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Immunotherapy research focuses on reshaping the tumor microenvironment (TME) to enhance its 
antitumor immune responses, with an emphasis on understanding the impact of RNA methylation in 
triple-negative breast cancer (TNBC) TME regulation. This study explored the influence of various RNA 
methyltransferases on TME cells in TNBC and their correlation with prognosis and immunotherapy 
response. Using non-negative matrix factorization on single-cell RNA-sequencing data, distinct 
TME cell clusters were identified based on the expression of 30 RNA methyltransferases. Various 
analyses, including pseudotime, cell communication, transcription factor regulatory network, and 
gene enrichment, were conducted on these clusters. The roles of RNA methyltransferase-mediated 
TME clusters in prognosis and immunotherapy response were determined using TNBC bulk RNA-Seq 
data, and the findings were validated through immunofluorescence analysis of a tissue microarray 
comprising 87 samples. Spatial transcriptomic analysis further revealed the distribution of TME cell 
clusters. Different methyltransferase-mediated cell clusters exhibited unique metabolic, immune, 
transcriptional, and intercellular communication patterns. Survival analysis indicated prognostic 
significance in specific TME cell clusters, and immunofluorescence analysis confirmed the prognostic 
value of m6A_WTAP + CD8T + cells. In conclusion, our study illustrated the involvement of these 
cell subgroups in tumor growth and antitumor immunity modulation, providing insights into the 
enhancement of TNBC immunotherapy.
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Breast cancer is the most common malignant tumor worldwide, with 2.3 million new cases reported in 20201. 
Triple-negative breast cancer (TNBC) is the subtype with the poorest prognosis, accounting for 15% of all cases2. 
Recent research on TNBC biomarkers and the tumor microenvironment (TME) has changed the treatment 
landscape3. Notably, high PD-L1 expression in TNBC indicates the importance of immune checkpoint inhibitors 
(ICIs). Clinical trials have shown improvements in pathologic complete response rates and progression-free 
survival in patients treated with ICIs and neoadjuvant chemotherapy4. However, the main challenge lies in 
improving the response of patients with TNBC to anti-PD-1/PD-L1 therapy and converting non-responders 
into responders. Therefore, understanding the landscape of the immune microenvironment in TNBC would be 
beneficial in exploring more effective therapeutic approaches.

RNA modification is a crucial aspect of epigenetics, affecting cellular biological processes such as RNA 
synthesis, transport, function, and metabolism5. Methylation modifications include N6-methyladenosine 
(m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and 7-methylguanosine (m7G)6,7. RNA 
methylation is mostly catalyzed by methyltransferases (writers) and removed by demethylases (erasers). 
Partially modified RNAs are recognized by RNA-binding proteins (readers) and help regulate various biological 
functions8–10. N6-adenosine methylation is the predominant RNA modification in eukaryotes, affecting the 
transcription, maturation, localization, function, and metabolism of different RNAs11,12. m5C is the most 
abundant in eukaryotic tRNAs and rRNAs13,14 and plays a key role in stabilizing non-coding and coding RNAs 
and maintaining translational accuracy by regulating the structure and stability of tRNA15,16. m1A modifications 
share several regulatory factors in tRNAs, rRNAs, mRNAs, and long non-coding RNAs17. Moreover, m1A affects 
the structure and function of target RNA molecules by influencing RNA base pairing18. Guanosine methylation 
forms the 5′ cap structure on mature mRNAs; however, m7G modifications also occur in mRNAs, tRNAs, 18 S 
rRNAs, and precursor microRNAs19.

Breast cancer immunotherapy is highly dependent on the TME and immune regulation20, with TME 
remodeling being a key research topic. RNA modifications play a crucial role in regulating TME cell functions, 
with METTL14-deficient macrophages driving CD8 + T cell dysfunction and inhibiting CD8 + T effector cell 
activation21. N6-adenosine methylation of METTL3 maintains dendritic cell maturation and activation by 
mediating the N6-adenosine methylation of CD40, CD80, and Toll-like receptor signaling articulator (TIRAP)22. 
The m7G methyltransferase RNMT may also play a role in T cell activation by regulating ribosome synthesis23. 
METTL14 deficiency in B cells reduces N6-adenosine methylation and blocks interleukin-7-induced proliferation 
of pre-B cells24. However, few studies have investigated the effects of different RNA methyltransferases-associated 
cell subpopulations within the TME on tumor progression and antitumor immunity.

Therefore, in the present study, we aimed to investigate the effects of (i) different RNA methyltransferases on 
TME cells in TNBC and (ii) different RNA methyltransferase-mediated TME cell clusters on the prognosis and 
response to immunotherapy in patients with TNBC. This study will contribute to a better understanding of the 
regulatory role of RNA methylation modifications in the TME and help improve the response to immunotherapy 
in patients with TNBC.

Methods
Data collection
Single-cell RNA sequence (scRNA-Seq) data from TNBC samples (CID4495, CID44971, CID4515) in 
GSE176078 (GEO database) were used to analyze 30 RNA methylation enzymes. Cell annotations and raw data 
were obtained from the original study25. For survival analyses, bulk TNBC transcriptome data were obtained 
from The Cancer Genome Atlas (TCGA), the METABRIC database, and GEO databases (GSE21653, GSE31519, 
GSE58812, and GSE135565). The breast cancer immunotherapy transcriptome dataset (GSE173839) was used 
for immune response analysis. Breast cancer MeRIP-Seq data from GSE217977 were used to compare the 
number of methylation peaks between the cancer and para-cancer samples. Spatial transcriptome (ST) data were 
acquired from https://zenodo.org/record/4739739, and annotations of the ST regions were obtained from the 
original study25. We used a tissue microarray comprising 87 patients with TNBC treated at the Quanzhou First 
Hospital of Fujian Medical University from January 2013 to April 2020. Detailed clinical data of each patient, 
including histological tumor grade and clinical stage (defined by the American Joint Committee on Cancer, 
8th edition) were collected. Supplementary Table S1 (online) presents follow-up information on recurrence 
and survival, extracted from electronic medical records. The study was performed under the tenets of the 
Declaration of Helsinki and was approved by the Medical Ethics Committee of Quanzhou First Hospital, Fujian 
Medical University (No. 2023-K112). All recruited patients signed informed consent forms.

Scientific Reports |        (2024) 14:26075 2| https://doi.org/10.1038/s41598-024-77941-2

www.nature.com/scientificreports/

https://zenodo.org/record/4739739
http://www.nature.com/scientificreports


Single-cell RNA-Seq data processing
The Seurat software package in R (4.1.1) was used to generate Seurat objects for all cells. The top 2,000 variable 
features were selected, and Seurat’s FindVariableFeatures function was applied to normalize the scRNA-Seq data. 
Next, we ran the ScaleData and RunPCA functions on the Seurat objects to calculate the number of principal 
components. The 15 principal components were condensed using uniform manifold approximation and 
projection (UMAP) dimensionality reduction. TNBC TME cells were annotated and visualized using DimPlot 
functions, with the incorporation of annotations from a previous study25.

Pseudotime trajectory analysis of RNA methyltransferase in TME cells
The Monocle package in R26 was used to investigate the relationship between RNA methyltransferases and 
the cellular pseudotime trajectories of TME cell types. Highly variable genes were identified based on the 
following criteria: mean expression ≥ 0.1 and dispersion_empirical ≥ 1 * dispersion_fit. The DDRTree method 
was implemented for dimensionality reduction. The plot_pseudotime_heatmap function was used to generate 
heatmaps to visualize the dynamic expression patterns of different RNA methyltransferases over the pseudotime 
trajectories of the different TME cell types.

Marker gene identification of different RNA methyltransferase-associated subtypes in TME 
cells
Thirty unique RNA methyltransferases were obtained from previous studies to investigate their impact 
on different TME cell types (Supplementary Table S2, online)7. A non-negative matrix factorization (NMF) 
algorithm, which utilizes a rank value of 10 and the snmf/r method, was employed to identify different cell 
subtypes based on the RNA methyltransferase expression matrix of all TME cells. The FindAllMarkers function 
in the Seurat package was used to list marker genes for NMF clusters for each cell type. Cell clusters with RNA 
methyltransferase logfc threshold > 1 were identified as positively expressing RNA methyltransferase, while 
unclear clusters with a threshold < 1 were considered unmethylated. The AddModuleScore function was used 
to calculate scores based on NMF cluster marker genes or cellular subpopulation markers, as well as functional 
pathway genes from existing studies, and FeaturePlot or DotPlot functions were used to display these scores. 
The special gene set used for comparison between related clusters27–32 is listed online in Supplementary Table 
S2. The “pheatmap” package was used to display the scaled data of the expression of these genes in various RNA 
methyltransferase-associated cell clusters.

Cell-cell communication analysis for RNA methyltransferase-associated subtypes
Cell-cell interactions between RNA methyltransferase-associated subtypes were inferred using the CellChat R 
package33. CellChatDB.human was used to analyze signaling inputs and outputs in RNA methyltransferase-
associated cell clusters, and netAnalysis_signalingRole_heatmap was subsequently employed to display 
differences in outgoing or incoming signals, Moreover, netVisual_bubble was used to display bubble maps of 
ligand-receptor interactions of RNA methyltransferase-associated clusters.

Single-cell regulatory network inference and clustering (SCENIC) analysis of RNA 
methyltransferase-associated subtypes
Using the SCENIC R package, the gene regulatory network of transcription factors (TFs) within the RNA 
methyltransferase-associated isoforms of different TME cell types was investigated34. Transcription start sites 
and gene regulatory networks were identified in various RNA methyltransferase-associated cell clusters using 
the gene signature ranking (hg19-tss-centered-10 kbp) from the RcisTarget database. TFs with an adjusted 
Benjamini–Hochberg false discovery rate (BH-FDR) below 0.05 were selected for analysis.

Functional enrichment analysis of RNA methyltransferase-associated subtypes
Kyoto Gene and Genome Encyclopedia (KEGG) functional enrichment analysis was conducted using the 
ClusterProfiler R package with marker genes identified in distinct RNA methyltransferase-associated clusters 
for each TME cell type. Gene sets with p < 0.05 were considered significantly enriched. The scores of different 
metabolic pathways in various RNA methyltransferase-associated clusters were assessed using the “scMetabolism” 
R package35.

Deconvolution of scRNA-Seq data for RNA methyltransferase-associated subtypes
The expression matrix of RNA methyltransferase-related cell clusters from the scRNA-Seq data was obtained, 
and a CIBERSORTx feature matrix was created using the cell types from that data using the “Create Signature 
Matrix” module (https://cibersortx.stanford.edu/runcibersortx.php)36. The generated feature matrix was used 
for the CIBERSORTx deconvolution of multiple bulk RNA-Seq cohorts. The inverse convolution scores were 
used to measure the number of RNA methyltransferase-associated cell clusters in each tumor sample in the 
cohort.

Analysis of RNA methyltransferase-associated-subtype signatures in public bulk RNASeq 
datasets
Cox proportional hazard regression was used to investigate the association between RNA methyltransferase-
associated subtypes and overall patient survival using survival data obtained from the primary database. The 
TIDE website (http://tide.dfci.harvard.edu/)37 was used to predict ICI treatment responses in these samples. 
The dataset GSE173839 from the GEO database, which provides information on breast cancer immunotherapy 
response, was also used.
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Immunofluorescence analysis of RNA methyltransferase-associated cell subtypes
Deparaffinized and antigenically repaired paraffin-embedded TNBC sections were blocked with 5% bovine 
serum albumin for 30 min. The sections were then incubated overnight at 4 °C with primary antibodies against 
markers of different RNA methyltransferase-associated cell subtypes and with antibodies diluted in primary 
antibody dilution buffer (G2025; Servicebio, China). Subsequently, the tissues were washed three times with PBS 
and incubated with the corresponding secondary antibodies for 50 min at 25 °C. The antibodies were diluted 
in a secondary antibody dilution buffer (G2009; Servicebio), and the horseradish peroxidase-labeled secondary 
antibodies were combined with the corresponding Tyramine Signal Amplification dye. The antibodies and 
dilutions used in this study are listed online in Supplementary Table S3. Subsequently, 4′,6-diamidino-2-
phenylindole staining was conducted for 10 min at 25 °C. Fluorescence images were captured using a Nikon 
ECLIPSE C1 fluorescence microscope.

ST analysis of RNA methyltransferase-associated cell subtypes
The Seurat package was used to normalize and SCT-normalize the ST data and to cluster similar ST points 
using principal component analysis. To visualize the spatial regional distribution of the ST data, SpatialDimPlot 
was used. The RCTD package was used to deconvolute RNA methyltransferase-associated cell subtypes at each 
ST point, allowing us to evaluate the infiltration abundance of different RNA methyltransferase-associated cell 
subtypes at these points. The scoring of the gene set “h.all.v2022.1.Hs.symbols.gmt” was assessed using the 
MSigDB database in the tumor region using the ssGSEA algorithm. These scores were then compared with 
SpatialFeaturePlot to display the levels of cell abundance and gene set scoring in the ST data.

Statistical analysis
Various standard statistical tests were performed. Kruskal-Wallis test was used for comparison of more than two 
groups of data and Wilcoxon test was used for comparison of two groups of data. The chi-square test was used to 
compare ratios between different subgroups. All statistical analyses were performed using R version 4.1.1; results 
with two-sided p < 0.05 were considered statistically significant.

Results
Overview of the RNA methyltransferase pattern of TME cells in TNBC
A flowchart of the study is presented in Fig. 1. Initially, we analyzed the differences in the number of methylation 
peaks between the cancer and paraneoplastic samples in GSE217977. This analysis revealed a high degree of 
hypermethylation in breast cancer tissues (Supplementary Figure S1 online). Subsequently, we evaluated the 
mean RNA expression of RNA methyltransferases using the TCGA–TNBC dataset to investigate differential 
expression in breast cancer samples based on category type (normal vs. tumor), age group (age > 40 vs. 
young ≤ 40), clinical stage (I, II, III, and IV), and TNM stage (Fig. 2a). We then used the scRNA-Seq dataset 
of breast cancer to explore the total RNA methyltransferase expression in TME cells. The UMAP and bar plots 
depicted the clustering of distinct TME cells in TNBC (Fig. 2b). These cell clusters were categorized into 12 
groups based on the annotation results of the raw data. The scRNA-Seq dataset revealed distinct expression 
patterns of various RNA methyltransferases across these 12 breast cancer cell types (Fig. 2c). TME cells exhibited 
higher expression levels of m6A and m7G methyltransferases than m5C and m1A methyltransferases.

Effects of different RNA methyltransferase-associated fibroblasts on the TME
We observed differential expression of various RNA methyltransferases at distinct stages of the developmental 
trajectory of fibroblasts, as determined via pseudotime analysis (Fig. 3a). We classified cancer-associated fibroblasts 
(CAFs) were classified into eight clusters through NMF clustering based on the expression of different RNA 
methyltransferases in fibroblasts (Fig. 3b). Notably, we observed variations in the percentage of CAFs associated 

Fig. 1.  Schematic illustration of this study.
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with different RNA methyltransferases (Supplementary Figure S2 online). Cell communication analysis revealed 
varying strengths in the output of cellular signals among different RNA methyltransferase-associated fibroblasts. 
m5C_NSUN5 + CAF exhibited a stronger secretion intensity of periostin cytokines (Fig.  3c). Moreover, 
SCENIC analysis indicated diverse patterns of TF regulation among the different RNA methyltransferase-
associated fibroblast subtypes (Supplementary Figure S3 online). The expression level analysis of multiple gene 
sets associated with fibroblast pro-tumorigenic functions revealed substantial differences in functional gene 
expression within the different RNA methyltransferase-associated fibroblast subtypes (Fig. 3d). Moreover, m5C_
NSUN5 + CAF fibroblasts displayed a significantly higher expression of pro-tumorigenic functional genes, 
as evidenced by functional scores of pathway genes and feature scores of RNA methyltransferase-associated 
fibroblasts. These scores and subtypes are presented on a UMAP plot in Fig. 3e, showing that CAFs characterized 
as m5C_NSUN5 + CAF exhibited an enhanced capacity to secrete extracellular matrix (ECM), transforming 
growth factor β (TGF-β), and matrix metalloproteinases (MMPs); they more closely resembled myofibroblasts 
(myCAF). The KEGG pathway enrichment analysis highlighted that m5C_NSUN5 + CAF exhibited functions 
related to adhesion junctions and regulation of the actin cytoskeleton (Fig. 3f).

Fig. 2.  RNA methyltransferase patterns of tumor microenvironment (TME) cells in triple-negative breast 
cancer (TNBC). (a) The average expression of 30 RNA methyltransferases for the four major RNA methylation 
types in the TCGA–TNBC dataset was calculated using z-scores according to several clinical variables. (b) 
UMAP plot of all TME cells of TNBC samples with annotation based on the original dataset. (c) Expression 
pattern of different RNA methylation transferases in different TME cell types visualized using a heatmap.
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Fig. 3.  Effects of different RNA methyltransferases on fibroblasts. (a) Pseudotime trajectory reveals expression 
patterns of different RNA methyltransferases in CAFs. (b) Markers of different RNA methyltransferase-
associated cancer-associated fibroblasts (CAFs) clustered via negative matrix factorization. (c) Cell 
communication signaling patterns of different RNA methyltransferase-associated CAFs. (d) Different average 
expression levels of collagens, extracellular matrix (ECM), MMP, matrix metalloprotease (MMPs), tumor 
growth factor-beta (TGF-β), angiogenic, RAS, and proinflammatory pathway genes in RNA methyltransferase-
associated CAFs. (e) UMAP plot for visualizing the feature and function scores as well as the subtype 
of the CAFs. (f) Activated Kyoto Encyclopedia of Genes and Genomes pathways among different RNA 
methyltransferase-associated CAF clusters.
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Metabolic patterns of tumor-associated macrophages mediated by different RNA 
methyltransferases
RNA methyltransferase expression levels varied according to the different stages of macrophage development 
(Supplementary Figure S4 online). Macrophages were categorized into eight groups based on RNA 
methyltransferase expression levels (Fig. 4a). Similarly, different RNA methyltransferase-associated macrophages 
accounted for varying proportions (see Supplementary Figure S2 online). In the cell communication analysis, 
m5C_NSUN5 + Macrophage exhibited strong output signals (Fig.  4b). SCENIC analysis revealed differential 
activation of potential TFs in different RNA methyltransferase-associated macrophage clusters (Supplementary 
Figure S3 online). Metabolic pathway analysis revealed variations in the scores of metabolic pathways among 
different RNA methyltransferase-associated macrophages. The m5C_NSUN5 + Macrophage exhibited improved 
scores in glucose metabolism pathways, such as glycolysis, gluconeogenesis, and oxidative phosphorylation, 
as well as in the tricarboxylic acid cycle, the metabolic pathway of fatty acids, and several amino acids 
(Fig.  4c). Moreover, KEGG enrichment analysis underscored functional distinctions among different RNA 
methyltransferase-associated macrophages (Fig.  4d). We further analyzed the proportion of lipid-associated 
macrophages (LAM) within different RNA methyltransferase-associated macrophages in breast cancer, revealing 
hat LAM constituted a substantial portion of m5C_NSUN5 + Macrophage and m6A_METTL5 + Macrophage 
(Fig. 4e).

Antigen-presenting abilities mediated by different RNA methyltransferases in DCs
Various RNA methyltransferases displayed differential expression patterns during different developmental stages 
of DCs, akin to fibroblasts and macrophages (Supplementary Figure S4 online). Using NMF clustering based on 
the expression of distinct RNA methyltransferases, we categorized DCs into four clusters (Fig. 5a) with different 
percentages (see Supplementary Figure S2 online). The network analysis further indicated differential activation 
of TFs among these distinct RNA methyltransferase-associated DC clusters (Supplementary Figure S3 online). 
Cell communication analysis of RNA methyltransferase-associated DCs revealed that m6A_WTAP + DC 
exhibited a stronger capacity, resulting in more ligand-receptor linkages between m6A_WTAP + DC and CD8 + T 
cells (Fig. 5b, c). In addition, the KEGG pathway enrichment analysis suggested that m6A_WTAP + DC was 
significantly enriched in antigen presentation functions (Fig. 5d). We used heatmaps to display the expression of 
various major histocompatibility complex (MHC) molecules in various RNA methyltransferase-mediated DCs 
for a comprehensive view. Notably, the expression of multiple MHC receptors was higher in m6A_WTAP + DC 
than in the other clusters (Fig. 5e). The AddModuleScore scoring approach, based on DC classification markers 
from previous studies, demonstrated that m6A_WTAP + DC was associated with classical dendritic cells 
(Fig. 5f).

Varied antitumor immunities in different RNA methyltransferase-associated CD8 + T cells 
and B cells
The pseudotime analysis revealed that various RNA methyltransferases exhibited differential expression patterns 
at distinct stages of the developmental trajectories of CD8 + T and B cells (Supplementary Figure S4 online). 
Using NMF clustering, we classified CD8 + T and B cells into six and five clusters, respectively (Fig.  6a, b). 
The network regulation analysis indicated significant variations in the RNA methyltransferase-mediated 
regulation of TFs between the CD8 + T cell and B cell clusters (Supplementary Figure S3 online). However, the 
cell communication analysis revealed no significant differences in the signal intensity of cell communication 
between RNA methyltransferase-mediated CD8 + T and B cells (Supplementary Figure S5 online). In the 
assessment of the average expression of co-stimulatory and co-inhibitory receptors on the surface of CD8 + T 
cells, m6A_WTAP + CD8 + T cells displayed relatively strong expression of multiple co-stimulatory receptors. In 
contrast, m7G_TRMT112 + CD8 + T cells exhibited relatively strong expression of co-inhibitory receptors and 
relatively weak expression of co-stimulatory receptors (Fig. 6c).

In addition, we used markers from previous studies to score different RNA methyltransferase-mediated 
CD8 + T cells, revealing that m6A_WTAP + CD8 + T cells were predominantly in the early stages of exhaustion, 
whereas m7G_TRMT112 + CD8 + T cells were mainly in the advanced stages of cell exhaustion (Fig.  6d). 
Similarly, an examination of the average expression of co-stimulatory and co-inhibitory receptors on the surface 
of B cells suggested that several co-stimulatory receptors were expressed at higher levels in m7G_RNMT + B 
cells (Fig. 6e). Further analysis of the expression of MHC receptors on the surface of B cells revealed higher 
MHC receptor expression on m7G_WBSCR22 + B cells (Fig.  6f). Finally, a comprehensive evaluation of the 
levels of different B cell subtype markers in different RNA methyltransferase-mediated B cells suggested that 
m7G_RNMT + B cells were associated with memory B cells, whereas m7G_WBSCR22 + B cells were associated 
with activated B cells (Fig.  6g). Notably, m6A_WTAP + CD8 + T cells and m7G_RNMT + B cells, as well as 
m7G_WBSCR22 + B cells, constituted relatively low percentages of their respective cell types within the tumor 
microenvironment (Supplementary Figure S2 online).

Effect of RNA methyltransferase-associated TME patterns on breast cancer prognosis and 
immunotherapy
To characterize the RNA methyltransferase-associated TME cell types, we generated a signature matrix of different 
cell subtypes using CIBERSORTx, acquiring the cell abundance data from a number of different datasets. Initially, 
we examined the relationship between different cell types and prognosis in patients with TNBC using univariate 
Cox regression analyses (Fig. 7a). m5C_NSUN5 + CAF and m5C_NSUN5 + Macrophage were associated with 
poorer patient prognosis across multiple datasets. In contrast, m6A_WTAP + DC, m6A_WTAP + CD8 + T 
cells, m7G_WBSCR22 + B cells, and m7G_RNMT + B cells positively affected patient prognosis. We further 
compared the abundance of different RNA transferase-associated cell subpopulations in TNBC and normal 
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Fig. 4.  Effects of different RNA methyltransferases on macrophages. (a) Markers of different RNA 
methyltransferase-associated macrophages clustered by negative matrix factorization. (b) Cell communication 
signaling patterns of different RNA methyltransferase-associated macrophages. (c) Metabolic activities 
of different RNA-methyltransferase-associated macrophage clusters. (d) Activated Kyoto Encyclopedia of 
Genes and Genomes pathways among different RNA methyltransferase-associated macrophage clusters. 
(e) The proportion of lipid-associated macrophages (LAMs) in different RNA methyltransferase-associated 
macrophages.
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Fig. 5.  Effects of different RNA methyltransferases on dendritic cells (DCs). (a) Markers of different RNA 
methyltransferase-associated DCs clustered by negative matrix factorization. (b) Cell communication 
signaling patterns of different RNA methyltransferase-associated DCs. (c) Ligand-receptor linkages between 
CD8 + T cells and RNA methyltransferase-associated DCs. (d) Activated Kyoto Encyclopedia of Genes and 
Genomes pathways among different RNA methyltransferase-associated DCs. (e) Average expression of major 
histocompatibility complex (MHC) molecules genes in RNA methyltransferase-associated DCs. (f) DC subtype 
feature scores of different RNA methyltransferase-associated DCs.
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Fig. 6.  Effects of different RNA methyltransferases on CD8 + T cells and B cells. (a,b) Markers of different 
RNA methyltransferase-associated CD8 + T cells and B cells clustered via negative matrix factorization. (c) 
Average expression of immune checkpoints in RNA methyltransferase-associated CD8 + T cells. (d) Score 
of the exhaustion stage in different RNA methyltransferase-associated CD8 + T cells. (e) Average expression 
of immune checkpoints in RNA methyltransferase-associated B cells. (f) Average expression of major 
histocompatibility complex (MHC) molecules genes in RNA methyltransferase-associated B cells. (g) B cell 
subtype feature score of different RNA methyltransferase-associated B cells.
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Fig. 7.  Prognostic value and immunotherapy response prediction value of RNA methyltransferase-associated 
tumor microenvironment (TME) cells. (a) Overall survival analysis of RNA methyltransferase-associated 
TME cells. (b) Immunotherapy response analysis of RNA methyltransferase-associated TME cells. (c–e) 
Immunofluorescence staining for m6A_WTAP + CD8 + T cells in TNBC TMAs. Scale bars: left, 200 μm; right, 
40 μm. (f) Comparison of m6A_WTAP + CD8 + T cell counts at different BC stages. For cell count calculation, 
three pictures were selected from each TNBC section. (g) Kaplan–Meier survival curves displaying the 
differences in DFS rates between patients classified based on the m6A_WTAP + CD8 + T cell count.
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breast samples (Supplementary Figure S6, online). We observed that in TNBC, m5C_NSUN5 + CAF and 
m5C_NSUN5 + macrophages exhibited increased infiltration, whereas m6A_WTAP + CD8 + T cells and m7G_
RNMT + B cells showed decreased infiltration. This is consistent with the trend observed in our prognostic 
analysis.

Furthermore, we used logistic regression to assess the significance of RNA methyltransferase-associated TME 
cell types in predicting the response to immunotherapy in patients with BC (Fig. 7b). m5C_NSUN5 + CAF and 
m5C_NSUN5 + Macrophage negatively affected immunotherapy response, whereas m6A_WTAP + DC, m6A_
WTAP + CD8 + T cells, m7G_WBSCR22 + B cells, and m7G_RNMT + B cells were associated with a positive 
response.

Given the consistent trend in most of the datasets, we further investigated the abundance of m6A_
WTAP + CD8 + T cells in different patients using immunofluorescence analysis of tissue microarrays; this 
revealed a decreasing trend of m6A_WTAP + CD8 + T cell infiltrates with a higher clinical stage (Fig. 7c-f). 
We categorized patients with TNBC into high and low infiltration groups based on the median number of 
m6A_WTAP + CD8 + T cells. Kaplan–Meier survival analyses and the log-rank test demonstrated that a higher 
infiltration of m6A_WTAP + CD8 + T cells was associated with extended disease-free survival (DFS) in patients 
(P = 0.019; Fig. 7g). Immunofluorescence experiments confirmed these RNA methyltransferase-associated cell 
subtypes in TNBC (Supplementary Figure S7, online).

Distribution features of RNA methyltransferase-mediated cellular subtypes in the ST
We utilized ST data to classify regions of RNA methyltransferase-associated TME cells in TNBC tissues. These 
classifications, namely “Invasive cancer + stroma + lymphocytes,” “Lymphocytes,” “Necrosis,” “Stroma,” and 
“TLS,” provided insights into their spatial distribution (Fig.  8a). The deconvolution algorithm yielded cell 
abundance data, revealing that m5C_NSUN5 + CAF and m5C_NSUN5 + Macrophage were predominantly 
localized in the tumor and mesenchymal zones. In contrast, m6A_WTAP + DC, m6A_WTAP + CD8 + T cells, 
m7G_WBSCR22 + B cells, and m7G_RNMT + B cells were primarily concentrated in the lymphocyte and 
tertiary lymphoid structure (TLS) regions (Fig. 8b).

We conducted a single-sample gene set enrichment analysis (ssGSEA) to assess tumor-associated pathways 
in the tumor zones, aiming to explore the spatial relationship between these prognostically relevant RNA 
methyltransferase-associated TME cells and tumor-associated pathways (Fig. 8c). This analysis indicated that 
tumor tissues surrounding highly infiltrated m5C_NSUN5 + CAF and m5C_NSUN5 + Macrophage regions 
exhibited increased hypoxia and glycolysis, the upregulation of several pathways linked to tumor proliferation 
(the PI3K-AKT and WNT pathways), and enhanced angiogenesis. In contrast, areas surrounding tumor tissues 
rich in m6A_WTAP + DC and m6A_WTAP + CD8 + T cells displayed relatively lower pathway scores.

Discussion
RNA methylation modifications play a crucial role in tumorigenesis6,19,38,39; however, their effects on the tumor 
immune microenvironment at the single-cell level are limited. The presnt study explored the expression patterns 
of RNA methylation regulators in major TNBC TME cell types, revealing their biological functions and cell-cell 
interactions. Our findings confirmed that different TME cell subtypes have different implications for TNBC 
prognosis and immunotherapy efficacy. This new perspective offers insights into how the modification of TME 
components by different RNA methyltransferases affects patient survival and treatment outcomes.

The TME, comprising various cell types such as stromal, vascular endothelial, and immune cells, significantly 
influences tumor development. This was also evident in our comparative analysis of stromal cells (CAF and 
PVL), endothelial cells, macrophages, and breast cancer epithelium in the TNBC TME. Research has highlighted 
the association of CAFs and macrophages with breast cancer invasion and metastasis25,40–42, whereas CD8 + T 
cells, B cells, and DCs contribute to antitumor immunity43–45. Notably, distinct subgroups exist within these 
TME cell clusters, playing unique roles in tumor immunity. Recent studies have emphasized the critical role of 
RNA methylation in orchestrating and reprogramming cells within the TME46–49. Similarly, the present study 
revealed diverse RNA methylation patterns in different TME cell types, with varying expression patterns of RNA 
methyltransferases along TME cell developmental trajectories, emphasizing the importance of investigating the 
effects of these modifications on TME cell function and antitumor immunity.

CAFs are crucial stromal cell components involved in tumor growth. They facilitate invasion by modulating 
ECM structures and engaging with tumor cells through the secretion of growth factors, cytokines, and 
chemokines41. However, few studies have explored the effects of diverse RNA methylation modifications on CAF 
phenotypes. The result of the present study underscore the tumor-promoting effect of m5C_NSUN5 + CAF. 
The cell communication analysis revealed the enhanced capacity of m5C_NSUN5 + CAF to export periostin 
signals, previously linked to the disruption of the lymphatic endothelial barrier and promotion of tumor 
lymphatic metastasis50. A gene set enrichment analysis revealed upregulated expression of MMPs and TGF-β 
in m5C_NSUN5 + CAF, indicative of ECM remodeling, a characteristic closely associated with the suppression 
of antitumor immune responses and promotion of tumor invasion51. Within the CAF subtype, myCAF is 
named owing to its high expression of α-smooth muscle actin and its contractile and secretory properties52. 
In the present study, a comparison of the fibroblast subtypes revealed that m5C_NSUN5 + CAF may be more 
similar to myCAF. Moreover, KEGG analysis revealed enrichment in the function of “regulation of actin 
cytoskeleton,” further suggesting that NSUN5 + CAF might resemble myCAFs. Notably, a higher abundance 
of m5C_NSUN5 + CAF correlates with a poorer prognosis in patients with TNBC who are non-responsive to 
immunotherapy. Therefore, high NSUN5 expression in CAFs could be a potential intervention target.

Tumor-associated macrophages (TAMs) represent a major component of immune cell infiltration in breast 
cancer, exhibiting substantial heterogeneity. These recruited macrophages can undergo reprogramming, 
shifting from anticancer to pro-cancer functionality in response to the TME42. Recent studies have revealed the 
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critical role of RNA modifications in macrophage activation53. However, the modulation of RNA modification 
in TAMs within the TNBC microenvironment remains unexplored, as TAMs frequently undergo metabolic 
reprogramming in the TME54. The present study revealed that m5C_NSUN5 + Macrophages exhibit enhanced 
oxidative phosphorylation and glycolysis, which can induce a metabolic shift toward glycolysis. This shift leads to 

Fig. 8.  Spatial transcriptome features of RNA methyltransferase-mediated cellular subtypes. (a) Spatial 
images of the tissue architecture of triple-negative breast cancer (TNBC). (b) The abundance of RNA-
methyltransferase-mediated cellular subtypes in spatial organization. (c) Single-sample gene set enrichment 
analysis (ssGSEA) scores of tumor-associated pathways in the tumor zones.
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increased downstream lactate and TNF levels, ultimately promoting tumor progression55. Concurrently, TAMs 
reduce glucose consumption from tissues through oxidative phosphorylation, enhancing glucose availability in 
a hypoxic TME56. Enhanced fatty acid oxidation, methionine metabolism, and arginine metabolism in TAMs 
contribute to antitumor immunity suppression54. In the present study, these enhanced metabolic activities 
were also observed in m5C_NSUN5 + Macrophages. Notably, KEGG analysis revealed an enriched phagosome 
pathway in m5C_NSUN5 + Macrophages. Moreover, by reviewing previous studies, we found that phagosome 
maturation is closely related to antigen presentation. Immunosuppressed (M2) macrophages exhibit accelerated 
phagosome maturation and accelerated acidification of phagosomes, which inhibits phagosomal antigen cross-
presentation57. This partly explains why m5C_NSUN5 + Macrophages might promote tumor development. In 
addition, enhanced glycolysis accelerates phagosomal acidification58, further suggesting that shifts in glucose 
metabolism in TAMs promote tumor function. In breast cancer, a subset of LAMs expressing immunosuppressive 
molecules, such as PD-L1 and PD-L2, is often present. LAMs promote breast cancer progression and are 
associated with a poor patient prognosis25,59. In the present study, we noted a high percentage of LAMs in 
m5C_NSUN5 + Macrophages, which are associated with a poor prognosis and immunotherapy resistance in 
patients with TNBC. Therefore, targeting these m5C_NSUN5 + Macrophages could improve the prognosis of 
patients with TNBC.

CD8 + T cells are potent effector cells in antitumor immune responses. However, intratumor CD8 + T cells 
often exhibit dysfunctional or exhausted phenotypes60. Beltra et al. delineated four phases of CD8 + T cell 
exhaustion29, where CD8 + T cell effector intensity progressively diminishes as depletion progresses, rendering 
them unresponsive to PD-L1/PD-1 blockade at the terminal exhaustion stage. The present study revealed that 
CD8 + T cells with high WTAP expression exhibit a pre-depletion stage, suggesting that these cells have not yet 
entered the depletion phase. In addition, immune checkpoint analysis demonstrated lower expression of immune 
co-inhibitory receptors and higher expression of immune co-stimulatory receptors in m6A_WTAP + CD8 + T 
cells, indicating robust antitumor immune activity. However, the lower proportions of m6A_WTAP + CD8 + T 
cells in the TME suggest that their antitumor effects may be diminished in TNBC. In addition, the bulk RNA-
seq analysis revealed that greater m6A_WTAP + CD8 + T cell infiltration is associated with improved patient 
prognosis and a higher likelihood of responding to immunotherapy. Therefore, upregulating WTAP expression 
may inhibit depletion and enhance tumor-killing capacity.

The present study revealed that RNA modifications affect the antitumor immune functions of DCs and B cells 
in the TNBC TME. DCs play a crucial role in antitumor immunity, particularly in antigen presentation, which is 
essential in cancer therapies. DCs with high expression of m6A methyltransferase WTAP displayed upregulated 
MHC molecules and enhanced antigen presentation activity, and cell communication analysis revealed higher 
ligand-receptor interactions. Moreover, previous research underscores the necessity of DC-secreted chemokines, 
CXCL9 and CXCL10, in recruiting CXCR3-expressing CD8 + T cells for tumor tissue infiltration61. According 
to survival and immunotherapy response analyses, enhancing WTAP expression in DC may improve antitumor 
immunity. In addition to humoral immunity, B cells can also act as antigen-presenting cells to promote T-cell 
activation and thus play an anti-tumour role. In early-stage HER2 + breast cancer, the B cell signature exhibits 
superior prognostic and predictive values compared to TIL abundance62. The present study revealed that B 
cells with high expression of m7G methylation transferases RNMT and WBSCR22 have higher levels of MHC 
molecules and immune co-stimulatory molecules. These molecules are linked to improved patient prognosis 
and a higher response rate to immunotherapy, potentially enhancing antitumor immune responses.

In this study, we validated the clinical relevance of RNA methyltransferase-associated TME cell subtypes 
using spatial transcriptomic data. We found that the spatial spots with high m5C_NSUN5+CAF infiltration were 
surrounded by almost no infiltration of m6A_WTAP + DC, m6A_WTAP + CD8 + T cells, m7G_WBSCR22 + 
B cells and m7G_RNMT + B cells, further validating the inhibitory effect of m5C_NSUN5+CAF on antitumour 
immunity. Interestingly, cell subpopulations associated with favorable prognosis and immunotherapy response 
were noted near the TLS region. TLS is linked to improved prognosis across various cancers and holds 
substantial predictive value in immune checkpoint blockade therapy63. Moreover, spatial spots with high 
m5C_NSUN5 + CAF and m5C_NSUN5 + Macrophage infiltration are surrounded by regions with higher 
tumor-promoting biological functions, including EMT, angiogenesis, and tumor proliferation pathways64. These 
observations underscore the tumor-promoting role of m5C_NSUN5 + CAF and m5C_NSUN5 + Macrophage.

This study has limitations. The low depth of scRNA-Seq may have led to reduced expression of certain RNA 
methyltransferases and increased null observations, potentially introducing bias. In addition, due to the lack 
of a comprehensive treatment cohort, the role of RNA methyltransferase-associated cell subpopulations in 
immunotherapy responses requires further verification.

Conclusion
Using single-cell sequencing data, we identified distinct RNA methylation modification-mediated cellular 
subtypes within the TME of TNBC. We elucidated the biological functions of these RNA-methyltransferase-
associated TME cellular subtypes and their potential contributions to tumor growth and antitumor 
immunomodulation. Our tissue microarray-based immunofluorescence analysis validated the importance of 
m6A_WTAP + CD8 + T cells, offering a novel perspective in regards to predicting the prognosis of patients with 
TNBC and enhancing the response to immunotherapy.

Data availability
Data is provided within the manuscript or supplementary information files.
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