Table 1 Atomic and quantum laser frequency noise requirements and performance limits and comparison between this work and free-running semiconductor lasers.
From: Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser
Application | Offset frequency | Frequency noise at offset | Noise source* | Laser frequency noise limited performance | |
---|---|---|---|---|---|
This work | DBR**/ ECDL**/ SIL15 | This work | |||
Cold atom interferometer gravimeter39 | 24 kHz, blue diamond in Fig. 4 | 55 Hz2/Hz | Gravity sensitivity limited by Raman laser frequency noise*** \(\:{\sigma\:}_{\varphi\:}^{2}={\int\:}_{{f}_{x}}^{\infty\:}{H\left(f\right)}^{2}{S}_{{\Delta\:}\nu\:}\left(f\right)df\) \(\:{\sigma\:}_{g}=\frac{{\sigma\:}_{\varphi\:}}{{g\:k}_{\text{e}\text{f}\text{f}\:}{T}^{2}\sqrt{{\Delta\:}f}}\) | 124 / 53 / 44 nm/s2/\(\:\sqrt{\text{H}\text{z}}\) | 4 nm/s2/\(\:\sqrt{\text{H}\text{z}}\) |
2-photon atomic wavelength reference at \(\:{f}_{0}\) for 778 nm laser 4 | 160 kHz, red diamond in Fig. 4 | 15 Hz2/Hz | Short-term (\(\:\tau\:\approx\:1\) s) instability due to intermodulation (IM) effect at \(\:{f}_{m}\)modulation frequency32,35 \(\:{\sigma\:}_{y}^{\left(IM\right)}\left(\tau\:\right)=\:\frac{{\left[{S}_{{\Delta\:}\nu\:}\left(2{f}_{m}\right)/{f}_{0}^{2}\right]}^{1/2}}{2\:\sqrt{\tau\:}}\) | \(\:1\times\:{10}^{-12}\:/\:9\times\:{10}^{-14}\:/\) \(\:4\times\:{10}^{-14}\) | \(\:5\times\:{10}^{-15}\) |
High-fidelity neutral-atom qubit operations36 | 1 MHz, yellow diamond in Fig. 4 | 1.5 Hz2/Hz | Single-photon gate operation averaged error for Rabi frequency \(\:{{\Omega\:}}_{0}/2\pi\:=\:\)1 MHz and a \(\:\pi\:\) pulse37. \(\:\stackrel{-}{\mathcal{E}}=\frac{8\:{\pi\:}^{2}}{3\:}{\int\:}_{{f}_{x}}^{\infty\:}{S}_{{\Delta\:}\nu\:}\left(f\right)\:H\left(f\right)\:df\) | \(\:2\times\:{10}^{-1}\:/\:2\times\:{10}^{-2}\:/\) \(\:3\times\:{10}^{-2}\) | \(\:2\times\:{10}^{-5}\) |