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Besides being responsible for olfaction and air intake, the nose contains abundant vasculature and 
autonomic nervous system innervations, and it is a cerebrospinal fluid clearance site. Therefore, the 
nose is an attractive target for functional MRI (fMRI). Yet, nose fMRI has not been possible so far due 
to signal losses originating from nasal air-tissue interfaces. Here, we demonstrated feasibility of nose 
fMRI by using novel ultrashort/zero echo time (TE) MRI. Results obtained in the resting-state from 13 
healthy participants at 7T and in 5 awake mice at 9.4T revealed a highly reproducible resting-state nose 
functional network that likely reflects autonomic nervous system activity. Another network observed 
in humans involves the nose, major brain vessels and CSF spaces, presenting a temporal dynamic that 
correlates with heart rate and breathing rate. These resting-state nose functional signals should help 
elucidate peripheral and central nervous system integrations.

The nose is the major organ responsible for olfaction and air intake, which primarily engage two of four distinct 
types of epithelia found in the nasal cavity, namely the olfactory and respiratory epithelium, respectively. 
Interestingly, the nasal cavity contains a complex neuronal system extending to both olfactory and respiratory 
epithelium. The former, in particular, is innervated by branches of the trigeminal nerve1, the largest of the cranial 
nerves, carrying motor fibers to the muscles of mastication and transmitting sensory information from the face, 
scalp, mouth, and nasal passages to the central nervous system (CNS)2. Also, the nasal cavity contains neural 
innervation from parasympathetic and sympathetic systems, comprising the autonomic nervous system (ANS), 
that maintain turbinate functions3 such as nasal secretions, patency, warmth, and humidification4. Those traits 
highlight the growing recognition of the nose as a crucial focal point for investigating the interplay between the 
peripheral and central nervous systems, as well as for elucidating disease mechanisms. Furthermore, concurrent 
impairment in both olfaction and autonomic functions frequently occurs during the early stages or during the 
progression of neurodegenerative disorders, as in the case of Parkinson’s disease5–7 and Alzheimer’s disease8,9, 
further supporting the notion of a direct link between the nasal activity and the nervous system. Besides, 
according to the olfactory vector hypothesis, the nose can be seen as an important entry point for neurotropic 
agents that may cause or catalyze those neurodegenerative disorders10. Yet, the characterization of system-wide 
functional connections between the nose and the nervous system is challenged by the lack of imaging methods 
that detect robust surrogates of neural activity in the nose.

One of the most powerful and flexible tools to study CNS activity is functional MRI (fMRI), which nonetheless 
has remained intrinsically inadequate for detecting nose functional signals. In fact, fMRI techniques that rely 
on the use of an echo time, such as gradient echo (GE)- or spin echo (SE)- echo planar imaging (EPI) widely 
used to measure blood-oxygenation-level-dependent (BOLD) signals11, suffer from image distortions and signal 
losses caused by magnetic field inhomogeneities12. Offline strategies have been developed for correcting image 
distortions, for example by characterizing field inhomogeneities using a field map13, or by generating a map 
of displacement field by collecting two images with opposite phase encoding directions14. Both approaches 
estimate a distortion map that can be used to correct (unwarp) the original images. However, they are ineffective 
in frontal brain areas and especially the nose where the susceptibility artifacts originating from the air-tissue 
interfaces of the nasal cavity destroy magnetic field uniformity and, ultimately, the signal itself. To overcome 
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the challenges caused by susceptibility inhomogeneities, one can use acquisitions schemes that do not rely on 
the formation of an echo, such as in ultrashort echo time (UTE)15–17, zero echo time (ZTE)18 or SWeep Imaging 
with Fourier Transform (SWIFT)19,20 techniques. Importantly, previous studies in anesthetized rats21 and head-
fixed awake rats22 at 9.4T have convincingly demonstrated that fMRI contrast is not only feasible, but highly 
advantageous with a zero-TE technique such as Multi-Band SWIFT (MB-SWIFT) and that it is mostly related 
to blood flow and volume. The benefits of MB-SWIFT are indeed numerous, including its compatibility with 
electrophysiological recordings, its resilience to susceptibility artefacts including those induced by metallic 
implants and body movements, and, finally, its inherent quietness that improves subject comfort, compliance 
and minimizes unintended activations due to gradient induced noise. However, applications of ultrashort/zero-
TE techniques to fMRI in humans remain limited23,24, and applications to study nasal functional signals have 
not yet been explored.

In this study, we aim to demonstrate the feasibility of ultrashort/zero-TE techniques to detect nasal functional 
signals and their brain connections in human and animal models in resting awake conditions. With the goal of 
characterizing the physiological correlates of the nasal signals, corresponding cardiac and respiratory data were 
acquired. We propose that the nasal resting-state functional networks will help elucidate unique interactions 
between the peripheral and central nervous systems in health and disease.

Results
UTE unveils two functional networks involving the nose in humans
Raw images
The field of view used in the UTE acquisitions included both the brain and nose for all participants. All data 
were of sufficient quality (e.g., without motion artifacts), and were thus included in further analyses. Raw images 
from one representative subject are displayed in Fig. 1, from which it can be seen that with standard GE-EPI 
(TE = 22.2 ms) no signal is detected in the nose (Fig. 1A and D), whereas a clear signal and anatomical details 
are visible when the images are acquired with UTE, both in the low-resolution fMRI setup (TE = 0.12 ms, Fig. 1B 
and E) and in the high-resolution anatomical setup (TE = 0.11 ms, Fig. 1C and F). Therefore, by using MRI 
sequences that do not rely on an echo, we demonstrate that it is possible to detect functional and anatomical 

Fig. 1.  Comparison of raw images GE-EPI vs. UTE. Brain images are acquired from the same slice in one 
representative subject at 7T with GE-EPI (A and D), UTE with fMRI resolution (B and E) and UTE with 
anatomy resolution (C and F). Sagittal views (A–C) and axial views (D–F). Whereas GE-EPI shows large areas 
of signal dropout in the nose (white arrow), these are almost completely eliminated with UTE.
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signals from the nasal area with reduced distortion compared to GE-EPI that on the other hand suffers for 
increased sensitivity to susceptibility differences resulting from the abundant tissue-air interfaces.

Group level resting-state fMRI with UTE and GE-EPI
Group-level independent component analysis (ICA) of resting-state fMRI data from the 13 human participants 
demonstrate that it is possible to identify a prominent network in the nasal cavity with UTE (Fig.  2A) that 
is not visible with GE-EPI (Fig. 2E). Compared with GE-EPI, UTE better shows a network extending to the 
cerebrospinal fluid (CSF) and the perivascular space around the brainstem with opposite polarity compared 
to the major vessels of the brain (Fig. 2B and F). Conventional resting-state functional components are also 
visible with UTE, including the CSF component (Fig. 2C), and, when the analysis is limited to the brain only, the 
default mode network (DMN, Fig. 2D), similarly to standard GE-EPI acquisitions (Fig. 2G and H, respectively). 
Notably, the spatial registration methods routinely used for brain images do not work properly for the nose, 
leading to blurring in the nasal area of both functional and anatomical images shown in Fig. 2. This feature, 
in addition to physiological inter-subject variability of the nasal area, resulted in the nose component of vague 
shape (Fig. 1A), prompting us to proceed with voxel-wise analyses at single-subject level.

Single-subject resting-state fMRI with UTE
Single-subject ICA results obtained from the resting-state fMRI UTE data of each participant were visually 
inspected by at least two independent researchers to ensure good data quality, and to manually select robust ICs 
of interest involving the nose. Such nose networks were very similar with either 20 or 30 ICs used in the ICA 
(data not shown); results that follow use networks identified from 30 ICs.

Among the obtained components, we consistently identified two networks involving the nose (Supplementary 
material from Supplementary Figure S1 to Supplementary Figure S37) similar to those detected in the group 
analysis (Fig. 2). The first network (Fig. 3A), called here “nose network”, encompasses the entire nasal cavity 
and it is apparently unilateral (in 11 out of 13 subjects), possibly reflecting the side of the nose that is actively 
receiving respiration according to the nasal cycle. The second network (Fig.  3B), called here “CSF/Vessels 
network”, encompasses the CSF in the perivascular space around the brainstem, and, with opposite polarity, the 
major brain vessels and partially the nose - albeit with varying extension and location across subjects. While the 
time evolution of the nose network is characterized by very slow fluctuations that resemble those of the heart 
rate and breathing rate variability (HRV and BRV, respectively), the CSF/Vessels network is characterized by 
high- and low-frequency fluctuations similar to heart rate and breathing rates (Fig. 3C).

When overlaying the IC maps on the anatomical UTE images, which provide more anatomical contrast and 
details in the nose area, it is obvious that the nose network is not only lateralized but is positioned on the nasal 
cavity side that was more open during the scan, as it is visible in the high anatomical resolution UTE image 
(Fig. 4 for one representative subject data and figures S1 to S37 for all the subjects).

Fig. 2.  Group-level ICA results in humans overlaid on an anatomical image. IC z-maps from the group-level 
analysis (n = 13) on both UTE (A–D) and GE-EPI (E–H) data. Only the first run out of 3 runs were used for 
the group-level UTE group analysis. Components of interest include the nose network (A and E) only visible 
with UTE acquisition, the CSF/Vessels network (B and F), the CSF component (C and G) and the DMN (D 
and H). IC z-maps are overlaid on the average (across subjects) anatomical MP2RAGE.
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Correlations with physiological signals
Physiological data (respiration and peripheral pulse signals) were available in full for 29 UTE scans (3 runs from 
9 subjects and 2 runs from 1 subject) and in a shorter version, due to technical problems, during 5 scans (1 run 
from 2 subjects and 3 runs for one subject).

When available, Pearson’s correlation coefficients were calculated between each resting-state fMRI time-
courses and each physiological measure, separately for each subject and run. The results of the correlation 
analysis are shown in Supplementary Figure S38. From the linear mixed model analysis at the group level, 
the nose network time-course was significantly correlated with HRV (t-value=-4.39, p = 1.15e−  5) and BRV 
(t-value = 11.1, p = 2.52e− 28) but not with HR (t-value=-1.26, p = 0.21) or BR (t-value = 1.30, p = 0.19), while 
the CSF/Vessels network time-course was significantly correlated with HR (t-value=-5.63, p = 1.85e− 8) and BR 
(t-value=-2.5, p = 0.012) but not with HRV (t-value = 2.0, p = 0.04) or BRV (t-value=-1.48, p = 0.14). Therefore, 
the temporal signal of the nose network appears to be synchronized with the variability in breathing and heart 
rates but not the rates themselves, while the opposite is true for the CSF/Vessels network.

Intra-subject reproducibility of the nose network and the CSF/Vessels network
All subjects except one completed 3 UTE runs, used to assess intra-subject reproducibility. The two ICs of 
interest involving the nose were found in each subject and run. Single-subject maps of the nose and CSF/
Vessels networks are shown in Fig. 5A and C, respectively, for one representative subject. Eight subjects (out of 
12) showed consistent unilateral nose networks in all the 3 runs; one subject showed consistent bilateral nose 
network in all the 3 runs; finally, one subject showed the nose network (bilateral) only in 1 run, while one subject 
showed a change from bilateral to unilateral network across runs (Figures S1 to S37). To quantify the intra-
subject reproducibility, the dice similarity coefficient was calculated for each pair of runs (run 1 vs. run 2; run 1 
vs. run 3; run 2 vs. run 3) for each subject. The average dice coefficient (mean ± sd, range) across subjects and run 
pairs is 0.47 ± 0.21, 0.058–0.871 for the nose network (Fig. 5B) and 0.63 ± 0.11, 0.374–0.829 for the CSF/Vessels 
network (Fig. 5D), indicating good reproducibility across scans for both networks.

Fig. 3.  Networks of interest encompassing the nose and physiological measures in a representative subject. ICs 
of interest from one representative human participant. IC z-maps representing the nose network (A) and the 
CSF/Vessels network (B) are overlaid on the anatomical MP2RAGE images, both presented in sagittal and axial 
view. Panel (C) shows all the time-courses of interest: IC time-courses (black), pulse measures (orange) of heart 
rate (HR) and heart rate variability (HRV), respiration measures (blue) of breathing rate (BR) and breathing 
rate variability (BRV). The unilateral nose component appears to be located on the side with the more open 
nostril, as it can be seen in axial view.
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Effect of removal of physiological signals from the resting-state signals
Physiological confounds were removed from rsfMRI data using different strategies. When complete physiological 
signals were recorded (29 scans), those signals were used to assess their effects on the resting-state fMRI UTE 
data. From the fMRI data, we linearly regressed out either the physiological signals modeled with RETROICOR 
(method for retrospective correction of physiological motion effects in fMRI)25, or the HRV and BRV signals. 
An additional analysis was performed with a data-driven approach by regressing out confound signals calculated 
as mean time-courses in white matter and CSF voxels. In order to quantify the reproducibility of the networks 
across preprocessing pipelines, for each scan and network, we calculated the dice similarity coefficient between 
the original network (without any correction) and the network identified by ICA either after RETROICOR, after 
regressing out HRV and BRV, and after regressing out white matter and CSF signals. The original nose network 
(Fig. 6A) is virtually identical to those identified after RETROICOR (Fig. 6B), after regressing out HRV and BRV 
(Fig. 6C) and after regressing out white matter and CSF signals (Fig. 6D). The average dice similarity coefficient 
(mean ± sd, range) was also very high in all cases, namely 0.89 ± 0.11, 0.500–0.980 (Fig. 6E), 0.85 ± 0.12, 0.454–
0.986 (Fig. 6F), and 0.89 ± 0.14, 0.37–0.99 (Fig. 6G) respectively. Similar observations apply to the CSF/vessels 
network. The original map (Fig.  6H) is very similar to the map obtained after HRV and BRV are regressed 
out (Fig. 6J) and to the map obtained after white matter and CSF signals are regressed out (Fig. 6K), with a 
dice similarity index of 0.91 ± 0.09, 0.497–0.984 (Fig. 6M) and 0.93 ± 0.06, 0.64–0.98 (Fig. 6N), and to a lesser 
extent to the map obtained after RETROICOR (Fig. 6I). In the latter case, the network is not even recognized 
or severely altered in 3 scans, overall leading to a lower dice coefficient of 0.58 ± 0.29, 0.090–0.960 (Fig. 6L). The 
effects of physiological corrections on the first run of each subject are shown in Supplementary Figure S39 (nose 
component) and Supplementary Figure S40 (CSF/Vessels component).

MB-SWIFT unveils nose functional parcellation in awake mice
The resting-state fMRI data in awake head-fixed mice were acquired with the zero-TE technique MB-SWIFT. The 
data were analyzed with ICA using 30 ICs at both single-subject level and group level after spatial normalization. 
ICs were visually inspected independently by at least two researchers to ensure good data quality, and to manually 
select components of interest. At the group-level we detected multiple nose components (8 out of 30), which 
appear to provide a functional nose parcellation (Fig. 7A and Supplementary Figure S41). Similarly to the human 
data, mice data confirm that with zero-TE fMRI it is possible to detect standard brain networks as shown in 
Supplementary Figure S42. From the single subject analysis, similar (but mostly bilateral) resting-state networks, 
encompassing the nose area, were obtained in the awake mice as shown in Fig. 7B for one representative mouse 
and in Supplementary Figure S43 for all animals. On the selected single subject components, the average dice 
similarity coefficient calculated between each pair of subjects was (mean ± sd, range) 0.49 ± 0.05, 0.40–0.57 
(Fig. 7c), indicating that similar nose component is consistently observed across different mice.

Fig. 4.  Anatomical details of the nose network in humans. Nose IC details of one representative subject 
are overlaid on high-resolution UTE images in axial (A) and sagittal (B) views, which reinforce the signal’s 
correspondence to anatomical details. The unilateral nose component appears to be located on the side of the 
open nostril as can be seen in axial view.
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Discussion
In the current study, we demonstrate the feasibility of detecting reliable and reproducible functional signals in 
the nose of humans and mice when using MRI sequences with ultrashort/zero-TE. These results enable new 
explorations of relationships between nasal activity, brain activity26, and cognitive function27,28 as well as potential 
applications to pathological conditions with known abnormal nasal function. Due to the connections of the nose 
to the ANS, exploiting the fMRI signal fluctuations in the nose can contribute to our overall understanding of 
the complex interactions between the peripheral and central nervous systems.

Functional MRI of the nose opens a new area of research, which hitherto has been precluded due to lack 
of appropriate imaging technology. Despite the fact that zero-TE fMRI has been used in other applications in 
rodents21,29–34, the implementation of this strategy to solve the challenges of MRI signal loss in the nose had not 
been presented so far. Moreover, only one fMRI study so far has been reported using 3D UTE in humans at 3T23. 
Interestingly, the authors detected only negative responses with visual stimulation, as opposite to the positive 
responses seen previously with SWIFT fMRI at 4T24 during the same sensory stimulation. Most importantly, 
their study did not focus on detecting functional networks during the resting-state, neither did it focused on 
the nose areas, thus complicating the comparison with the results of the current study. On the other hand, the 
UTE implementation presented in this study enabled detection not only of nose signals, but also of standard 
brain networks (e.g. DMN and CSF component)35 at group level, thus providing evidence to the fact that UTE 
can be sensitized to functional contrast in human applications. The sensitivity of UTE to hemodynamic signals 
linked to brain activity was most likely enhanced by the use of a slab selective RF pulse, which is expected to 
augment the role of blood inflow, even if we cannot rule out that other mechanisms may play a role as well, e.g., 
T1 relaxation processes or oxygenation, among others.

The data-driven analysis of the images produced by the UTE sequence in humans revealed the existence of a 
prominent, unilateral functional network that extended to one side of the nasal cavity and exhibited ultra-slow 
fluctuations. The signal time-course of this nose network correlated with BRV and HRV, the latter believed to 
reflect parasympathetic activity36, or generally ANS functions, which include regulating involuntary physiologic 

Fig. 5.  Intra-subject reproducibility of networks encompassing the nose in humans. Nose (A, B) and CSF/
Vessels (C, D) networks reproducibility in the same representative subject. Twelve subjects (out of 13) 
underwent 3 UTE runs in the same session. Reproducibility was quantified with the dice similarity coefficient 
between each pair of runs for each subject for the nose component (B) and for the CSF/Vessels component 
(D). Each subject is represented by a different color and the violin plots show the values distribution (all 
subjects, all run pairs).
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processes, i.e., heart rate, blood pressure, and respiration37. When inspecting the spatial localization of the mostly 
unilateral nose network, we noticed that it overlaid to the side of the nose with an open nostril at the time of 
the MRI acquisition. This observation is consistent with the nasal cycle, namely the asymmetrical, spontaneous 
change between the left and right nostrils in nasal airflow that takes place over several hours38 in humans, caused 
by alternate congestion and decongestion of the venous sinuses. The nasal cycle is controlled by the sympathetic 
ANS nerves that supply the nasal blood vessels39, and it is believed to originate from the vasomotor control areas 
of the medulla40. Thus, the lateralization of the nose fMRI network, which is observed in most of the human data, 
on the side of the open airway could reflect the functional activity of the ANS, which controls, among others, 
the turbinate activities. The lack of correlation between the nose signal and HR or BR reduces the likelihood 
that the signal is mainly or exclusively related to airflow during respiration. On the other hand, because HRV 
is a proxy of neurocardiac functions and it is related to heart-brain interactions and dynamic ANS processes36, 
the correlation observed between the nose network signal and HRV is consistent with the nose network activity 
reflecting the nervous system processes that control the heart pulsations and/or the respiration frequency.

Using a similar zero-TE MRI sequence, a prominent resting-state network located in the nasal cavity was 
found also in the fMRI images of awake mice. The cross-species similarity of this detected nose functional 
network substantially reinforces the findings in humans, and it opens the opportunity of using animal models 
in preclinical applications to elucidate the underpinnings of the nose network. Moreover, unlike humans who 
have highly variable noses in shape and size, mice of the same strain and in the same age range have very 
similar noses. This feature makes the spatial normalization across mice noses easier than in humans, and it 
ultimately allows for group-level voxel-wise analyses and more precise mapping of networks in nasal cavities 
that are currently impossible with human data. While the locations and reproducibility of the nose network 
were similar in mice and humans, the unilaterality of the network was different across species. In fact, whereas 
in humans the network is mostly unilateral (11 out of 13 subjects), in mice it is mostly bilateral, an observation 
that is likely due to differences in the nasal cycle across humans and mice. In fact, no direct evidence exists on 
the nasal cycle in mice, but preliminary studies in rats indicated nostril alternation every 30–85 min41, while a 
more recent study even reports the absence of the nasal cycle with a symmetric nasal air flow over an entire day 

Fig. 6.  Effect of removal of physiological signals. Reproducibility of ICs of interest, namely the nose network 
(A–G) and the CSF/Vessels network (H–N), when different noise corrections are performed. Z-maps are 
shown for one representative subject, while reproducibility of ICs was assessed at group-level with the dice 
similarity coefficient between the uncorrected components and the components estimated after each correction 
modality. The original nose component (A) is almost identical to the component obtained when RETROICOR 
correction is applied (B), when HRV and BRV are regressed out (C), when white matter and CSF signals are 
regressed out (D) and at group-level the dice coefficient is uniformly high (E–G). The original CSF/Vessels 
component (H) is almost identical to the component obtained when HRV and BRV are regressed out (J) when 
white matter and CSF signals are regressed out (K) and very similar when RETROICOR correction is applied 
(I). However, some variability across subjects/runs can be observed when RETROCOR is applied (L), which 
is not evident when HRV and BRV or white matter and CSF signals are regressed out (M and N). A total of 29 
scans (3 runs from 9 subjects and 2 runs from 1 subject) had full physiological recording and therefore were 
used for the regression analysis with physiological signals.
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in awake rats42. On these premises, we can only hypothesize in mice either the absence of a nasal cycle, or the 
presence of a very short nasal cycle, which may change even multiple times during the MRI scan, thus leading to 
nose networks that appear to be bilateral.

The other network of interest identified in humans is the CSF/Vessels network, which extends from the 
cervical subarachnoid space to the main brain artery with opposite polarity, and partially to the nose. This 
component is highly reproducible across subjects and temporally correlates with both BR and HR. Interestingly, 
the opposite polarity between the CSF portion of the component and the arterial portion seems to support 
previous evidence that, to maintain a constant intracranial volume, cerebral vasodilation is accompanied by a 
significant reduction in the CSF partial volume, which results in an anticorrelation between the blood signal 
(cerebral blood flow) and the CSF signal (CSF flow)43. Although this anticorrelation has been observed by using 
indirect BOLD signals only during visual stimulation44 or sleep45, namely when more pronounced changes in 
blood flow are induced by the tasks, we speculate that we are able to detect the same phenomenon, even at 
resting-state, thanks to the enhanced direct sensitivity of zero/ultrashort–TE to flow. Moreover, the CSF flow 
itself has been shown to be cardiac- as well as respiratory-driven46, an observation that may explain the temporal 
correlation between the CSF/Vessels time-course and HR and BR. Strong evidence in multiple species showed 
the existence of an olfactory drainage route of CSF through the cribriform plate into the lymphatic system of 
the nasal mucosa and epithelia47. In humans, dynamic 18 F-THK5117 PET even showed CSF signal intensity 
in the superior nasal turbinate48. It is thus possible that the nose functional signals may, at least partially, reflect 
the CSF flow and its transit through the nasal epithelium. Therefore, mapping a functional network related 
to CSF flow, blood flow, and their relationship opens new possibilities for exploring functional coupling and 
closely investigating CSF flow. This opportunity may be crucial for understanding various neurological diseases, 
including amyotrophic lateral sclerosis49 and possibly Alzheimer’s disease50–52.

The cardiac and respiration signals were taken into account in multiple ways. First, we derived the cardiac and 
breathing rates along with the temporal variability, and correlated such metrics with the fMRI signals to explore 
possible dependencies. Then, we calculated the low-order Fourier-series of cardiac and respiratory phases to 
enable the RETROICOR pipeline commonly used to denoise the MRI signal from physiological confounds. More 
in details, because high correlations were found between the nose functional signals and physiological measures, 
we conducted an exploratory investigation removing those physiological variability contributions from the fMRI 
signal, and we reanalyzed the data in three different scenarios: by linearly regressing out RETROICOR cardiac 
and respiratory predictors, by linearly regressing out HRV and BRV time-courses and by linearly regressing 
out white matter and CSF average time-courses. The nose network was reproducible across the preprocessing 
pipelines, underlying the stability of the network and most importantly that, although there is strong correlation 
between the network time-course and HRV and BRV, these are not uniquely contributing to the fMRI signal. 
Moreover, HRV is an indirect proxy of ANS function via the resultant of ANS activity on the effectors, which 
are the receptors of sinus node cells53, and therefore HRV does not provide full characterization of ANS or 

Fig. 7.  Group-level and single-subject ICA results in awake mice. ICA results are shown for the group-level 
analysis (n = 8 datasets) (A) and for the single-subject analysis from one representative subject (B). ICA was 
performed using a manually drown mask covering brain and nose (white outline). Inter-subject reproducibility 
was quantified with dice similarity coefficient (C) between each pair of subjects. At group-level, multiple nose 
components were detected in the mouse nose which seems to provide a functional nose parcellation.
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ANS-CNS interaction. Slightly different results were observed for the CSF/Vessels component when removing 
physiological noise. When BRV and HRV are regressed out, the component is still highly reproducible, whereas 
when RETROICOR predictors are regressed out, higher variability in the spatial distribution of the component 
is observed. This observation is not surprising when considering the association between the CSF/Vessels 
component with the vessel/perivascular pulsatility which is intrinsically dependent on the tonic circulation 
controlled by heart and respiration rhythm. When surrogate measures of heart activity and respiration are 
removed from the fMRI signals, the CSF/Vessels components are altered because they are highly related to 
blood/CSF flow.

As this is the first study performing nose fMRI, it is focused on to the demonstration of reproducibility of the 
method. Future studies are warranted to further explore the relation of nose fMRI activity with physiological and 
pathophysiological processes, including aging. Particularly, the relatively small number of participants spanning 
a broad age range challenges establishing inter-subject reproducibility at the group-level and obtaining robust 
statistical outcomes to quantify the nose network lateralization. Group comparisons were also generally limited 
by the lack of processing pipelines able to spatially normalize areas besides the brain across different individuals. 
Moreover, while no temporal or spatial smoothing was applied during data processing, spatial blurring still 
originated from the UTE radial acquisition, and from the substantial undersampling performed in order to 
maintain whole head coverage in a feasible acquisition time for fMRI analysis.

Moreover, the current experimental design did not include a specific olfactory stimulation task, thus future 
research needs to investigate if and how the nose signals are affected when the nose is engaged in olfactory 
activity. Finally, our experimental design lacked a systematic evaluation of the nasal cycle and of the nostril in 
use at the moment of each functional scans. Future studies need to include long-term monitoring of the nasal 
cycle (e.g. performing long-term rhinoflowmetry) as well as the acquisition of multiple anatomical images (e.g. 
before each functional scan) to detect possible changes in the open nostril during the MRI session.

Another limitation included the use of ultra-high field 7T magnet to conduct resting-state fMRI in humans. 
Future studies will need to establish feasibility of detecting nose signals at a lower magnetic field strength of 
3T, more commonly available for human studies. Indeed, lower magnetic field strength is not expected to be 
detrimental for a flow-based functional contrast such as that of UTE fMRI, but at the same time image signal-to-
noise is lower, which may still manifest in lower sensitivity to detect resting-state networks especially in single 
subjects. In fact, standard functional networks such as the DMN could be observed in group level analyses at 7T 
with UTE-fMRI (Fig. 2), however they were generally less reproducible across subjects than those detected with 
GE-EPI (data not shown). Also, whereas the origins of functional contrast with ultrashort/zero-TE is thought 
to be mostly blood flow and volume mediated, a detailed consideration on the multifactorial origin of the 
functional contrast, especially in the nose, is outside the scope of the current work and warrants future research.

The studies in awake mice conducted in this study were crucial to assess cross-species reproducibility, but 
they also presented several limitations. First, it was not possible to detect correlations with physiological signals 
because reliable physiological monitoring is not trivial with awake head-fixed unrestrained mice. Secondly, 
explaining the absence of unilaterality in the nose network in mice is hindered due to our lack of knowledge on 
the nasal cycle in this animal species. Finally, the absence of an observed CSF/Vessels network in mice was likely 
due to the fact that the spatial resolution of the functional zero-TE images was insufficient to highlight the small 
CSF spaces and arteries in mice, thus future studies will need to focus on acquiring higher spatial resolutions.

Materials and methods
Subjects
Seventeen healthy adult volunteers were recruited for the study, with the first 4 subjects scans dedicated to 
sequence testing and optimization. Thirteen subjects (age mean ± SD = 44.6 ± 17.6 years, 6 females/7 males) 
were included in analysis. Exclusion criteria included age below 18 years old, incompatibility with MR safety 
criteria, and major neurological and psychiatric pathologies. This study was carried out in accordance with the 
recommendations of The Code of Federal Regulations, Institutional Review Board. Written informed consent 
from all participants was obtained before the study in accordance with the Declaration of Helsinki. The protocol 
was approved by the Institutional Review Board: Human Subjects Committee of the University of Minnesota.

Five C57BL/6 mice (age mean ± SD = 11.9 ± 2.2 months, 1 female/4 males) were included in the preclinical 
application study. The animal studies were carried out in accordance with ARRIVE guidelines, and all animal 
procedures were approved by the Finnish Animal Experiment Board and conducted in accordance with the 
European Commission Directive 2010/63/EU guidelines.

Data acquisition: human subjects
Head images were acquired on a 7T Siemens Magnetom scanner with a single transmit and 32-channel 
receive NOVA head coil. UTE fMRI acquisitions were performed using a slab selective UTE sequence with 
1070 radial view to cover a FOV = 192 × 192 × 192 mm3, with a final spatial resolution of 2 × 2 × 2 mm3, time 
to acquire one radial view (repetition time, TR) = 1.4 ms, echo time (TE) = 0.12 ms, flip angle = 2°, time to 
acquire each 3D-volume (temporal resolution) = 1.5 s, 244 volumes collected. Three runs of UTE rsfMRI were 
performed for each subject with a mean time interval between run 1 and run 2 of 45 min ± 13 min, between 
run 1 and run 3 of 51 min ± 13 min and between run 2 and run 3 of 6 min ± 0.1 s. Gradient echo EPI (GE-EPI) 
fMRI acquisitions were performed using a 2D GE SMS/MB EPI with 95 slices, TR = 1.5 s TE = 22.2 ms, MB 
factor 4, FOV = 256 × 256 and 2 × 2 × 2  mm3 voxel size. In addition to the functional scans, two anatomical 
images were included in the protocol. An MP2RAGE54 sequence was acquired with 240 slices, TR = 5000 ms, 
FOV = 240 × 225 mm2; flip angle = 4°, TE = 2.27 ms, spatial resolution 0.75 × 0.75 × 0.8 mm3. A high-resolution 
UTE sequence was also acquired with the following parameters: 4096 radial view and 24 radial interleaves, 
FOV = 192 × 192 × 192  mm3 with a final isotropic spatial resolution 0.75  mm, TR = 3 ms, TE = 0.11 ms, flip 
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angle = 3.5°. Throughout functional scanning, the physiological status of the subjects were monitored and 
recorded by means of a respiratory belt and a pulse plethysmograph using Siemens PMU systems (Erlangen, 
Germany) with both signals sampled at 400 Hz. The recording of the physiological signals was prolonged for 
2 min after the end of each scan to obtain HRV and BRV measurement of the same size as the fMRI dataset (see 
section below Data processing: physiological signals in humans).

Data acquisition: awake mice
Prior to awake imaging, mice underwent surgery where a headpost was placed on top of the skull. Briefly, mice 
were first anesthetized with isoflurane (5% induction and 2% maintenance in N2/O2 70%/30%). The skull 
was exposed and a custom-made headpost made of polytetrafluoroethylene or polychlorotrifluoroethylene 
was secured on the clean skull with dental cement. Carprofen (Rimadyl, Zoetis Finland Oy, 5 mg/kg by sub 
cutaneous injection) was given to treat post-surgical pain, and mice were allowed to recover at least three weeks. 
Subsequently, mice were habituated for awake imaging during a 14-day habituation protocol, which included 
gradual acclimation to the handling person, animal holder, head-fixation, ear plugs, and acoustic scanner noise. 
While being head-fixed in the imaging holder (up to 25 min), mice were standing on their feet on a slippery 
glass or acrylic glass surface without body restraint. Mice were positioned and removed from the imaging holder 
under moderate isoflurane anesthesia (1.5-2.0%). A positive reinforcement (sweetened hazelnut cocoa spread or 
1% sucrose water) was given before and after each habituation or measurement session.

High-resolution anatomical images and resting-state fMRI data were acquired with MB-SWIFT sequences on 
a 9.4T (Varian, Palo Alto, CA, USA) system using a 22-mm transceiver surface RF-coil (Neos Biotec, Pamplona, 
Spain) covering nose and brain. For anatomical images, the acquisition parameters were the following: 
4000 radial views, 16 stacks of spirals, four radiofrequency pulses per radial view, FOV = 32 × 32 × 32 mm3, 
isotropic voxels of 0.125 mm3, TR = 3 ms, flip angle = 5.0°, excitation/acquisition bandwidths of 192/384 kHz, 
leading to total acquisition time of 4 min. To enhance contrast, a magnetization transfer pulse (sinc-shaped 
pulse, γB1 = 125  Hz, offset = 2000  Hz, pulse duration = 20 ms) was given every 32 radial views. For fMRI, 
the acquisition parameters were the following: 2047 radial views, one spiral, two radiofrequency pulses per 
radial view, FOV = 32 × 32 × 32 mm3, isotropic voxels of 0.5 mm3, TR = 0.81 ms, flip angle = 2.0°, excitation/
acquisition bandwidths of 125/500 kHz, leading to time for single 3D-image of 1.7 s. Resting-state data were 
collected for 10–20 min (~ 350–700 volumes). Three out of 5 mice were scanned twice in two different days for 
a total of 8 datasets.

Mice were kept under isoflurane anesthesia during preparations and anatomical scans. Before fMRI, the 
administration of isoflurane was ceased, and the scan was started 2–3 min later when mice showed clear signs 
of being awake (e.g., whisker or limb movement). The behavior was monitored with an MRI-compatible video 
camera (12 M-i, MRC Systems GmbH, Heidelberg, Germany).

Data processing: physiological signals in humans
For processing and analysis of physiological signals, we used PhysioNet Cardiovascular Signal Toolbox55 
implemented in MATLAB, python-based scripts to create fMRI predictors with physiological signals provided 
by BrainVoyager ​(​​​h​t​t​p​s​:​/​/​s​u​p​p​o​r​t​.​b​r​a​i​n​​v​o​​y​a​g​​e​r​​​.​c​​o​m​/​​​b​r​​a​i​​​n​v​o​y​a​g​​​e​r​/​​a​v​a​i​l​​a​​b​l​e​-​t​o​o​l​s​/​1​0​7​-​p​y​t​h​o​n​-​t​o​o​l​s​/​4​1​3​-​p​h​y​s​i​o​
l​o​g​i​c​a​l​-​n​o​i​s​e​-​c​o​r​r​e​c​t​i​o​n​-​i​n​-​p​y​t​h​o​n​​​​​) and custom scripts. Pulse signals were imported in MATLAB, synchronized 
with the MRI acquisition, and then smoothed with a Savitzky-Golay FIR smoothing filter (order 3, frame size 
67 samples). Pulse wave onsets were detected by analyzing the slope sum function, and time between successive 
wave onsets (PP intervals) were calculated. Abnormal values due to measurement instability were excluded 
by removing PP intervals lower than 0.33 s and higher than 1.5 s. Signals from the respiratory belt were also 
imported in MATLAB and synchronized with the MRI acquisition. Similarly to the pulse signal, respiration 
wave onsets were detected, and time between successive maximum peaks (RR intervals) were calculated. The 
PP and RR intervals were used to obtain heart rate variability (HRV) and breathing rate variability (BRV) time 
series. Particularly, the root-mean-square of successive differences in PP or RR intervals (RMSSD) was calculated 
in adjacent time windows of 100 s with a timestep of 1 s56. From the pulse and respiration signals, also the heart 
rate (HR) and the breathing rate (BR) were calculated as time difference between successive maximum peaks 
expressed in beat-per-minute (bpm) and respirations-per-minute (rpm) respectively.

Pulse and respiration signals were also used to calculate a basis set of sine and cosine Fourier series 
components extending to the 2rd harmonic (i.e. 4 terms) used to model the fluctuations arising from the cardiac 
and respiratory phase respectively according to the RETROICOR model25. Those 8 total predictors were used to 
model and remove the effect of physiological noise in the resting-state fMRI time series. Finally, all the obtained 
measures were resampled at the fMRI temporal resolution (1.5 s).

Data processing: resting-state fMRI in humans
Human fMRI data were processed using BrainVoyager QX (Brain Innovation, Maastricht, the Netherlands, 
www.brainvoyager.com) and custom MATLAB scripts. For the UTE data, the preprocessing steps included the 
removal of 4 dummy volumes and 3D rigid body motion correction using sinc interpolation and aligning all 
volumes to the first volume. No spatial nor temporal smoothing was applied. For GE-EPI data, the slice scan 
timing correction was performed in addition to the preprocessing steps of UTE.

After importing MP2RAGE anatomical series in BrainVoyager, background denoising was performed57. 
Functional data were aligned to anatomical data with manual adjustments and quality control, critically relevant 
in the case of UTE. High resolution anatomical UTE images were also co-registered to the respective MP2RAGE 
images using FSL FLIRT58 and manual adjustments where needed and then imported in BrainVoyager. For 
group analysis, anatomical images were transformed to standard Montreal Neurological Institute (MNI) 
space via a template match normalization, and the same obtained transformation was used to normalize the 
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functional series. In the normalized space, group-level ICA were carried out on the preprocessed functional 
time series using the fast ICA algorithm59 and the self-organizing group ICA algorithm60. The group-level ICA 
was performed with 30 independent components using two different masks: a brain-only mask obtained from 
the brain segmentation of the MNI template, and a brain-nose mask which included the brain-only mask and a 
manually drown mask covering the nose and the lower part of head within the field of view. An average (across 
subjects) anatomical image in MNI was also calculated and used to display group-level results.

Single subject ICA was also performed on the UTE rsfMRI data in the native subject’s space in order to 
avoid unwanted effects of non-optimized alignments between subjects, specifically for areas outside the brain. 
Single subjects ICA was performed twice, estimating 30 and 20 independent components for each subject and 
applying a subject-specific manually drown mask including the brain and the nose. In order also to account 
for physiological noise, single-subject analysis was repeated in three additional different scenarios, namely by 
regressing out either the RETROICOR physiological predictors, or the BRV and HRV signals, or the mean time-
courses in white matter and CSF. After each of these preprocessing steps, the ICA analysis was performed again 
with 30 ICs. Then, to facilitate the selection of similar ICs (compared to the original selected ones), the dice 
similarity coefficient was calculated between each ICs after corrections and the original ones. Components with 
the higher dice coefficients were visually inspected before being selected as ICs of interest.

Data processing: resting-state fMRI in awake mice
The MB-SWIFT data was reconstructed using RF-pulse deconvolution, gridding and iterative FISTA algorithm61 
volume-by-volume with 13 iterations. All MRI data was processed and analyzed using in-house Snakemake 
(https://snakemake.github.io/62), and Python (version 3.10, https://www.python.org/downloads/) scripts.

The reconstructed anatomical MB-SWIFT images were co-registered to a study-specific template using rigid 
and non-linear SyN registration63 from Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/64), 
. Functional data was manually motion-scrubbed to remove the influence of excessive motion on analyses, and 
the removed volumes were mean-interpolated using neighboring volumes. Motion-scrubbed functional data 
was co-registered to the functional template by using transformations from the anatomical co-registration. Data 
were spatially smoothed with a gaussian kernel of standard deviation of 0.4 mm with FSL toolbox ​(​​​h​t​t​p​s​:​/​/​f​s​l​.​f​
m​r​i​b​.​o​x​.​a​c​.​u​k​/​f​s​l​/​f​s​l​w​i​k​i​​​​​)​.​​

Single subject ICA was performed using FSL MELODIC (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) 
toolbox estimating 30 components for each subject by using a manually drawn mask covering brain and nose. 
Similarly, 30 components were estimated group-wise.

Statistical analysis
IC spatial maps at single-subject and group level were scaled to spatial z-score. Pearson’s coefficient of correlation 
was calculated between the time-courses of the ICs of interest and each of the physiological signals time series 
(HRV, BRV, HR, BR) for each subject (when available). For group-level analysis, a linear mixed model was 
performed in MATLAB with resting-state fMRI component time-courses (each component of interest separately) 
as dependent variable and the four physiological measures as independent variables while the subjects and 
run variables were accounted as random effect variables. Results were considered significant after Bonferroni 
correction for multiple comparisons on the number of independent tests (n = 2).

After hard thresholding of IC maps (for both humans and mice) removing values |z-score| < 2, and 
binarization, the dice similarity coefficient was calculated to assess the intra-subject reproducibility of estimated 
components across different runs and across different physiological noise corrections (for humans) and to assess 
the inter-subject reproducibility of estimated components (for mice).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Ma-
terials. The raw data and code used in the analysis are available upon request to of the corresponding author after 
satisfying regulatory requirements of material transfer agreements of the University of Minnesota.
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