Table 2 Comparison with existing works on the UCF-Crime dataset.

From: Weakly supervised video anomaly detection based on hyperbolic space

Supervision

Method

Feature

T

AUC (%)

Parameters (M)

Un- supervision

GODS (2019)34

\(I3D^{RGB}\)

70.46

GCL(2022)1

ResNext

71.04

\(3.44^{*}\)

DyAnNet (2023)27

\(I3D^{RGB}\)

32

79.76

\(1.09^{*}\)

C2FPL (2024)35

\(I3D^{RGB}\)

80.65

2.13

CLAP (2024)36

\(I3D^{RGB}\)

80.90

2.13

Weakly- supervision

Sultani et al.(2018)2

\(C3D^{RGB}\)

32

77.92

2.11

GCL (2022)1

ResNext

79.84

\(3.44^{*}\)

GCN (2021)17

\(C3D^{RGB}\)

32

81.08

2.17

GCN (2021)17

\(TSN^{RGB}\)

32

82.12

2.17

GCN (2021)17

\(TSN^{FLOW}\)

32

78.08

2.17

MIST (2021)6

\(I3D^{RGB}\)

32

82.30

30.99

HL-NET(2020)18

\(I3D^{RGB}\)

200

82.44

0.84

CLAWS (2021)37

\(C3D^{RGB}\)

83.03

RTFM (2021)4

\(I3D^{RGB}\)

32

84.30

24.72

Cao et al. (2022)38

\(I3D^{RGB}\)

150

84.67

2.17

S3R (2022)32

\(I3D^{RGB}\)

32

85.99

81.44

MGFN (2022)5

\(I3D^{RGB}\)

32

86.98

28.65

UR-DMU (2023)7

\(I3D^{RGB}\)

200

86.97

6.49

Ours

\(I3D^{RGB}\)

200

85.21

0.61

  1. “*” represents the result of our implementation. The top performance is highlighted in bold.