Table 2 Comparison of detection accuracy between FACSNet and SRNet (JPEG domain) %.

From: FACSNet: Forensics aided content selection network for heterogeneous image steganalysis

Dataset

Steganography algorithm

Detection model

QF75

   

QF95

   
 

0.1 bpnzAC

0.2 bpnzAC

0.3 bpnzAC

0.4 bpnzAC

0.1 bpnzAC

0.2 bpnzAC

0.3 bpnzAC

0.4 bpnzAC

BOSSbase

(All Original)

J-UNIWARD

SRNet

64.49

79.28

86.67

91.75

59.66

68.83

75.44

80.46

FACSNet

64.49

79.31

86.67

91.75

59.66

68.83

75.44

80.46

UERD

SRNet

81.61

89.85

94.33

96.58

67.60

78.41

85.73

89.38

FACSNet

81.61

89.85

94.34

96.58

67.63

78.41

85.73

89.38

Heterogeneous-BOSSbase

(Original + AI)

J-UNIWARD

SRNet

60.22

75.34

81.21

85.30

51.73

62.91

70.04

77.60

FACSNet

64.38

78.85

86.63

91.73

58.35

68.56

75.09

80.37

UERD

SRNet

75.83

86.66

89.01

93.18

61.25

72.91

81.46

86.27

FACSNet

81.58

89.70

93.66

96.50

67.55

78.33

85.71

89.38

BOWS

(All Original)

J-UNIWARD

SRNet

64.13

77.08

85.77

90.34

56.84

67.69

74.28

79.88

FACSNet

64.13

77.09

85.77

90.34

56.85

67.69

74.32

79.88

UERD

SRNet

80.77

89.48

93.60

95.43

67.55

78.03

85.34

88.69

FACSNet

80.79

89.48

93.60

95.43

67.55

78.03

85.34

88.69

Heterogeneous-BOWS

(Original + AI)

J-UNIWARD

SRNet

59.81

72.55

80.97

85.63

50.11

61.75

70.38

73.66

FACSNet

63.39

76.80

85.52

90.18

56.34

67.65

74.19

79.83

UERD

SRNet

74.07

84.81

88.62

91.83

62.33

70.80

80.77

85.04

FACSNet

80.66

89.20

93.44

95.41

67.39

77.92

85.18

88.65