Table 3 Review of the papers that applied deep learning for coronary vessel segmentation.
References | Modality | Data source | No. of subj. | ML model | Input | DSC | Add’l perf. metrics |
|---|---|---|---|---|---|---|---|
Dong et al.67 | CCTA | Private | 338 | Di-Vnet | 3D patches | 0.902 | Prec = 0.921, Recal l= 0.97 |
Gao et al.68 | XCA | Private | 130 | GBDT | 2D images | – | F1 = 0.874, Sen = 0.902, Spec = 0.992 |
Wolterink et al.69 | CCTA | Publicly available | 18 | GCN | 2D images | 0.74 | MSD = 0.25 mm |
Li et al.70 | CCTA | Private | 243 | 2D U-Net with 3DNet | 2D images | 0.771 ± 0.021 | AUC = 0.737 |
Song et al.71 | CCTA | Private | 68 | 3D FFR U-Net | 3D patches | 0.816 | Prec = 0.77, Recall = 0.87 |
Zeng et al.72 | CCTA | Publicly available | 1000 | 3D-UNet | 3D volumes | 0.82 | – |