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Determining situation of groundwater vulnerability plays a crucial role in studying the groundwater 
resource management. Generally, the preparation of reliable groundwater vulnerability maps provides 
targeted and practical scientific measures for the protection and management of groundwater 
resources. In this study, in order to evaluate the groundwater vulnerability of Kerman–Baghin plain 
aquifer, two developed indicators including composite DRASTIC index (CD) and nitrate vulnerability 
index (NVI) based on DRASTIC index were considered. Soft computing methods, including Gene 
Expression Programming (GEP), Evolutionary Polynomial Regression (EPR), Multivariate Adaptive 
Regression Spline (MARS), and M5 Model Tree (MTM5) have been used to provide formulations for 
prediction of NVI. Soft computing techniques were fed nine input parameters: depth to water level, net 
recharge, aquifer environment, soil environment, topography, effect of unsaturated area, hydraulic 
conductivity, land use, and potential risk related to land use. After calculating the vulnerability by 
soft computing methods, the results showed that the EPR model with Correlation Coefficient (R) of 
0.9999 and Root Mean Square Error (RMSE) = 0.2105 has the best performance in the testing stage 
in comparison with MARS (R = 0.9966 and RMSE = 2.408), M5MT (R = 0.9956 and RMSE = 2.988), 
and GEP (R = 0.9920 and RMSE = 3.491). Although the EPR and GEP models have more complex 
mathematical computations than other soft computing models, the MARS and MT model that have 
quadratic polynomial and multivariable linear structures respectively, can be considered as the 
best alternative. According to the MARS model, the vulnerability of the region is divided into two 
categories: very low vulnerability (73.06%) and low vulnerability (26.94%). Overall, the statistical 
results of soft computing techniques were indicative of effective formulations for evaluating the 
DRASTIC index.
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As the main concern, water scarcity is accelerating due to the destruction of available water resources and an 
increase in environmental contamination in dry and semi-dry areas. Due to the negative impacts on human 
health and ecosystem services, groundwater pollution is a global problem. As a complex and long-term process, 
pollution of groundwater resources is irrecoverable and costly to treat due to the large volume of the reservoir, 
long time, and lack of physical access to the reservoir. Therefore, the prevention of aquifer pollution is a necessity 
for the stability and protection of groundwater resources (e.g.1–11).

Since protecting groundwater from pollution is much simpler and more logical than removing it, so identifying 
pollution-prone-aquifer is the first step to preventing groundwater pollution. This identification allows the 
area to be subdivided into sub-areas in terms of the severity of the vulnerability and relevant measures to be 
taken to prevent contamination of vulnerable areas. Therefore, groundwater vulnerability and risk maps are the 
prime cause in the management and safeguarding of groundwater resources (e.g.12,13). Due to the expensive and 
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time-intensive nature of groundwater sampling and quality monitoring, therefore, there is an essential need for 
groundwater vulnerability modeling as a fast and reliable tool to investigate groundwater aquifer vulnerability3. 
It is accompanied by understanding the possible events of pollution and determining the extent of pollutants and 
describing them (e.g.14–17). Models for groundwater vulnerability take into account a range of factors to evaluate 
the likelihood of groundwater pollution. These factors typically fall into different categories: hydrogeological 
elements (i.e., hydraulic conductivity, porosity, depth to water table), geological factors (i.e., nature of subsurface 
materials and structural features), Land Use and Land Cover (i.e., type of land use and presence of impervious 
surfaces), source of pollution (i.e., proximity to potential contaminant sources and depth of the contaminant 
source), hydraulic factors (i.e., groundwater flow velocity and direction of groundwater flow), climate and 
hydrological conditions (precipitation patterns and temperature), depth and construction of wells, soil type and 
properties, soil permeability, and unsaturated zone properties (e.g.18–20).

Integrating these elements into a groundwater vulnerability model aids in pinpointing districts that are 
at a higher risk of contamination, aiding in the improvements of methods for groundwater protection and 
management. While groundwater vulnerability models employ comparable influential factors, they adopt 
distinct methods for integrating and analyzing data. In general, three categories of methods exist for evaluating 
vulnerability, namely Point Count System Models (PCSM) (or ranking and weighting methods), statistical 
methods, and process methods (e.g.18,21,22). Index and overlap methods consider the combination of different 
regional maps with the assignment of a numerical index19. Among these methods, DRASTIC, SINTACS, and 
Susceptibility Index (SI) are introduced as the most widely used techniques due to their simplicity, the need for 
minimal data, and the provision of a clear description of groundwater vulnerability. DRASTIC is a numerical 
model first proposed by the US Environmental Protection Agency (USEPA) in order to appraise the potential for 
aquifer contamination while considering hydrogeological data23.

There are a plenty of research works in which circumstances of groundwater vulnerability have been 
investigated for diverse parts of the world (e.g.24–29). Since the main problem of this model is to apply expert 
opinions to rank and weight the effective factors used in it, therefore the need to apply Artificial Intelligence (AI) 
models so as to improve rankings and optimize weights, that have been applied in DRASTIC evaluation, is of 
utmost importance for enhancement of the accuracy of susceptibility results (e.g.24,30–35). Table 1 summarized 
the explored literature review of AI models applications into vulnerability indices of groundwater resources.

Authors Methodology

Neshat et al.5,34,26 AHP-AHP, AHP-DRASTIC,DRASTIC-AHP

Neshat et al.36,37 FR-DRASTIC, AHP-DRSTIC, SPSA-DRASTIC

Langerudi et al.38 Fuzzy DRASTIC

Barzegar et al. 1 ANN, SFL, MLF,NF,SCMAI

Baghapour et al.30 ANN for DRASTIC-LU and DRASTIC-N

Barzegar et al.31 ANN-Committee based models (ELM, MARS, SVR, M5 MT)

Nadiri et al.39 SVM-FCF

Hu et al. 40 AHP-DRASTIC

Jesiya and Gopinath33 Fuzzy AHP-DRASTIC

Bordbar et al.32 GWO-GALDIT, GA-GALDIT, Standard-GADIT for Cl/HCO3 pollution evaluation

Torkashvand et al. 41 SWARA and GA-DRASTIC

Bordbar et al.42 GALDIT-FR and GALDIT-GA

Jahromi et al. 43 ABC-SINTACS and GA-SINTACS for nitrate and sulfate pollutions

Norouzi et al.44 RF-DRASTIC is better than GA-DRASTIC

Elzain et al. 45 RBF-NN,RF, and SVM for DRASTIC evaluation

Gharekhani et al. 46 BMA-SVM, BMA-GEP, and BMA-ANN for DRASTIC evaluation

Subbarayan et al. 47 RF, XGB, and CART models for DRASTIC due to nitrate pollution

Karimzadeh-Motlagh et al.48 RF, SVM, GLM

Elzain et al. 46 KNN, ERT, and EBR models for DRASTIC due to land use

Table 1.  List of related research works. SPSA single-parameter sensitivity analysis, AHP analytical hierarchy 
process,ANN artificial neural network, SFL sugeno fuzzy logic, MFL mamdani fuzzy logic , NF neuro-fuzzy 
, SCMAI supervised committee machine artificial intelligence method , NVI nitrate vulnerability index, CD 
composite DRASTIC index, ELM extreme learning machine, MARS multivariate adaptive regression spline, 
, SVR support vector regression, M5MT M5 model tree , AIMF artificial intelligence multiple framework , 
FCF fuzzy-catastrophe framework, GWO grey wolf optimizer, GA genetic algorithm, SWARA stepwise weight 
assessment ratio analysis, ABC artificial bee colony, RF random forest, RBF-NN radial basis function-neural 
network , ERFR ensemble random forest regression, BMA Bayesian model averaging , GEP gene-expression 
programming, XGB extreme gradient boosting , CART classification and regression tree, GLM generalized 
linear model, KNN K-nearest neighborhood, ERT ensemble extremely randomized trees , EBA ensemble 
bagging regression.
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When evaluating the prediction of the DRASTIC index for groundwater resource quality, it is important to 
consider the drawbacks of other AI models such as Support Vector Machines (SVM), Random Forests (RF), and 
Deep Learning models. SVMs, while effective in handling high-dimensional data and finding complex decision 
boundaries, can be challenging to tune. Their performance is highly dependent on the choice of kernel and 
parameters, which may require extensive cross-validation. Additionally, SVMs can struggle with large datasets, 
as their computational complexity increases significantly with the number of samples, leading to longer training 
times and potentially less interpretable results. Random Forests are known for their robustness and ability to 
handle nonlinear relationships. However, they can produce models that are difficult to interpret, as the ensemble 
approach obscures individual feature contributions. While they generally perform well in many scenarios, they 
may not always capture subtle interactions effectively, particularly in cases where relationships among variables 
are not purely additive. Moreover, Deep Learning models, particularly neural networks, have gained popularity 
due to their ability to model complex patterns in large datasets. However, they require large amounts of training 
data to generalize well, which may not be available in many environmental contexts. Additionally, deep learning 
models often act as "black boxes," making it difficult to extract interpretable insights, which is a significant 
drawback in environmental assessments where understanding the relationship between variables is crucial.

In contrast, Gene-Expression Programming (GEP), Evolutionary Polynomial Regression (EPR), Multivariate 
Adaptive Regression Spline (MARS), and Model Tree (MT) offer several advantages in the evaluation of 
groundwater quality. GEP is capable of generating interpretable models that represent relationships in a tree-like 
structure, making it easier to understand how inputs affect predictions. It combines the adaptability of genetic 
programming with a focus on evolving mathematical expressions, which can capture complex interactions 
effectively. EPR stands out for its ability to evolve polynomial equations that fit the data without requiring a 
predefined model structure. This flexibility allows for a tailored approach to modeling complex relationships, 
making it suitable for capturing the intricacies of groundwater pollution dynamics. MARS is particularly adept 
at identifying and modeling nonlinearities and interactions between variables. Its piecewise linear approach 
allows it to fit models that can adapt to changes in the data, enhancing predictive performance while maintaining 
a degree of interpretability. MTM5, as a variant of Model Trees, combines decision tree structures with linear 
regression, enabling it to capture both local patterns and overall trends. This dual approach enhances its 
interpretability and provides insights into how different factors influence the DRASTIC index.

Overall, the use of GEP, EPR, MARS, and MT in predicting the DRASTIC index offers a balanced approach that 
combines flexibility, interpretability, and robustness. These models are particularly well-suited for environmental 
applications, where understanding the underlying relationships is as important as achieving accurate predictions. 
In predicting the DRASTIC index for groundwater resource quality using nine input parameters—depth to 
water level, net recharge, aquifer environment, soil environment, topography, effect of unsaturated area, 
hydraulic conductivity, land use, and potential risk related to land use—it’s important to evaluate the limitations 
of certain AI models like SVM, RF, and Deep Learning models. As a major drawbacks of other AI models, 
SVMs are effective for classification tasks but can face challenges with the high dimensionality of groundwater 
data. Tuning SVM requires careful selection of hyperparameters, and the model can become sensitive to noise 
in the data. Additionally, the interpretability of SVM is limited; understanding how input parameters influence 
the DRASTIC index can be difficult. RF, while robust and capable of handling nonlinear relationships, tend 
to produce complex ensemble models that lack transparency. It can be hard to ascertain the importance of 
individual parameters, which is critical for understanding groundwater pollution dynamics. Moreover, RF may 
not effectively model interactions unless they are explicitly captured in the trees. Deep Learning models excel at 
handling large datasets and capturing intricate patterns. However, they require significant amounts of training 
data, which may not be available in groundwater studies. Their “black box” nature makes it challenging to extract 
interpretable insights about parameter influences, reducing their utility for environmental management.

Overall, the selection of GEP, EPR, MARS, and MTM5 provides a robust framework for modeling the 
DRASTIC index. These models not only capture complex relationships among the input parameters but also 
offer greater transparency and interpretability, which are vital for effective groundwater resource management.

The novelty of the present paper lies in several key contributions that differentiate it from previously published 
works. Firstly, the integration of diverse machine learning methodologies—including classification, regression 
splines, and evolutionary computing—provides a comprehensive framework for enhancing DRASTIC index 
predictions. While prior studies may have focused on individual techniques, this paper offers a comparative 
analysis that highlights the strengths and weaknesses of each approach in the context of groundwater quality 
assessment. Secondly, the paper addresses specific limitations observed in the existing literature, particularly 
concerning the interpretability and robustness of predictions. By utilizing models like GEP, EPR, MARS, and MT, 
the present AI models not only improves predictive accuracy but also provides clear insights into the relationships 
among input parameters. This dual focus on performance and interpretability is a significant advancement over 
many existing models that prioritize accuracy at the expense of transparency. Moreover, the paper contributes 
to the field by incorporating a comprehensive set of nine input parameters that reflect the multifaceted nature of 
groundwater quality assessment. This nuanced approach contrasts with previous studies that may have simplified 
their analyses by using fewer parameters, thus potentially overlooking critical interactions. The literature review 
within the paper serves as a critical foundation, highlighting gaps in previous research and justifying the need for 
this novel approach. By systematically comparing their results with those from established studies, the authors 
demonstrate the superiority of their model in terms of predictive capability and practical applicability. Overall, 
this paper presents a significant advancement in the modeling of groundwater resource quality, bridging the gap 
between sophisticated machine learning techniques and practical environmental applications. Its contributions 
not only enhance the understanding of groundwater dynamics but also provide valuable tools for policymakers 
and resource managers striving for sustainable water management.
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In this study, the standard DRASTIC framework is modified by land use and nitrate pollution effects. After 
that, four AI models (i.e., MARS, EPR, GEP, and MT) are applied to evaluate the situation of vulnerability of 
nitrate pollutions in the arid regions of Kerman plain, southwestern Iran. This research integrates the results 
with the land use map in order to foster precision degree in preparing the spatial distribution map of aquifer 
vulnerability risk.

Overview of case study
Descriptions of under study plain
The study area of Kerman–Baghin plain, located on the edge of Lut Desert in the southeast of Iran, lies between 
56.18° and 57.35° east longitude, and 29.46° and 30.32° north latitude, as seen in Fig. 1. The plain is located in 
the southern area of the Daranjir-Saghand basin, Kerman Province. in this basin, the cities of Kerman, Mahan, 
and Joupar are considered important population centers. The Kerman–Baghin plain spans an area of 5420 
kilometers, of which 3200 square kilometers are alluvial surfaces and 2220 square kilometers are mountainous 
and foothill areas. The plain aquifer has an area of 2023.4 square kilometers. Additionally, the highest elevation 
is situated at 4200 m above sea level in the southern part of the plain whereas the lowest elevation in the central 
region of the Kerman–Baghin plain, reaching 1700 m above sea level. 

The recharge of the plain is primary driven by rainfall. Running water flows through the riverbeds and 
existing channels in the region, including Seyedi River, Tigran Sekonj River, and Chari River. The annual average 
rainfall between 2015 and 2018 ranged from 120-140mm, while in recent drought events, it has decreased 
to 90–100 mm. Data obtained from the nearest rain gauge station in the Sirch County show that the maximum 
and minimum values of temperatures during the summer are 39.5  oC and 14 oC, respectively. . In addition, 
the maximum temperature in winter is 27 oC while the minimum temperature reaches − 10 °C. The average 
temperature in winter is 2.9 °C. The amount of humidity is 40% and the amount of annual evaporation is 2690.4 
million mm per year and the amount of relative humidity is 28%.

Limitations and uncertainty sources
Various sources of limitation and uncertainties can affect the measurements of key parameters used in the 
computation of the DRASTIC index, which assesses groundwater vulnerability. Uncertainties can arise from 
the accuracy of well measurements, the timing of measurements (seasonal variations), and the spatial variability 
of the water table. Inconsistent monitoring techniques and equipment can also contribute to inaccuracies. In 
this study, due to the availability of field data limitations, the incomplete database within relevant organizations 
has resulted in some wells being excluded from calculations due to missing information. This gap underscores 
the need for comprehensive data collection practices to ensure that all relevant wells are accounted for in 
analyses. Additionally, conducting new pumping tests with appropriate spatial distribution is crucial for 
accurately understanding the hydraulic properties of the aquifer and for calculating hydraulic conductivity 
more precisely. Moreover, the situation is exacerbated by the fact that several piezometric wells (19 in total) 
have either dried up or have restricted access, highlighting the necessity for drilling new wells to monitor 

Fig. 1.  Location of study area.

 

Scientific Reports |        (2024) 14:29933 4| https://doi.org/10.1038/s41598-024-78812-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


groundwater levels and other quality parameters. The insufficiency of exploratory wells further complicates the 
accurate recording of the aquifer’s hydraulic characteristics. Estimating net recharge involves complexities such 
as variations in precipitation, evaporation, land use, and soil characteristics. Uncertainty in hydrological models 
used to calculate recharge, as well as limited long-term data, can further complicate accurate assessments. The 
geological complexity of aquifers can lead to uncertainties in characterizing their properties. Variability in rock 
types, fractures, and other geological features can affect how groundwater flows and is stored, complicating 
assessments of vulnerability. Furthermore, the limited number of drilling logs, coupled with inadequate spatial 
distribution relative to the area of interest, hampers the ability to assess the aquifer comprehensively. Moreover, 
soil properties, including texture, structure, and moisture retention capacity, can vary significantly across small 
distances. Inaccurate soil sampling and the use of generalized data can lead to uncertainties in determining 
how effectively soil can filter contaminants. On the other hand, the complexities of unsaturated zone dynamics 
can introduce uncertainty, particularly in estimating the thickness and properties of this zone. Variability in 
soil moisture content and saturation can complicate assessments of how pollutants may migrate toward the 
water table. Measuring hydraulic conductivity can be challenging due to spatial variability in subsurface 
materials. Inadequate sampling techniques or reliance on a limited number of measurements can lead to 
significant uncertainties in understanding how easily water and contaminants can move through the soil and 
aquifer. Furthermore, changes in land use practices can happen rapidly, and existing datasets may be outdated. 
Variability in agricultural practices, urban development, and natural land cover can all impact groundwater 
quality, but capturing these changes accurately in assessments can be difficult. There is also a significant lack 
of monthly monitoring of nitrate levels in the groundwater of the Kerman–Baghin plain, which is essential 
for assessing contamination risks and managing water quality effectively. Evaluating potential risks associated 
with land use involves uncertainty in identifying pollution sources, their proximity to groundwater, and the 
potential for contamination. Variability in land management practices and unforeseen events (like spills) can 
further complicate this assessment. In summary, the measurement of parameters integral to the DRASTIC index 
is fraught with uncertainties arising from spatial variability, temporal changes, limitations in data collection 
methods, and the inherent complexities of groundwater systems. Addressing these uncertainties through 
comprehensive monitoring and advanced modeling techniques is crucial for improving the reliability of 
DRASTIC index assessments.

Data utilized
The data used in this study include precipitation, depth to groundwater level, well logs, digital elevation model, 
hydraulic conductivity, soil texture, land use, and nitrate pollution. Monthly rainfall data for the years 2015 
to 2018 were recorded from four rain gauge stations, while depth to groundwater level was recorded on a monthly 
basis from 38 piezometer wells during the same period. drilling logs of piezometer wells, digital elevation model, 
and hydraulic conductivity were provided by Kerman Regional Water Company (KRWC). Soil texture was used 
for 117 samples prepared by Kerman Agricultural Research and Training Center. The land use map was prepared 
by the Forests, Rangelands and Watershed Management Organization.

DRASTIC index
Composite DRASTIC index
The CD index is a modified version of the DRASTIC index, introducing a parameter (L) to specifically assess the 
potential risk related to the land use. The goal of this methodology is to assess the potential impact of widespread 
land use on aquifer quality, arising from changes in the soil matrix and unsaturated zone media over a period 
of time. The DRASTIC Index considers seven parameters related to hydrogeological conditions, namely Depth 
to water table (D), net Recharge (R), Aquifer media (A), Soil media (S), Topography (T), Impact of the vadose 
zone (I), and hydraulic Conductivity (C). Based on the impact of parameters on potential vulnerability, each 
parameter is attributed a relative numerical weight varying from 1 to 5, where 1 and 5 indicate the least and most 
influential, respectively. Moreover, these seven effective parameters are categorized into ranges and attributed a 
numerical value from 1 to 10 based on their influences on the susceptibility. Ultimately, following the collection 
and digitalization of hydrogeological data using GIS, the information is overlaid and integrated to generate 
vulnerability maps. The outcome is a new layer referred to as the DRASTIC index (Eq. 1). This index is expressed 
as follows,

	 DRASTICindex = Dr · Dw + Rr · Rw + Ar · Aw + Sr · Sw + Tr · Tw + Ir · Iw + Cr · Cw � (1)

where subscripts “r” and “w” note the corresponding ratings and weights, respectively; that are summarized 
in Table S1, Supplementary Information (e.g.30,38,50,51). To compute the Composite DRASTIC index, an extra 
parameter, namely land use, is incorporated into the DRASTIC index. Consequently, the CD index is determined 
as,

	 DCindex = Dr · Dw + Rr · Rw + Ar · Aw + Sr · Sw + Tr · Tw + Ir · Iw + Cr · Cw + Lr · Lw � (2)

In this context, Lr signifies the assigned rating for the potential risk linked with land use, Lw indicates the relative 
weight attributed to the potential susceptibility related to land use (as outlined in Table S2), and the remaining 
effective parameters are in accordance with Eq. (1). The ultimate results range from 28 to 280 and are categorized 
based on the classifications outlined in Table S3.
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Nitrate vulnerability index
The NVI, as a modification of the DRASTIC index, designed to enhance precision in estimating the particular 
susceptibility to nitrate pollution. The NVI relies on the actual influence of each land use. This model aims to 
consolidate the risks of nitrate pollution in groundwater by taking into account land use as an expected nitrogen 
source. The framework considers both potential negative and positive impacts of land uses that do not contribute 
significantly to nitrate levels and do not lead to increased leaching over time, such as safeguarded natural zones. 
It relies on a framework based on multiplication that introduces a new parameter named the "potential risk 
associated with land use" (LU). This parameter is computed as30,

	 NVI = (Dr · Dw + Rr · Rw + Ar · Aw + Sr · Sw + Tr · Tw + Ir · Iw + Cr · Cw) · LU � (3)

In this equation, LU represents the potential risk linked with land use (as specified in Table S4), while the 
remaining parameters remain consistent with Eq.  (1). The ultimate results are categorized according to the 
classifications outlined in Table S3.

Preparation of vulnerability zone
Depth to water table (D)
The D parameters, as a pivotal factor in the DRASTIC framework, significantly affects the thickness of the 
unsaturated zone through which potential pollutants need to pass prior reaching the aquifer (e.g.48,52). It 
imperatively represents the distance a contaminant would have to traverse to reach the water surface. This depth 
serves as an indicative factor for potential aquifer protection, with deeper water levels leading to longer travel 
times for pollutants. Generating the depth pixel map entailed interpolating existing data through the utilization 
of the Inverse Distance Weighting (IDW) technique, which is a spatial analysis tool in ArcGIS 10.8. The 
employment of this interpolation technique enabled the development of a seamless map depicting the depth to 
the water table throughout the research area. Following this, D values underwent reclassification, with rankings 
assigned on a scale from 1 to 10 (see Table S1). These rankings are essential for the subsequent assessment and 
computation of the NVI. It is the distance from the ground surface to the water table. In order to provide D layer, 
the latest information on water level of 38 pizometric wells has been applied. The locations of these wells were 
also presented in Fig. 1. The methodology based interpolation conception has been employed to change the 
mentioned point data into raster map of water level. Ultimately, this layer has been generated and then classified 
by the provided ranges in Table S1. Spatial variations of D values was presented in Fig. 2a. Over 90% of Kerman–
Baghin plain area had D > 30.5 m.

Net recharge (R)
The net recharge parameter indicates the quantity of water that annually infiltrates from the Earth’s surface to 
reach the saturated zone, which is particularly pertinent for understanding the various types of contaminations 
movements (convection and diffusion) from the unsaturated zone to the saturated zone (e.g.48,53). In order to 
evaluate this parameter, the precipitation layer has been formed with aid of interpolation process on average 
values of the annual rainfall. The spatial variation of R map was then produced using the spatial analysis tool 
in ArcGIS 10.8, incorporating additional information on evaporation and runoff. The resultant map offers 
information regarding the average values of annual R across the entire study area. These values underwent 
reclassification and were assigned rankings within the range of 6–9, as illustrated in Fig. 2b and detailed in Table 
S1. In general, a higher R value indicates an elevated potential for contaminants to reach the water surface, given 
that larger volumes of infiltrating water create more pathways for the transport of pollutants. This study employs 
Piscopo’s method51 to generate the R layer for the Kerman–Baghin Plain using Table S1 and the Eq. (4) provided 
below:

	 NetRecharge index = Soil permeability + Rainfall + Slope (%)� (4)

In Eq. (4), the slope percentage was obtained from a Digital Elevation Model (DEM) created using the topographic 
map of the Kerman–Baghin Plain. Soil map, logarithmic observations, and exploration wells have been utilized 
in order to measure soil permeability. As seen in Fig. 2b, the map resulting from the spatial distribution shows 
that 53.2% of the plain area falls within the Class 3 range with a recharge level of 5 to 7. This class is uniformly 
scattered across the plain’s surface.

Aquifer media (A)
The A parameter describes the characteristics of materials within the aquifer that impact the processes of 
pollutant attenuation, as detailed by reliable literature (e.g.36,37,48). The aquifer formations, recognized using 
lithology and hydrogeology maps, consist of fine silt and silty sand, sand, conglomerate, and shale. According 
to Table S1, the spatial variations of A map has been categorized into six groups and then ranged from 1 to 9, 
as illustrated in Fig. 2c. In this study, information from 35 well-log profiles (Lithological wells) of the alluvial 
aquifer prepared in 1964 from KRWC has been employed in order to generate the A layer. A superior rank was 
attributed to conglomerate, indicating a highly coarse porous medium with outstanding capabilities in drainage 
and transmission. The spatial distribution map of the aquifer (Fig. 2c) illustrates that the aquifer environment 
covers the majority of the plain’s surface (61.8%), particularly in its eastern region, comprising Gravel, Sand, Silt, 
and Clay. In the western half of the plain (37%), it mainly includes Gravel and Sand.
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Fig. 2.  Input maps for the various DRASTIC and NVI models: (a) depth to water table, (b) recharge, (c) 
aquifer media, (d) soil media, (e) topography, (f) impact of vadose zone, (g) hydraulic conductivity, (h) land 
use, and (i) spatial variation of nitrate pollution.
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Soil media (S)
The S parameter plays a critical role in characterizing the influx of nutrients and pollutants into the aquifer, 
influencing the purification processes, as emphasized by diverse investigations (e.g.1,3–5). Additionally, 
soil characteristics impact the removal of pollutants. The data has been obtained from the disciplines of 
environmental and geological science. Rankings and weights have been designated according to the hydrological 
characteristics (porosity and permeability) of the soil. Table S1 present the rankings and weights related to 
various classes of S values and additionally Fig. 2d illustrates spatial variation map of soil media. Sandy loam 
soils, possessing favorable drainage that facilitates substantial water flow, were assigned a heightened ranking in 
terms of contaminant transmission. Conversely, clay soils hinder water flow and are less prone to groundwater 
contamination, leading to a lower rating. Soil data were obtained from the Kerman Institute of Agricultural 
Science (KIAS). Spatial variations of soil texture has been mapped by using the soil information derived from 
log of observation and exploration wells. The soil environment map in Fig. 2d illustrates that the majority of 
the plain’s surface (41.2%) is characterized by loamy soil texture, and this soil exhibits dispersion throughout all 
parts of the plain. Sandy soil (0.3%) with Class 9 is allocated the smallest area.

Topography (T)
This parameter signifies the incline of the terrain in the studied districts and then affects the quantity of water 
on the capability of soil infiltration without any intermediary. A gentler slope encourages increased infiltration, 
leading to an increased likelihood of pollutants migrating into the aquifer (e.g.20,54). To create the T layer, a 
digital elevation model (DEM) has been employed, and the slope function in ArcGIS 10.8 has been utilized to 
categorize it into five ranges. Steeper slopes are less likely to experience contamination because of the heightened 
potential for surface runoff. Figure 2e and Table S5 indicates the map and rankings/weights assigned to the T 
parameter, respectively. DEM with spatial resolution (30 m) has been utilized in order to calculate T values in 
ArcGIS 10.8 software. The T layer was created using the same methodology applied in generating the R layer and 
subsequently underwent classification. As illustrated in Fig. 2e, the slope domain map indicates that the majority 

Figure 2.  (continued)
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of the plain’s surface (60%) has slopes less than 2%, falling into Class 10. Slopes in the ranges of 12–18% and 
greater than 18% constitute the smallest area (0.1%).

Impact of vadose zone (I)
The I layer is created by considering characterizations derived from hydrogeology information. The spatial 
variations on geological properties of the studied plain has been grouped into three ranges: Conglomerate, Marl, 
and calcareous shale with intercalations of limestone, and Marl, shale, sandstone, and limestone. Each category 
signifies unique geological units situated above the groundwater level. The vadose zone parameter map delineates 
the diverse geological units above the water level, as discussed by Karimzadeh-Motlagh et al.48. The vadose zone 
includes the area between the Earth’s surface and the aquifer, specifically referring to the unsaturated material 
above the water table. The dimensions and depth of the unsaturated zone have considerable importance in the 
computation process of DRASTIC framework. The properties of the vadose zone media have a profound impact 
on both water flow and the migration of pollutants. Each geological unit has been attributed to a score between 
3 and 9, with permeable media such as gravel and conglomerate receiving a score of 9, while shale has been 
attributed to a lower rank of 3 (refer to Table S1). This research utilized lithologic data obtained from observation 
and exploration wells to construct the vadose zone media of the Kerman–Baghin plain. Subsequently, utilizing 
this information in conjunction with Table S1, we formulated the raster map for the Kerman–Baghin plain (see 
Fig. 2f). The unsaturated zone map on the plain’s surface (Fig. 2f) indicates that the eastern half of the plain 
(45.7%) is characterized by Silt and Clay textures. The central to western part of the plain contains Sand, Silt, and 
Clay textures (44.6%), while the westernmost layer of the plain consists of Gravel and Sand (9.7%).

Hydraulic conductivity (C)
The C parameter serves as an indicator of the porous medium’s ability within an aquifer to transport water, as 
noted by Baghapour et al.30, Wang et al.55, and Karimzadeh-Motlagh et al.48, and it is considered as contributory 
factor of assessing the movement of contaminants. Elevated C values indicate a faster transportation of 
pollutants. Hydraulic conductivity denotes the ability of soil or rock to facilitate the movement of water, a feature 
affected by factors such as the proportion of pore spaces, interconnections, voids, grain size, and sorting. The 
C values underwent categorization, and a rating between 1 and 7 was allocated to each aquifer media type 
with consideration of hydraulic conductivity characterizations (refer to Table S1). We utilized data from 22 
pumping tests conducted by KRWC to create the hydraulic conductivity layer. The spatial variation of C values is 
illustrated in Fig. 2g and additionally demonstrated that the majority of the plain’s surface (67.1%) in the eastern 
half and central parts has hydraulic conductivity ranging from 1.12 to 1.4 m per day. The smallest area (1.7%) 
corresponds to hydraulic conductivity levels of 12.2–28.5 m per day, scattered in small patches in the eastern and 
central regions of the plain.

Land use
A land use map is a visual representation of how the land in a specific geographic area is utilized or occupied by 
different human activities. It illustrates the various types of land uses, such as residential, commercial, industrial, 
agricultural, recreational, or natural areas. Land use maps provide a comprehensive overview of the spatial 
distribution and patterns of human activities on the Earth’s surface. The map shows the spatial distribution of 
land uses, indicating where specific activities or land cover types are located within the study area. In urban 
planning, land use maps often align with zoning regulations. Zoning boundaries define areas with specific land-
use designations, such as residential, commercial, or industrial zones. Land use maps help assess the influence 
of human activities on the natural surroundings and ecological systems. They are valuable for conservation 
efforts and natural resource management. This layer is essential as it is needed for both CD and NV indices. 
This layer was obtained from Landsat images in 2018 and then Tables S2–S4 were utilized to assign ratings for 
the creation of the land use map and its corresponding risk assessment. As seen in Fig. 2h, the vast area of the 
Kerman–Baghin plain is red with low density pasture. The land use map of the watershed (Fig. 2h) indicates that 
the majority of the watershed area (49.9%) is characterized by low-density grasslands, and urban land use class 
constitutes the smallest area (6%).

Field measurement of nitrate concentration
Groundwater sampling was conducted at selected well locations during the summer of 2022 (from August 6 to 
August 10), as part of field operations. It is important to highlight that the investigation into the groundwater 
quality in the investigated region, characterized by an arid climate, took place during the dry season. This method 
aimed to evaluate the water quality over the long-term, alleviating the influence of short-term variations induced 
by aquifer recharge and fluctuations in water quality typically observed during the humid season, especially after 
severe precipitation. Dark glass containers with a volume of 250 ml were utilized for sampling, pre-washed with 
distilled water before collection. Each sample bottle has been marked with details including location, sampling 
time (date and time), sampling depth (varying from 22 to 146 m), and water temperature. Following collection, 
the water samples have been stored at a temperature below 4 °C and transferred to the central laboratory of the 
Graduate University of Advanced Technology within 6 h. Nitrate content analysis was promptly conducted using 
a Varian Cary 50 spectrophotometer56. Subsequently, geostatistical analysis of the nitrate data was carried out 
to generate a zonation map using ArcGIS 10.4.1 and GS + software packages. It is important to mention that the 
geostatistical technique, particularly the Kriging estimator, has been extensively used to assess the spatial and 
temporal variations of groundwater. The spatial variations of nitrate concentrations (mg/l) for Kerman–Baghin 
plain was illustrated in Fig. 2i. The major fraction of the plain had 2.2–14 mg/l Nitrate concentration whereas the 
70–100.4 nitrate concentration had minimum coverage.
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Dataset overview
From Fig. 3, Table 2 indicates fractional areas of effective DRASTIC parameters for the case study area. In this 
research, DRASTIC index which has been effected by NV and LU indices, is predicted by AI models. To begin 
with, normal effective parameters (i.e., D, R, A, S, T, I, and C) were employed to provide map of DRASTIC 
index and then effects of LU and nitrate pollutions were considered to provide the spatial zoning map of nitrate 
pollution. To develop AI models for estimating Nitrate pollution, 9 input parameters were considered: Dr, Rr, Ar, 
Sr, Tr, Ir, Cr, Lr, and LU. In this way, a dataset containing 100 data series were used for this purpose in which 75 
and 25% of dataset have been selected to carry out the training and testing stages of the AI models, respectively. 
Statistical descriptions of input–output parameters were presented in Table 3

Artificial intelligence models
Multivariate adaptive regression spline
The MARS model utilizes the concepts of piecewise linear regression to formulate a linear regression expression, 
identifying overall patterns within the input–output system57,58. The MARS method estimates the function by 
employing a sequence of piecewise linear regressions, accomplished through an adaptive process referred to as 
Basis Functions (BFs). The curve-fitting component of MARS is essentially built by a collection of Basis BFs in 
both the forward and backward stages. Each BF comprises a single variable (x) and a knot (K), resulting in two 
potential pairs: (z − K)+ and (K − z)+, where (z − K)+ equals (z − K) if z > K, and 0 otherwise; and (K − z)+ equals 
(K − z) if z < K, and 0 otherwise. The final result from the MARS model is determined through a curve-fitting 
equation, as described by Friedman58.

	
NVI = ω0 +

s∑
i=1

ωi · BFi (Dr, Rr, Ar, Sr, Tr, Ir, Cr, LU, Lr)� (5)

Fig. 3.  Spatial variations of (a) DRASTIC, (b) DRASTIC-LU, and (c) NVI models.
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in which BF i notes the basis function including input variables with the second-order polynomial pattern. 
Additionally, ω0, ωi, and s note the bias term, the constant coefficient related to the typical basic functions, and 
the number of basis functions in the MARS model, respectively.

The MARS approach implemented using MATLAB2008a whose programming codes are freely available. In 
the present research, MARS produces 18 BFs using a second-order polynomial (or linear model) in order to 
approximate NVI values. The mathematical formulations for the BFs and their associated constant coefficients 
employed in NVI modeling are outlined in Table 3. Furthermore, the subsequent mathematical model establishes 
a correlation between NVI and nine influential parameters.

Parameters Max Min Average Std. dev Skewness

Dr 3 1 1 0.41 3.6

Rr 5 1 4 1.2 -0.23

Ar 7 4 6 1.01 0.38

Sr 9 1 5 1.36 -1.2

Tr 10 5 10 0.67 -3.39

Ir 7 3 4 1.26 0.33

Cr 4 1 2 0.62 1.04

Lr 8 1 6 2.22 -1.13

LU 1 0.2 0.5 0.36 0.63

NVI 104 13.6 39.62 29.6 0.76

Table 3.  Statistical descriptions of input–output parameters obtained in the Baghin Plain.

 

Depth to water table (m) Net recharge Aquifer media

Rating Area (percentage %) Rating Area (percentage %) Rating Area (percentage %)

1 1922.2 (95) 1 57.497 (2.8) 4 24.134 (1.2)

2 73.08 (3.6) 3 1076.4 (53.2) 5 1251.4 (61.8)

3 28.113 (1.4) 5 889.49 (44) 7 747.88 (37)

Soil media Topography (slope %) Impact of the vadose zone

Rating Area (percentage %) Rating Area (percentage %) Rating Area (percentage %)

1 82.91 (4.1) 1 1.18 (0.1) 3 923.75 (45.7)

3 271.72 (13.4) 3 1.86 (0.1) 5 903.42 (44.6)

4 281.5 (13.9) 5 31.24 (1.5) 7 196.26 (9.7)

5 833.57 (41.2) 9 774.8 (38.3)

6 547.64 (27.1) 10 1214.3 (60)

9 6.094 (0.3)

Hydraulic conductivity Land use NO3
-(mg/L)

Rating Area (percentage %) Rating Area (percentage %) Rating Area (percentage %)

1 630.4 (31.2)
Bare 
land and 
desert

143.34 (7.1) 2.2 - 14 1319.2 (65.2)

2 1358 (67.1)
Hand-
planted 
forests

210.29 (10.4) 14 - 28 341.52 (16.9)

4 35 (1.7) Dry lake 17.611 (0.9) 28 - 48 248.53 (12.3)

Low 
density 
pastures

1010.3 (49.9) 48 - 70 86.247 (4.3)

Irrigated 
field 
crops

520.58 (25.7) 70 - 
100.4 27.919 (1.4)

Urban 
areas 121.28 (6)

Table 2.  Fractional areas for effective DRASTIC parameters.
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NV I =73.03 + 44.331 × BF1 − 95.044 × BF2

+ 8.0589 × BF3 + 5.4617 × BF4 − 5.1886 × BF5

− 7.5732 × BF6 + 7.121 × BF + 3.024 × BF8

− 3.8399 × BF9 + 4.0564 × BF10 − 6.0339 × BF11

− 1.418 × BF12 + 25.861 × BF13 + 0.81522 × BF14 − 1.4806 × BF15

− 3.1012 × BF16 + 4.7424 × BF17 + 1.8296 × BF18

� (6)

In the present study, the k-fold value was specified as 10, indicating that the MARS procedure was repeated 10 
times to mitigate the risk of overfitting. Both forward and backward stages were executed for each k-fold setting. 
Furthermore, the determination of the final MARS model involved establishing the number of basis functions 
and identifying the count of effective parameters. The optimal model derived from the MARS approach for 
assessing NVI is expressed by Eq.  6, with BF1 to BF18 detailed in Table 4. The basis functions in Eq.  6 are 
established using input parameters LU, Cr, Ir, Sr, Ar, Rr, and Dr, while Tr and Lr are omitted. Table 5 provides 
insights into the features observed in 10 iterations of the MARS model, presenting outcomes across both forward 
and backward stages. All coefficients in Eq. 6 were determined through the Particle Swarm Optimization (PSO) 
algorithm, resulting in an MSE (Mean Squared Error) of 0.35661 as the optimal outcome. In Fig. 4, within the 
aquifer’s total area of 4202.3 square kilometers, around 3147.8 square kilometers (approximately 74.73%) in 

Formulation of BFs

BF1 max(0, LU − 0.8)
BF2 max(0, 0.8 − LU)
BF3 max(0, LU − 0.8) × max(0, Rr − 3)
BF4 max(0, Ir − 5)
BF5 max(0, 5 − Ir)
BF6 max(0, 0.8 − LU) × max(0, Ir − 5)
BF7 max(0, 0.8 − LU) × max(0, 5 − Ir)
BF8 max(0, Rr − 3)
BF9 max(0, 3 − Rr)
BF10 max(0, Cr − 2)
BF11 max(0, 0.8 − LU) × max(0, Cr − 2)
BF12 max(0, 0.8 − LU) × max(0, 2 − Cr)
BF13 max(0, LU − 0.8) × max(0, Dr − 1)
BF14 max(0, Ar − 5)
BF15 max(0, 5 − Sr)
BF16 max(0, 0.8 − LU) × max(0, Rr − 3)
BF17 max(0, 0.8 − LU) × max(0, 3 − Rr)
BF18 max(0, 0.8 − LU) × max(0, 5 − Sr)

Table 4.  List of BF developed in MARS model.

k-fold Number of effective parameters Number of BFs in final model Time performance

1 43.5 18 0.65

2 38.5 16 0.69

3 28.5 12 0.61

4 38.5 16 0.63

5 43.5 18 0.66

6 46 19 0.85

7 46 19 0.52

8 43.5 18 0.56

9 28.5 12 0.31

10 41 17 0.37

Table 5.  Characterization of MARS model within forward and backward passes.
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the region characterized by very low vulnerability exhibit an NVI value below 70. The remaining 1,545 square 
kilometers (25.26% of the total area) fall within the NVI range of 70–110, indicating low vulnerability.

Model tree
Quinlan59 introduced the MT as a powerfull data-mining model rooted in classification principles. A more 
sophisticated extension of MT, known as the M5 model, was subsequently proposed by Wang and Witten60. 
The M5 Model Tree (M5MT) is capable of breaking down a complex problem into manageable domains or 
subspaces, with the final output being a linear summation of the input variables throughout all realms of 
inputs57. The M5MT technique employs recursive methods in order to divide the search space of datasets into 
one or more subspaces. This involves using if–then rules to categorize input variables into one or more domains, 
specifying input variables to subdomains. Consequently, a set of multilinear relationships is generated within 
each sub-domain.

In the current study, the M5MT approach has been implemented using Weka 3.9 software. Initially, the 
decision tree is formed during the training phase, and subsequently, nine influential parameters (i.e., LU, Cr, Ir, 
Sr, Ar, Rr, Dr, Tr and Lr) were employed to acquire the multilinear regression model for classification. In order to 
approximate NVI, Eq. (7) is expressed as

	
NV I =

{
−9.6162 + 1.3959Rr+0.1561Sr+0.7123Ir+86.5834LU Lr ≤ 7
−11.6632 + 4.9336Rr+4.9111Ir+54.8834LU Lr> 7 � (7)

Fig. 5.  Spatial variation of Nitrate vulnerability pollution by M5MT.

 

Fig. 4.  Spatial variation of Nitrate vulnerability pollution by MARS.
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In Eq. (7), the M5 tree model utilizes the input parameter Lr as a criterion to partition the input space, and the 
parameters LU, Ir, Sr, and Rr are incorporated into the mathematical expression. However, the input parameters 
Cr, Tr, Ar, and Dr are not considered. In Fig. 5, within the total area of 4,202.3 square kilometers of the aquifer, an 
area of approximately 3,141.5 square kilometers (approximately 94.69%) in the region characterized by very low 
vulnerability has an NVI value below 70. The remaining 608 square kilometers (around 5.30% of the total area) 
fall within the NVI range of 70 to 110, signifying a low vulnerability zone.

Gene-expression programming
The GEP approach is essentially built upon the principles of Genetic Algorithm (GA), a technique capable of 
simplifying relationships within sophisticated systems into simpler equations. GEP integrates inherent features 
of GA, encompassing fixed-length and linear configurations linked to chromosomes. Moreover, GEP utilizes 
Expression Trees (ETs) with sub-elements of diverse sizes and shapes, including aspects such as tree depth, 
mathematical expressions and algebraic symbols. The GEP model is constructed through five distinct phases. 
In the initial stage, a fitness function (FF) is employed in order to appraise an individual program61–63. In this 
investigation, the Mean Squared Error (MSE) is assigned as the fitness function,

	
F F = 1

1 + MSE
× 1000� (8)

The second phase commences with the specification of terminals and mathematical functions so as to provide 
the chromosomes. During the third stage, the overall attributes of chromosomes, such as size and shape, 
are configured. Following that, the fourth stage utilizes a well-established algebraic operator to construct a 
mathematical expression from a set of genes. Lastly, various genetic operators (as delineated in Table 6) are 
applied to obtain the optimal relationship. The GEP model, implemented using GeneXproTools 5 software, 
produced the most efficient correlation for predicting the influential parameters of NVI. In this research, the 
number of generations was extended to 244 until the optimal fitness function value reached 214.665 during the 
training phase.

	

NV I = max (LU − (−8.70967) , Ar) +
[
((LU + LU) × Lr) ×

(
Ar + Rr

2

)]

+ 1 −
[
min

((
Lr

LU × Ir

)
, (Ar + 0.034084)

)
−

(
Tr + Ar

Lr + LU

)]

+
exp

( (Sr−(−5.2031))+exp(−9.3446)
2 + (−5.2031)

)
+ (0.891546 − Rr)

2

� (9)

In the GEP model, Eq. (9) incorporates input parameters LU, Lr, Ir, Tr, Sr, Ar, and Rr, while excluding the input 
parameters Dr and Cr. In Fig. 6, within the total area of 4,202.3 square kilometers of the aquifer, approximately 
1,461 square kilometers (around 34.72%) in the area characterized by very low vulnerability exhibit an NVI 
value below 70. The remaining 562 square kilometers (approximately 65.27% of the total area) fall within the 
NVI range of 70 to 110, indicating low vulnerability.

Evolutionary polynomial regression
EPR, grounded in a global search technique, is capable of constructing a symbolic regression equation linking 
input–output vectors (or variables) so as to make systems straightforward. Conceptually, EPR generates a 
regression equation comprising numerous algebraic terms64–68:

GEP parameters Values

Number of chromosomes 30

Linking function  + 

Mutation 0.00138

Gene recombination 0.00277

Fixed-root mutation 0.0068

Fitness function Mean Square error

Best fitness function 510.739

Number of generation 576

Maximum depth of tree 4

Number of genes 4

Termination condition of GEP development R-squared

Mathematical operators Exp,LN,X2,3RT,Atan,Min(x1,x2),
Max(x1,x2),Avg(x1,x2),Tanh,NOT,Inv, + ,-,*,/

Table 6.  Setting parameters of GEP model.
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NV I = θ0 +

T∑
g=1

θg · (D)EX(g,1) · (R)EX(g,2) · (A)EX(g,3) . . . (LUg)EX(g,T ) · INF
(

D
EX(g,G+1)
1 · (R)EX(g,G+2) · (A)EX(g,G+3) . . . LUEX(t,2G)

g

)
� (10)

in which U, L0, Lu, INF, and EX note the customizable symbolic terms, an optional bias term, a group of invariable 
coefficients, the customizable inner function (e.g., natural logarithm, tangent hyperbolic), and customizable 
exponents input vectors applied in Eq. (7), respectively69,70. During the development stage, a matrix is created 
that encompasses effective DRASTIC parameters. Following this, initial population values associated with the 
exponent vectors are provided. In the subsequent step, exponent vectors associated with influential DRASTIC 
parameters are specified; then, invariable coefficients (Lu), presented in Eq. (10), are adjusted by the least square 
technique. After fixing the L values and ES vectors, the values of NVI are estimated in the training phase. 
Subsequently, the quality provided by the EPR performance is evaluated. In this study, a logarithmic inner 
function (INF) is employed to deliver the most accurate estimation of the NVI, as opposed to other types of 
INFs such as tangent and secant hyperbolic functions and exponential function64–66.

In this research, the EPR model was implemented using the EPR MOGA-XL software, which is programmed 
within the Excel environment. The execution of the EPR model involved the utilization of the multi-objective 
genetic algorithm (MOGA). The software settings were configured with an inner function (natural logarithm) 
defined, a power range for input variables spanning from − 2 to 2 with increments of 0.5, and a total of 19,440 
generations. Additionally, a maximum of six mathematical terms (U = 6) was specified. Through this software, 
six models were generated for the evaluation of NVI, as presented in Table 7. Model#6, exhibiting the lowest 
mean squared error (MSE = 0.066) during training, outperforms the other models and is selected as the most 
accurate model for NVI evaluation. In Model#6 (as presented in Table 7), input parameters LU, Cr, Ir, Tr, Ar, Rr, 
and Dr were used for modeling nitrate pollution, while Sr and Lr were excluded. In Fig. 7, out of a total area of 
4,202.3 square kilometers of the aquifer, an area of approximately 1,521 square kilometers (about 2.75%) in the 
region with very low vulnerability has an NVI value less than 70. A total of 501 square kilometers (about 79.27% 
of the total area) falls within the NVI range of 70 to 110 in the low vulnerability zone. These models perform a 
refinement in the final model by considering the impact of each input parameter on vulnerability assessment 
through NVI, resulting in some input parameters participating in the mathematical expression, while others are 
excluded.

Results and discussions
Statistical performance of AI models
According to reliable relevant research works, various statistical tests have been applied in order to appraise 
the performance of AI models in the groundwater evaluation in terms of quality and quantity literature 
(e.g.1,24,30,31,39,63,71–76,78). Through this method, statistical indicators such as the Correlation Coefficient (R), Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Scatter Index (SI) were employed to evaluate the 
effectiveness of the performance of soft computing models in two development stages (i.e., training and testing 
stages) related to the assessment of NVI. These statistical metrics are defined as follows:

	

R =
∑N

i=1

(
NV Ii

p − NV IP

) (
NV Ii

o − NV Io

)
√∑N

i=1

(
NV Ii

o − NV Io

)2 (
NV Ii

p − NV IP

)2 � (11)

Fig. 6.  Spatial variation of Nitrate vulnerability pollution by GEP.
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RMSE =

√∑N

i=1 (NV Ii
p − NV Ii

o)2

N
� (12)

	
MAE =

∑N

i=1

∣∣NV Ii
p − NV Ii

o

∣∣
N

� (13)

Fig. 7.  Spatial variation of Nitrate vulnerability pollution by EPR.

 

Model. no Formulations MSE

Model#1

NV I =
(
4.2744 × ln

(
LU0.5))

+
(
7.5974C0.5

r LU1.5)

+
(
0.58939Cr × ln

(
C0.5

r

))
+

(
3.4229S0.5

r LU × ln
(
R2

r

))

+
(
20.0097A0.5

r LU × ln
(
I0.5

r

))
+

(
4.6166D0.5

r T 0.5
r LU

)
+ 5.166

0.123

Model#2

NV I = (0.51714 × ln (Cr)) +
(
3.0519C0.5

r LU1.5 × ln (Cr)
)

+
(
6.491T 0.5

r LU
)

+
(
3.4285S0.5

r LU × ln
(
R2

r

))

+
(
22.1852A0.5

r LU × ln
(
I0.5

r

))
+

(
26.2349Dr × LU

I1.5
r

)
+ 0

0.089

Model#3

NV I = (0.5473 × ln (Cr)) +
(
2.411C0.5

r LU1.5 × ln
(
I0.5

r × Cr

))

+
(
6.2099T 0.5

r LU
)

+
(
3.4313S0.5

r LU × ln
(
R2

r

))

+
(
21.5222A0.5

r LU × ln
(
I0.5

r

))
+

(
26.9076Dr × LU

I1.5
r

)
+ 0.19457

0.080

Model#4

NV I =
(
2.4808C0.5

r LU1.5 × ln
(
I0.5

r × Cr

))
+

(
6.1836T 0.5

r LU
)

+
(
3.3946S0.5

r LU × ln
(
R2

r

))
+

(
10.7933A0.5

r LU × ln (Ir)
)

+ (0.13577Rr × ln (Cr)) +
(

27.139Dr × LU

I1.5
r

)
+ 0.21202

0.071

Model#5

NV I =
(
2.3201C0.5

r LU1.5 × ln
(
I0.5

r × Cr

))
+

(
6.0645T 0.5

r LU
)

+
(
3.3586S0.5

r LU × ln
(
R2

r

))
+

(
10.9199A0.5

r LU × ln (Ir)
)

+
(
0.29264RrLU0.5 × ln (Cr)

)
+

(
27.4567Dr × LU

I1.5
r

)
+ 0.24993

0.069

Model#6

NV I =
(
2.3307C0.5

r LU1.5 × ln
(
I0.5

r × Cr

))
+

(
6.2175T 0.5

r LU
)

+
(
3.3575S0.5

r LU × ln
(
R2

r

))
+

(
10.8407A0.5

r LU × ln (Ir)
)

+
(
0.2844RrLU0.5 × ln

(
D0.5

r × Cr

))
+

(
25.9049Dr × LU

I1.5
r

)
+ 0.24597

0.066

Table 7.  Mathematical expressions given by EPR.
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SI =

√
1
N

∑N

i=1

[(
NV Ii

p − NV IP

)
−

(
NV Ii

o − NV Io

)]2

NV Io

� (14)

In these equations, N is the number of data points, the NV Ii
o ith value represents the observed value, the NV Ii

p 
ith is the predicted value by the soft computing models, and the NV Io averages refer to the mean of observed 
values and NV Ip is the mean of predicted values by the soft computing models.

The value of R is in the range [+ 1, −1] and expresses a linear (direct or inverse) relationship between 
parameters. When R approaches + 1, it indicates a direct correlation, and when it approaches − 1, it signifies an 
inverse correlation between parameters. When there is weak correlation between parameters, R approaches zero; 
moreover, R is dimensionless. RMSE has a value between 0 and + ∞, reflecting the spread of predictions of each 
model relative to observed values. The closer it is to zero, the more accurate the model is, and it has dimensions 
similar to the evaluated parameters (here, dimensionless). Changes in MAE range between 0 and + ∞, indicating 
the difference between observed and predicted values by the model. The closer it is to zero, the more accurate 
the model, with dimensions similar to the evaluated parameters (here, dimensionless). SI provides an indication 
of the relative spread of model predictions compared to the average of the observed values. A lower SI suggests 
that the model predictions are relatively concentrated and close to the mean of the observed values, indicating 
better model performance. The reliable range of SI is as same as RMSE and MAE.

Moreover, the assessment of AI model performance in both training and testing phases involves the use 
of receiver-operating characteristic (ROC) curves. To construct the ROC curve, it is essential to comprehend 
the concepts of sensitivity and specificity, which are directly employed to evaluate AI model effectiveness. 
Subsequently, the computation of the area under the curve (AUC) is required77. The literature provides 
comprehensive explanations of ROC curves. Broadly speaking, the diverse AUC ranges are capable of 
characterizing AI models efficacy as follows: 0.5–0.6 (low precision), 0.6–0.7 (moderate precision), 0.7–0.8 (high 
accuracy), 0.8–0.9 (remarkably high precision), and 0.9–1 (excellent precision).

The comparison presented in Table 8 clearly indicates that the EPR soft computing model performs the best 
among the soft computing models during the training phase, achieving an R of 0.9999, RMSE of 0.246, MAE of 
0.191, and SI of 0.0064. Following this, in descending order of performance, are the MARS model (R = 0.9998, 
RMSE = 0.597, MAE = 0.443, and SI = 0.0156), M5MT model (R = 0.9984, RMSE = 0.679, MAE = 0.189, and 
SI = 0.0439), and GEP model, which is the least effective with an R of 0.9958, RMSE of 0.766, MAE of 0.721, and 
SI of 0.0724. In Table 8, a similar comparison among the soft computing models is conducted during the testing 
phase, and once again, the EPR model exhibits the best performance with an R of 0.9999, RMSE of 0.2105, MAE 
of 0.1712, and SI of 0.0040. Subsequently, in decreasing order of performance, are the MARS model (R = 0.9966, 
RMSE = 0.408, MAE = 0.342, SI = 0.0530), M5MT model (R = 0.9956, RMSE = 0.988, MAE = 0.996, SI = 0.0580), 
and the GEP model, which performs the least effectively with an R of 0.9920, RMSE of 0.491, MAE of 0.673, and 
SI of 0.0781.

Another way to investigate the correlation between the predicted values by soft computing models and the 
observed values is through scatter plots. In fact, Fig. 8a and b illustrate the qualitative performance of the soft 
computing models in both training and testing phases. Considering Fig. 8a, all data points during the training 
phase are concentrated within the ± 10% acceptable error range. For NVI in the range (30, 10), the predicted 
values of the M5MT model are mostly higher than the observed values, and the predicted values of the GEP 
model are lower. The GEP model predicts NVI values less than the observed values for the range (70, 60), higher 
for the range (80, 70), less for the range (90, 80), and higher for the range (110, 90). The M5MT model generally 
predicts higher NVI values in the range (100, 60). Throughout the plot, the predictions of the EPR and MARS 
models are nearly equal to the observed values. Similarly, in Fig. 8b, as in the previous figure, all data points 
during the testing phase fall within the acceptable error range. The predicted values of the M5MT model are 
higher than the observed values throughout the plot. The GEP model overestimates the predicted values in 
the range (80, 70) but underestimates them in the range (90, 80). In contrast to the training phase where the 
predictions by the MARS model align almost perfectly on the y = x line, in the testing phase, it predicts higher 
NVI values for the range (70, 50). The predicted values by the EPR model, like the training phase, are in line with 

AI models

Training phase

R RMSE MAE SI

 GEP 0.9958 2.766 1.721 0.0724

 EPR 0.9999 0.2460 0.191 0.0064

 MARS 0.9998 0.5970 0.443 0.0156

 M5MT 0.9984 1.6790 1.189 0.0439

AI Models

Testing phase

R RMSE MAE SI

 GEP 0.9920 3.491 2.673 0.0781

 EPR 0.9999 0.210 0.171 0.0040

 MARS 0.9966 2.408 1.341 0.0530

 M5MT 0.9956 2.988 1.996 0.0580

Table 8.  Evaluation of Statistical analysis of AI models performance in the NVI prediction.
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the observed values. Regarding the complexity of the model structures, the mathematical expressions of the GEP 
model (Eq. 9) and the EPR model (Model#6 in Table 7) are more intricate compared to the MARS and M5MT 
models. The EPR model, due to the presence of six algebraic expressions, a natural logarithm internal function, 
and the utilization of eight input parameters, has a higher degree of mathematical complexity compared to the 
GEP model, which consists of three internal functions (Min, Max, Exp), four algebraic expressions, and the use of 
seven input parameters. Additionally, the Eq. (6) provided by the MARS model includes 18 sets of second-degree 
polynomials with 7 input parameters along with 10 forward and backward steps, representing more complex 
expressions than those generated by the M5MT (Eq. 7). As mentioned earlier, the EPR model demonstrates 
favorable performance compared to other soft computing models. The MARS model is well-positioned as an 
alternative to the EPR model among the three other models.

To draw the ROC curve and calculate the AUC, GraphPad Prism 8 software was utilized. According to 
Fig. 9, the GEP model (AUC = 94.50%) performed excellently, followed by the MARS and M5MT models 
(AUC = 94.38%), and finally, the EPR model (AUC = 94.37%).

Fig. 9.  ROC curve of AI models for predicting NVI.

 

Fig. 8.  Performance of AI models for both (a) training and (b) testing stages
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Comparisons of present research with relevant literature
These artificial intelligence models, based on regression and providing relationships, have found extensive 
application in the realm of groundwater pollution control. The mentioned AI methods can automatically identify 
input variables and select those with higher importance for modeling. In this study, the EPR model, using a multi-
objective genetic algorithm in its structure, optimizes the number of algebraic expressions and input variables. 
Additionally, models such as MT and MARS, by incorporating characteristics of data mining methods like 
adaptive regression, the concept of standard deviation error in the structure of tree and regression models, and 
the inclusion of forward stages for initial regression model building and backward stages for removing algebraic 
expressions leading to overfitting, reduce the computational load in estimating the DRASTIC index. Moreover, 
the GEP model, similar to the EPR model, can easily represent the complexities in modeling the DRASTIC index 
(parameter uncertainties and groundwater system complexity) by simultaneously using mathematical operators. 
The mentioned features of the AI models in this study contribute to computational efficiency reduction. On the 
other hand, some AI models like ANN, ANFIS, and SVM use all input variables. The results of the AI models, 
based on their formulas, can be easily interpreted, and with only the values of DRASTIC input parameters 
(considering land use effects and nitrate pollution), the status of groundwater contamination can be examined.

In Fijani et al.’s24 research, SCMAI was used based on Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic 
(MLF), ANN, and ANFIS models in order to assess groundwater vulnerability via DRASTIC index while 
considering Nitrate–N concentration for Maragheh–Bonab plain aquifer, Iran. In terms of accuracy levels, all AI 
models (R = 0.61, 0.82, 0.76, 0.84, 0.98 for MFL, SFL, ANN, SCMAI, respectively) used in their study have stood 
at the lower precision stages compared with the present research (see Table 8). In addition, Fijani et al.24 did not 
consider LU effects on the DRASTIC index whereas we took it into consideration for evaluation of pollution 
assessment of Kerman–Baghin Plain.

A notable limitation of Fijani et al.’s24 study was their omission of land use (LU) effects on the DRASTIC 
index. This aspect is critical in understanding groundwater vulnerability, as land use changes significantly 
influence the dynamics of groundwater contamination. In contrast, the current research specifically considered 
land use effects, which allows for a more nuanced evaluation of pollution impacts in the Kerman–Baghin Plain. 
By integrating land use data into the analysis, the present study provides a more accurate and holistic assessment 
of groundwater vulnerability, reflecting the real-world complexities of how human activities interact with 
natural systems. Overall, the incorporation of land use considerations and the employment of more precise AI 
modeling techniques not only enhance the accuracy of groundwater vulnerability assessments but also address 
gaps identified in previous studies, such as that of Fijani et al.24. This approach underscores the importance of 
continuously improving methodologies to ensure effective management of groundwater resources and to protect 
them from contamination. 

In the study conducted by Barzegar et al.1 in the Tabriz Plain aquifer, the ANN model (constructed by three 
hidden layers and 12 neurons with R = 0.847) and ANFIS models (constructed by Mamdani with a correlation 
of 0.784 and Sugeno with a correlation of 0.784) demonstrated high accuracy in evaluating the DRASTIC index. 
However, the AI models ANN and ANFIS exhibited lower accuracy compared to the results of the present study 
(e.g., R = 0.9920, 0.9999, 0.9966, and 0.9956 for GEP, EPR, MARS, and M5MT, respectively). Additionally, in 
terms of structure, the artificial intelligence models such as ANN and ANFIS act like black boxes, making the 
interpretation of DRASTIC data somewhat more challenging compared to the simpler AI models employed in 
the present research, such as M5MT and MARS, which have simpler structures represented by Eqs. (6 and 7). 
The developed SCMAI model, due to its simultaneous use of the inherent characteristics of ANNs and fuzzy 
models (Mamdani and Sugeno), achieved a correlation coefficient of 99.0%. This performance is comparable to 
the results of the present study, which used GEP (R = 9920), EPR (R = 0.9999), MARS (R = 9966), and M5MT 
(R = 9956). It is worth mentioning that the SCMAI model, due to its use of multiple artificial intelligence 
methods, has greater complexity compared to EPR and GEP models. Therefore, it can be concluded that these AI 
models, considering land use effects and nitrate pollutant concentrations, provides a cost-effective relationship.

Baghapour et al.30 utilized an ANN model to enhance the DRASTIC method in an unrestricted aquifer in the 
Shiraz Plain. The outcomes indicated that the ANN was more influential in improving the DRASTIC framework 
when compared to the CD and NV indices. This is deduced through three plausible ways: (1) ANN, as a black-
box framework, is capable of more persuasive explaining the non-linear behavior of aquifers, which are complex 
systems. (2) Unlike NV and CD methods, the supervised learning approach adopted by ANN has modified 
vulnerability, making it more suitable for training. (3) The ANN model optimizes the model’s fitness using the 
LM optimization methodology in order to obtain a persuasive DRASTIC framework. The ANN model showed 
R of 0.890, which compared to the models used in the present study, exhibited a slightly lower correlation 
coefficient.

Barzegar et al.31 employed four separate machine learning models (ELM, MARS, SVR, and M5 Tree) for 
mapping the risk of groundwater pollution in the Marand Plain, northwest Iran. The SVR model (R = 0.8673) 
demonstrated the best performance, followed by ELM (R = 0.8556), M5 Tree (R = 0.8452), and MARS 
(R = 0.8045). Both ELM and SVR models exhibited the highest R values; thus, they outperformed MARS and 
M5 Tree models in assessing groundwater pollution risk. However, according to the present study, all GEP 
(R = 0.992), EPR (R = 0.999), MARS (R = 0.996), and M5MT (R = 0.9956) models showed better performance 
compared to the separate machine learning models (ELM, MARS, SVR, and M5 Tree). Additionally, the ELM 
model, due to its black-box nature, posed challenges in interpreting DRASTIC data compared to the simpler 
models MARS and M5MT. The SVR model, using the Gaussian expression as the kernel function, exhibited 
higher complexity than the models used in this study.

Since the constrained target-oriented genetic algorithm plays an effective role in determining the structural 
form of GEP (R = 0.992) and EPR (R = 0.999) models, it leads to the creation of complex equations (Eq.  9) 
and the sixth model in Table 7. However, the performance level of these models is higher compared to the 
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study conducted by Bordbar et al.32, who used the Grey Wolf Optimizer (GWO) algorithm to determine the 
weights of the GALDIT method in the coastal aquifer of the Gorgan River in northern Iran (R = 0.64). It is worth 
mentioning that they considered TDS pollution in their study.

Bordbar et al.42, in another study, employed frequency ratio (FR) methods and a genetic algorithm to enhance 
the rate and weight of the GALDIT model in the coastal aquifer of the Gorgan River. The correlation (R) between 
the combined models GALDIT-FR and GALDIT-GA was obtained as 0.69 and 0.61, respectively. However, 
this correlation increased to 0.76 after combining the adjusted rates using the statistical FR method and the 
optimized weights of the genetic algorithm. In any case, the correlation established between the GALDIT model 
and the combined models is lower than the GEP (R = 0.992), EPR (R = 0.999), MARS (R = 0.996), and M5MT 
(R = 0.995) models. Barzegar et al.71 used two resampling methods [e.g., Bootstrap Aggregating (BA) and Disjoint 
Aggregating (DA)] in order to improve performance of ML models (i.e., XGBoost [R = 0.613], Light Gradient 
Boosting Machine [LGBM], AdaBoost, Categorical Boosting [CatBoost], and RF) for prediction of the GALDIT 
groundwater vulnerability in the Shabestar Plain aquifer, Iran. From their study, although ML models used were 
fast-to-learn with lower number of setting parameters, the efficacy of the all coupled ML models was not efficient 
in the evaluation of groundwater vulnerability (BA-XGBoost [R = 0.6598], BA-LGBM [0.525], BA-AdaBoost 
[R = 0.591], BA-RF [R = 0.591], BA-CatBoost [R = 0.584], DA-XGBoost [R = 0.562], DA-LGBM [0.571], DA-
AdaBoost [R = 0.587], DA-RF [R = 0.616], DA-CatBoost [R = 0.571]) than those yielded in the present study. 
Furthermore, Norouzi et al.44 utilized the Random Forest (RF) method to optimize the DRASTIC framework 
in the unconfined aquifer of the Miyandouab Plain, northwest Iran. The raster layer data of 7 parameters and 
the output of the DRASTIC model were used as input and the target variable for the RF model, respectively. 
According to the ROC-AUC performance criterion, the RF method has a high AUC (AUC = 0.977), and the 
weight of the DRASTIC model has been optimized with greater reliability. In the present study, the GEP model 
(AUC = 0.9450) performed first, followed by the MARS and M5MT (AUC = 0.9438), and finally, the EPR model 
(AUC = 0.9437), all demonstrating excellent performance compared to the BDF-RF method with less reliable 
optimization.

Elzain et al.45 used successfully RFR (R = 0.96 and AUC = 0.97) so as to ascertain the most precise performance 
during the assessment of adjusted vulnerability index (AVI) related to DRACTIC index, LU parameter, and 
nitrate values for Miryang City (located South Korea) when compared with SVR (R = 0.866 and AUC = 0.89) 
and RBNN (R = 0.781 and AUC = 0.76). From their study, the performance of RFR model was the best accurate 
as well as the results given by this research: EPR (R = 0.9999 and AUC = 0.9437), M5MT (R = 0.9956 and 
AUC = 0.9438), GEP (R = 0.9920 and AUC = 0.9450), and MARS (R = 0.9966 and AUC = 0.9438). However, the 
general structure of RFR with 100 trees and SVM with four polynomial kernel functions are more complex than 
M5MT and MARS developed by two rules and 18 BFs, respectively.

Later, Elzain et al.49 concluded that the performance of combination of KNN, BA, and ERT models in order to 
evaluate DRASTIC index by considering Nitrate pollution and LU parameters, demonstrated the most accurate 
predictions (R = 0.974) as well as the present investigation. In this regards, ERT model developed by Elzain et 
al.’s49 research, has potential disadvantages of pollution vulnerability predictions when compared to M5MT and 
MARS given by the present investigation: (i) Interpretability: Extra Trees (ERT) tend to be less interpretable 
compared to M5MT and MARS models. The randomness in feature selection and splitting decisions may make 
it harder to understand the specific relationships between features and the target variable. (ii) Overfitting: while 
ERT are designed to be more robust to overfitting than conventional RFs, they can still be prone to overfitting, 
especially when dealing with noisy datasets or datasets with a small number of samples. (iii) Less control over 
splitting: the randomness in feature selection and threshold determination in ERT model means less control over 
how splits are made. In some cases, this lack of control may result in suboptimal splits, particularly when dealing 
with certain types of pollution data patterns. Recent investigations, carried out by Karimzadeh-Motlagh et al.48, 
concluded that RF (AUC = 0.987) had the best performance in the approximation of DRASTIC index than GLM 
(AUC = 0.788) and SVM (0.78) for Najafabad Plain, Iran. Additionally, RF model was classified DRASTIC index 
as well as AI models in the present investigation (e.g., AUC = 0.9450, 0.9438, and 0.9437 for GEP, MARS, and 
EPR, respectively).

According to the above-mentioned comparisons, the advantages of MT, EPR, MARS, and GEP in assessing the 
DRASTIC index for groundwater quality can be particularly pronounced when compared to boosting learning 
models such as AdaBoost, XGBoost, LightGBM, and CatBoost. One key advantage of the aforementioned 
models lies in their structural complexity. Model Trees, for instance, combine the interpretability of decision 
trees with regression capabilities, allowing for a clear visualization of how input variables influence the output. 
This is crucial when assessing factors (ecological and geochemical factors) that affect groundwater vulnerability, 
as stakeholders can easily comprehend the relationships and impacts of various parameters like land use and 
nitrate concentrations. Similarly, MARS employs piecewise linear splines, which allow for flexibility in modeling 
non-linear relationships while maintaining interpretability. This stands in contrast to boosting models, which 
often function as black boxes, making it challenging to discern how specific features contribute to predictions. 
EPR offers a unique approach by evolving polynomial expressions that can capture complex relationships among 
variables while still being interpretable. This is especially beneficial for groundwater studies where multiple 
interacting factors must be considered. GEP also presents a clear advantage through its genetic programming 
framework, allowing the discovery of mathematical models that succinctly represent relationships in the data, 
facilitating easier understanding and communication of results. When it comes to handling uncertainty in 
parameter settings, MT, EPR, MARS, and GEP provide greater robustness and flexibility. The present AI models 
are generally less sensitive to hyperparameter tuning compared to boosting algorithms, which often require 
meticulous adjustment to achieve optimal performance. For example, boosting models can be quite susceptible 
to overfitting if parameters like learning rate and tree depth are not carefully calibrated. In contrast, the other 
models tend to perform well across a wider range of parameter settings, reducing the burden on researchers to 
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fine-tune models extensively. Furthermore, the simplicity in the application of these models allows researchers 
and practitioners to focus more on understanding the implications of their findings rather than getting lost in 
complex tuning processes. This is particularly advantageous in the context of groundwater management, where 
clear communication of results to non-expert stakeholders is crucial for effective decision-making. Additionally, 
the ability of these models to incorporate domain knowledge into their structures enhances their applicability in 
environmental studies. For instance, the polynomial expressions generated by EPR can directly reflect scientific 
understanding of hydrological processes, while MARS can effectively model interactions between multiple 
environmental factors. This incorporation of expert knowledge helps in developing models that are not only 
accurate but also relevant to real-world scenarios. In summary, the structural advantages and robustness of MT, 
EPR, MAR S, and GEP models present compelling benefits over boosting learning models. Their interpretability, 
flexibility in handling uncertainties, and ability to incorporate domain knowledge make them particularly 
suitable for assessing the DRASTIC index in groundwater quality studies. This ultimately leads to more reliable 
and understandable assessments, facilitating better groundwater management practices.

Conclusion
This research aimed to investigate susceptibility state of groundwater resources by the DRASTIC framework. 
Subsequently, two indices, CD and NVI, based on the same DRASTIC model, were employed to evaluate 
vulnerability. Due to uncertainties in hydrogeological parameters and complexities of the groundwater system, 
AI methods such as GEP, EPR, MARS, and MTM5 were applied for the susceptibility evaluation. In this way, 
the ranges of DRASTIC index values were classified into three categories: no vulnerability (35.7%), very low 
vulnerability (60.2%), and low vulnerability (4.1%). The CD index indicated that the lowest classification 
of vulnerability was associated with very low vulnerability (17.4%), while the highest was related to low 
vulnerability (82.6%). In contrast to the other two indices, the NVI index showed that 75.52% of the study 
area falls into the category of very low vulnerability, and 24.48% falls into the category of low vulnerability. 
All soft computing methods used in both the testing and training phases have high correlation coefficients. 
However, the EPR model ranked first, followed by the MARS, MTM5, and GEP models. The order of these AI 
models in terms of precision levels and expected error is consistent. According to the ROC-AUC method, all 
models demonstrated excellent performance. The EPR model has a higher level of complexity when compared 
to other AI models, so the MARS model can be a suitable alternative. Vulnerability classification through the 
MARS model reveals that approximately 73.06% of the studied plain is in the very low vulnerability zone, while 
26.94% is in the low vulnerability zone, covering an area of about 1478.3 square kilometers and 545.1 square 
kilometers, respectively, in the Kerman–Baghin aquifer. Furthermore, the outcomes of the present investigation 
were absolutely comparable with those reported in reliable literature. This means that the AI models used in this 
study had superiority in the prediction of DRASTIC index, influenced by nitrate pollution and land use factors, 
over similar investigations.

The practical implications for groundwater management using the DRASTIC index for agricultural purposes 
are significant and multifaceted. First, by identifying areas of varying vulnerability to contamination, farmers 
and agricultural planners can implement targeted practices to protect groundwater quality. For instance, regions 
classified with high vulnerability can benefit from best management practices (BMPs) that minimize the use of 
fertilizers and pesticides, thus reducing nitrate leaching into groundwater. Additionally, the DRASTIC index 
provides a framework for assessing the potential impacts of different land use practices on groundwater quality. 
Agricultural managers can use this information to make informed decisions about crop selection, irrigation 
methods, and land management strategies that align with the vulnerability classifications. For example, crops 
that require less water or are less nutrient-intensive could be favored in more vulnerable areas to mitigate 
contamination risks. The research also emphasizes the need for regular monitoring and assessment of groundwater 
quality in agricultural regions. Implementing a monitoring program that tracks changes in the DRASTIC index 
over time can help identify emerging risks and facilitate timely interventions. This ongoing assessment can guide 
adaptive management strategies that respond to changing environmental conditions and agricultural practices. 
Moreover, collaboration with local communities and stakeholders is crucial. Educating farmers about the 
implications of groundwater vulnerability and encouraging sustainable practices can foster a collective effort to 
protect these vital resources. Initiatives that promote community engagement in groundwater management can 
enhance compliance with protective measures and contribute to better overall water quality. Finally, the findings 
can support policy development aimed at regulating agricultural practices in sensitive areas. Policymakers can 
use the DRASTIC index to prioritize regions for conservation efforts, funding, and technical assistance, ensuring 
that resources are allocated efficiently to safeguard groundwater quality. In summary, leveraging the DRASTIC 
index for agricultural purposes can lead to improved groundwater management through targeted practices, 
informed decision-making, regular monitoring, community engagement, and effective policy development, 
ultimately promoting sustainable agricultural practices and protecting vital water resources.

The research on groundwater resource susceptibility using the DRASTIC framework reveals several current 
challenges that warrant attention. One significant challenge is the inherent uncertainty in hydrogeological 
parameters, which complicates the accurate assessment of groundwater vulnerability. These uncertainties 
arise from variations in data quality, availability, and the complexity of the groundwater systems themselves. 
Additionally, the interaction of multiple environmental factors, such as land use changes and climate impacts, 
adds another layer of complexity, making it difficult to develop universally applicable models. Another challenge 
is the interpretability of AI models. While the EPR model demonstrated high predictive accuracy, its complexity 
can make it difficult for stakeholders and policymakers to understand the underlying relationships between 
input parameters and the DRASTIC index. This lack of clarity can hinder effective decision-making and limit 
the practical application of the results in groundwater management.
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In light of these challenges, several future recommendations can enhance the robustness of groundwater 
vulnerability assessments. Firstly, there is a need for the integration of diverse data sources, including remote 
sensing and advanced geospatial analytics, to provide a more comprehensive understanding of hydrogeological 
conditions. This integration could improve the accuracy and reliability of the models used in vulnerability 
assessments. Furthermore, future research should focus on refining AI models to balance complexity and 
interpretability. Exploring ensemble approaches that combine the strengths of various models may yield more 
robust predictions while maintaining clarity in the results. Conducting longitudinal studies to monitor changes 
in groundwater quality over time will also provide valuable insights into how dynamic environmental factors 
influence vulnerability. Strengthening community engagement and raising public awareness about groundwater 
conservation is crucial for effective resource management. Educating local stakeholders about the implications 
of land use and pollution on groundwater quality can foster greater involvement in protection efforts. Lastly, 
addressing the challenges of data availability and quality remains vital. Ensuring access to reliable hydrogeological 
data will enhance the accuracy of assessments and facilitate ongoing research in the field. By focusing on these 
future directions and overcoming current challenges, the research can contribute significantly to the sustainable 
management of groundwater resources.

Data availability
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