ4Υ5 + f 2
1f

2
4Υ5 + f 2

3f
2
4Υ2 − f 2

1Υ3Υ4Υ5 − f 2
2Υ2Υ4Υ5 − f 2

3Υ2Υ3Υ4 − f 2
4Υ1Υ2Υ5.

We can determine the values of µj by solving Eq. (13). On the other hand, as a physical manifestation of our 
proposition in this study, the nonlinear function F (n̂) can be formulated as follows53

	
F (n̂) =

L1
n(η

2)

(n + 1)L0
n(η

2)
.� (14)

This expression represents the nonlinear function for the center of mass of a trapped ion, commonly referred 
to as the Lamb-Dicke parameter (η < 1). Here, L1

n and L0
n denote the associated Laguerre polynomials. In what 

follows, we consider the vector form of the probability amplitudes as

	

|X1⟩ =
∞∑
n=0

qnX1(n, t)|n⟩,

|X2⟩ =
∞∑
n=0

qn+kX2(n + k, t)|n + k⟩,

|X3⟩ =
∞∑
n=0

qn+kX3(n + k, t)|n + k⟩,

|X4⟩ =
∞∑
n=0

qn+2kX4(n + 2k, t)|n + 2k⟩,

|X5⟩ =
∞∑
n=0

qn+kX5(n + k, t)|n + k⟩.

� (15)

Subsequently, the reduced atomic density matrix that is derived from the state vector of Eq. (8) can be expressed 
as
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ρ̂atom =




ρ11 ρ12 ρ13 ρ14 ρ15
ρ21 ρ22 ρ23 ρ24 ρ25
ρ31 ρ32 ρ33 ρ34 ρ35
ρ41 ρ42 ρ43 ρ44 ρ45
ρ51 ρ52 ρ53 ρ54 ρ55




. � (16)

Here

	

ρjj =⟨Xj|Xj⟩ =
∞∑
n=0

Pn|Xj(n, t)|2,

ρ12 =ρ
∗
21 = ⟨X1|X2⟩ =

∞∑
n=0

qnq
∗
n+kX1(n, t)X

∗
2 (n + k, t),

ρ13 =ρ
∗
31 = ⟨X1|X3⟩ =

∞∑
n=0

qnq
∗
n+kX1(n, t)X

∗
3 (n + k, t),

ρ14 =ρ
∗
41 = ⟨X1|X4⟩ =

∞∑
n=0

qnq
∗
n+2kX1(n, t)X

∗
4 (n + 2k, t),

ρ15 =ρ
∗
51 = ⟨X1|X5⟩ =

∞∑
n=0

qnq
∗
n+kX1(n, t)X

∗
5 (n + k, t),

ρ23 =ρ
∗
32 = ⟨X2|X3⟩ =

∞∑
n=0

qn+kq
∗
n+kX2(n + k, t)X∗

3 (n + k, t),

ρ24 =ρ
∗
42 = ⟨X2|X4⟩ =

∞∑
n=0

qn+kq
∗
n+2kX2(n + k, t)X∗

4 (n + 2k, t),

ρ25 =ρ
∗
52 = ⟨X2|X5⟩ =

∞∑
n=0

qn+kq
∗
n+kX2(n + k, t)X∗

5 (n + k, t),

ρ34 =ρ
∗
43 = ⟨X3|X4⟩ =

∞∑
n=0

qn+kq
∗
n+2kX3(n + k, t)X∗

4 (n + 2k, t),

ρ35 =ρ
∗
53 = ⟨X3|X5⟩ =

∞∑
n=0

qn+kq
∗
n+kX3(n + k, t)X∗

5 (n + k, t),

� (17)

with Pn = |qn|2, and the star ∗ represents the complex conjugate.

Equipped with the wavefunction and density matrix, we can now delve into the fascinating time-dependent 
characteristics of the atomic system. The following sections will explore this topic in detail.

Entanglement and quantum coherence
Linear entropy
Quantum entanglement, a fundamental phenomenon in quantum mechanics, plays a crucial role in the 
manipulation and creation of quantum states54–58. It stands as a cornerstone in the resources of quantum 
information, contributing significantly to applications such as quantum teleportation59, quantum cryptography60, 
quantum computations61, and quantum tomography62,63. There are various measures of entanglement64,65, 
including entanglement of formation66, negativity67, concurrence68,69, and entropy70. In our study, we employ 
linear entropy as the quantifier to assess the entanglement of our system.

The degree of entanglement among various components of a system can be assessed by examining the linear 
entropy of the electromagnetic field. Higher linear entropies correspond to greater degrees of entanglement, 
while lower entropies indicate smaller levels of entanglement. The linear entropy can be formulated using the 
following equation71

	 SL(ρ̂) = 1− tr[ρ̂2],� (18)

where ρ̂ is the reduced density matrix of the atoms.

In general, linear entropy satisfies the following inequality

	
0 ≤ SL ≤ 1− 1

n
.� (19)

Here, n is the dimension of the Hilbert space, and in the case of a Λ five-level atom, we have n = 5. Thus, the 
linear entropy SL satisfies the inequality 0 ≤ SL ≤ 4

5  for our considered case. The system is identified as being 
in a pure state when the linear entropy of the electromagnetic field equals zero, signifying that the cavity field 
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is not influencing the atom. Conversely, reaching the upper limit of system entanglement indicates that the 
entanglement between the atoms and the field is at its maximum level. From Eq. (16), we get

	
SL = 1−

5∑
j=1

( ∞∑
n=0

|Xj|2
)2

− 2
∑
i<j

|
∞∑
n=0

XiX
∗
j |2.� (20)

The primary objective of this study is to investigate entanglement within an atom-field bipartite system. This 
goal is pursued by implementing an optimal configuration and carefully selecting appropriate parameter values.

l1-norm of quantum coherence
The l1-norm of quantum coherence is a widely employed measure that quantifies the amount of coherence 
in a quantum state by summing the absolute values of all off-diagonal elements in the density matrix ρ̂, 
mathematically given by45,46

	
Cl1(ρ̂) =

∑
i̸=j

|⟨i|ρ̂|j⟩|.� (21)

This measure is straightforward to compute and clearly indicates how much a quantum state deviates from 
being classical. It captures the superposition properties of the state and is useful in various quantum information 
processing tasks.

Numerical results
Let us explore the impact of detuning parameters (∆) and the nonlinearity parameter (χ) on the time evolution of 
the linear entropy with two fixed values of k, i.e. k = 1 and k = 2. Throughout all figures, we set |α0|2 = n̄ = 10,
λs = λ, and ∆s = ∆ for s = 1 to 4.

In Figs. 2 and 3, we explore the entanglement dynamics between a Λ five-level (and four-level) atom and 
an intensity-dependent coupling regime by examining the temporal evolution of the linear entropy SL for two 
fixed values of k = 1 and k = 2. As mentioned, a four-level atomic system can be obtained by our model when 
λ3 = 0 in Eq. (2). We optimize the values of ∆ and χ to deduce an optimal dynamical behavior that generates 

Fig. 2.  The plots illustrate the influence of detuning parameters (∆) and the nonlinearity parameter (χ) on the 
time evolution (scaled time λt) of the five-level atom and four-level atom captured by linear entropy with the 
fixed value of k = 1. Plot (a) depicts the linear entropy when ∆ = χ = 0, while plot (b) illustrates the scenario 
when ∆ = 5 and χ = 0. Additionally, plots (c) and (d) showcase the linear entropy for the cases where ∆ = 0, 
χ = 0.5 and ∆ = 5, χ = 0.5 respectively.

 

Scientific Reports |        (2024) 14:25211 7| https://doi.org/10.1038/s41598-024-76629-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


maximal entanglement between the atom and the field. These figures reveal that the linear entropy is initially 
zero, indicating that the system starts in a disentangled state, as expected from the initial separable state shown 
in Eq. (7). Subsequently, there is a rapid increase in the curves, fluctuating between maximum and minimum 
values as time progresses.

In Figs. 2a and 3a, the detuning parameters and the nonlinear Kerr parameter are both set to zero 
(∆ = χ = 0) with k = 1 and k = 2. The physical interpretation centers around how the detuning parameter ∆ 
and the nonlinear Kerr parameter χ influence the dynamics of a quantum system, particularly in the context of 
its entanglement behavior as measured by the linear entropy function. The linear entropy function quantifies 
the degree of mixedness or loss of coherence in the quantum system. The rapid generation of linear entropy 
suggests that the system quickly moves away from a pure state to a more mixed one. This could indicate fast 
entanglement dynamics or interaction between different parts of the system, even in the absence of nonlinear 
or detuning influences. Since both ∆ = 0 and χ = 0, the system is operating in an idealized regime without 
any detuning effects or nonlinear Kerr interactions. In this scenario, we observe a rapid generation of the linear 
entropy function. Additionally, the curves exhibit some fluctuations over time. For k = 1, we observe a decrease 
in the amplitude of oscillations while the maximum value remains constant. However, for k = 2, we see more 
fluctuations than the previous case (k = 1). When k = 1, the system exhibits oscillations in the linear entropy 
function, indicating periodic changes in the entanglement or coherence. The amplitude of these oscillations 
decreases over time, suggesting a gradual stabilization of the system, though the maximum value remains 
constant. This stabilization might point to the system settling into a particular entangled state. When k = 2, 
the system experiences more fluctuations in the linear entropy compared to k = 1, implying more complex or 
dynamic entanglement behavior. These additional fluctuations could be due to higher energy states or more 
degrees of freedom available in the system, leading to more intricate quantum interactions.

Furthermore, a clear difference between the entanglement values in five-level and four-level atomic systems is 
visible. The obvious difference in entanglement values between the five-level and four-level systems suggests that 
the number of atomic energy levels plays a significant role in the entanglement dynamics. The five-level system 
likely provides more pathways for interaction and entanglement, leading to more complex and possibly higher 
degrees of entanglement compared to the four-level system.

In Figs. 2b and 3b, the detuning parameters are increased (i.e., ∆ = 5), while the nonlinear Kerr parameter 
parameter is kept at zero (χ = 0). Surprisingly, the rate of fluctuations slows down, which is evident in the 
decreasing amplitudes of the oscillations over time. When the detuning parameter ∆ is increased, the system’s 
response becomes less resonant, causing the fluctuations in the system to slow down. This suggests that the 
system becomes less responsive to external perturbations, leading to more stable or “damped” behavior over 
time. The decreasing amplitude of oscillations could indicate energy dissipation or reduced entanglement in the 
system’s evolution.

Fig. 3.  Same as Fig. 2 but for k = 2.
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Furthermore, due to the increased detuning parameters, we observe that the curves for both cases k = 1 
and k = 2 shift downward, suggesting that the system can be adversely affected by highly detuning parameters. 
Increasing the detuning means that the system is being driven further away from its natural resonant frequency. 
Physically, this could reduce the system’s ability to interact efficiently with the driving field, leading to altered 
dynamic behavior.

We examine the effect of the Kerr medium (χ = 0.5) on the entanglement between the atom and the field in 
the absence of detuning parameters for two fixed values of k in Figs. 2c and 3c. Under the influence of the Kerr 
medium, the linear entropy function experiences a rapid increase to a certain value for a brief period, followed 
by significant suppression. This leads to a state of purity, with the linear entropy approaching zero for k = 1, 
signifying a condition where no information transfer occurs between the field and the atom. However, when the 
multiplicity of photons k increases (k = 2), the impact of Kerr effect is reduced. Over time, for k = 1, one can 
observe that the curve moves periodically and consistently, with an increase in the number of oscillations and 
their amplitudes. This is more evident for k = 2. It is noteworthy that the linear entropy demonstrates a more 
pronounced and strong negative effect compared to the scenario where detuning parameters are increased, as 
depicted in Figs. 2b and 3b.

In Figs. 2d and 3d, when considering the non-zero values for both detuning parameters and nonlinear Kerr 
parameter (∆ = 5, χ = 0.5), it becomes evident that entanglement can be destroyed over time for both five-level 
and four-level atomic systems. Nevertheless, the effects of detuning and the Kerr effect are reduced when the 
multiplicity of photons k increases. This attenuation occurs because the system’s response to these nonlinear 
interactions becomes less sensitive as the photon number grows72. Therefore, by carefully adjusting the value 
of k, we can effectively mitigate these negative impacts and enhance the system’s performance. Overall, this 
description emphasizes how the system’s entanglement behavior varies depending on the value of k and the 
structure of the atomic system (five-level or four-level), even when detuning and nonlinear effects are absent.

To comprehensively compare the impact of both detuning and nonlinear Kerr parameters on quantum 
coherence, we plot the l1-norm of quantum coherence Cl1 against the scaled time λt for five-level and four-level 
atomic systems with k = 1 and k = 2. Figures 4 and 5 capture the dynamical behavior of quantum coherence 
over λt, as measured by the l1-norm of coherence Cl1. A higher value of Cl1 indicates greater quantum coherence, 
meaning that the quantum state has a more significant superposition of basis states.

In Figs. 4a and 5a, the detuning and nonlinear Kerr parameters are set to zero, meaning no external 
influences are affecting the system’s dynamics. The focus is on how the quantum coherence of the system 
evolves, as measured by the l1-norm of coherence, which tracks how much the system remains in a coherent 
superposition state. The system quickly develops a high level of coherence, suggesting fast internal dynamics 
even without external detuning or nonlinear effects. For k = 1, we see periodic changes in coherence with 
decreasing oscillation amplitude over time, indicating the system is stabilizing but still retaining a constant 
maximum level of coherence. This stabilization could mean the system is finding a coherent state where it 

Fig. 4.  Same as Fig. 2 but for l1-norm of quantum coherence.
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tends to settle. For k = 2, the system shows more complex behavior, with more fluctuations, likely due to the 
availability of more energy levels or degrees of freedom. This points to a more dynamic and intricate quantum 
coherence evolution. Lastly, the difference in coherence between five-level and four-level atomic systems 
highlights the impact of atomic structure on coherence dynamics. The five-level system, having more interaction 
possibilities, demonstrates more complex and higher degrees of coherence compared to the four-level system. 
This underscores the importance of the number of energy levels in determining how quantum coherence evolves 
in atomic systems.

Increasing the detuning parameter (∆ = 5) while keeping the nonlinear Kerr effect at zero causes the system’s 
coherence to fluctuate more slowly over time, as illustrated in Figs. 4b and 5b. This reduction in fluctuation 
rate implies that the system is less responsive to external influences, stabilizing the quantum coherence. 
The diminishing oscillation amplitude may reflect a loss of energy or coherence, as the system becomes less 
interactive with its environment.

Regarding Figs. 4c and 5c, we analyze how the Kerr medium influences the quantum coherence between an 
atom and the field, rather than focusing on entanglement. Initially, the coherence rapidly rises and then falls 
sharply for k = 1. This suggests that there is little coherent interaction between the atom and the field at this 
point. When the photon number k increases to 2, we see a different pattern for coherence suppression. For k = 1, 
periodic oscillations of coherence occur with increasing intensity over time. This effect is more pronounced for 
higher photon numbers, indicating that increasing photon multiplicity changes how coherence evolves in the 
presence of the Kerr medium.

From Figs. 4d and 5d, we see that the quantum coherence of the atomic systems can degrade over time due to 
the influence of detuning and nonlinear Kerr interactions. However, as the number of photons (k) in the system 
increases, the sensitivity of the quantum coherence to these disturbances decreases. In other words, when there 
are more photons, the destructive effects on coherence caused by detuning and Kerr nonlinearity become less 
pronounced. By tuning the photon multiplicity, we can minimize the disruption to coherence and maintain the 
system’s quantum properties, leading to better overall performance. This suggests that photon multiplicity acts 
as a control parameter to optimize the resilience of the system against coherence loss.

Conclusion
In conclusion, this study has provided an analytical solution for a quantum system featuring a double Λ five-level 
atom interacting with an intensity-dependent coupling regime, influenced by a nonlinear Kerr-like medium. 
The constants of motion were derived through the application of Heisenberg’s equations. The discussion on 
the dynamical evolution of entanglement and quantum coherence, respectively measured by linear entropy 
and l1-norm of coherence, sheds light on the intricate relationship between the atom and the field. Upon a 
comprehensive examination of the quantum system, it became evident that both the detuning and nonlinear 

Fig. 5.  Same as Fig. 3 but for l1-norm of quantum coherence.
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Kerr parameters contribute negatively to the degree of entanglement and coherence. However, the influence 
of detuning and the Kerr effect diminishes remarkably when the photon multiplicity k is elevated. Therefore, 
these detrimental effects can be substantially mitigated by carefully controlling the value of k. Additionally, a 
noticeable distinction in entanglement and coherence values between the five-level and four-level atomic systems 
was observed. This clear difference indicates that the number of atomic energy levels significantly influences 
the dynamics of entanglement and coherence. The five-level system likely offers more interaction pathways, 
resulting in more complex and potentially higher degrees of entanglement and coherence compared to the four-
level system. In summary, these results highlight how the system’s entanglement and coherence behavior changes 
based on the value of k and the configuration of the atomic system (whether five-level or four-level), even in the 
absence of detuning and nonlinear effects.

Data availability
All data generated or analysed during this study are included in this published article.
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