Table 10 Comparison of accuracy for different machine learning methods across the 16 cases.

From: Evaluation of liquefaction potential in central Taiwan using random forest method

Case

1

2

3

4

5

6

7

8

Accuracy (%)

DNN

96.85

96.67

95.19

96.30

90.37

95.00

93.15

93.70

RF

98.89

98.34

97.60

98.71

96.67

98.52

96.86

97.63

SVM

95.74

95.74

92.59

96.11

90.37

95.74

90.37

95.19

LSTM

99.07

98.52

98.52

73.52

92.96

97.41

95.74

70.89

Case

9

10

11

12

13

14

15

16

Accuracy (%)

DNN

90.19

94.44

93.89

89.63

94.63

89.81

94.07

89.63

RF

95.75

98.34

96.67

95.19

97.60

95.75

96.67

95.19

SVM

82.96

95.19

92.59

87.04

90.37

88.15

95.00

90.37

LSTM

90.37

97.41

72.56

90.19

91.30

73.52

70.89

89.63