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The quantification of centipede populations is one of the key measures in achieving intelligent 
management of edible centipedes and promoting the upgrade of the rural centipede industry chain. 
However, current centipede counting techniques still face several challenges, including low detection 
accuracy, large model size, and difficulty in deployment on mobile devices. These challenges have 
limited existing network models to the experimental stage, preventing their practical application. To 
tackle the identified challenges, this study introduces a lightweight centipede detection model (FCM-
YOLO), which enhances detection performance while ensuring fast processing and broad applicability. 
Based on the YOLOv5s framework, this model incorporates the C3FS module, resulting in fewer 
parameters and increased detection speed. Additionally, it integrates an attention module (CBAM) 
to suppress irrelevant information and improve target focus, thus enhancing detection accuracy. 
Furthermore, to enhance the precision of bounding box positioning, this study proposes a new loss 
function, CMPDIOU, for bounding box loss. Experimental results show that FCM-YOLO, while reducing 
parameter size, achieves an improved detection accuracy of 97.4% (2.7% higher than YOLOv5s) and 
reduces floating-point operations (FLOPs) to 11.5G (4.3G lower than YOLOv5s). In summary, this 
paper provides novel insights into the detection and enumeration of centipedes, contributing to the 
advancement of intelligent agricultural practices.
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Centipedes, as a type of edible insect, are extensively used in the manufacture of traditional Chinese medicinal 
materials and as components in food products, particularly in the herbal medicine market of southern China, 
where their demand is significant. According to statistics, in 2021 alone, China’s trade volume of centipedes 
reached approximately 304.49 tons, and this figure increased to 312.78 tons in 20221. Furthermore, due to the 
scarcity of centipedes as a resource, limited production scale, and low technical complexity, coupled with the 
scarcity of breeding stock, their market price remains high, indicating a promising future for the centipede 
breeding industry. However, with the continuous growth in centipede production, the demand for accurate 
centipede counting is also on the rise. Presently, centipede counting primarily relies on manual labor, which is 
not only time-consuming and inefficient but also results in the inefficient use of human resources. The repetitive 
and mechanical nature of this task often leads to deviations in centipede counting, making it challenging to 
ensure accuracy. This poses a particular challenge for large-scale centipede farms, where manual counting 
further increases operational costs. Therefore, it is imperative to conduct comprehensive research on centipede 
detection and counting to enhance the efficiency and accuracy of these processes.

In recent years, object detection has gained popularity as a prominent field within computer vision and 
digital image processing2. It has found extensive applications in the agricultural sector. This approach, 
leveraging computer vision, has the potential to significantly reduce the demand for human resources, providing 
considerable practical benefits. As a result, object detection has emerged as a focal point in both theoretical and 
applied research, witnessing rapid advancements in its algorithms.

In the field of object detection, many researchers utilize traditional algorithms to detect and classify image 
data. The efficacy of these detection algorithms largely depends on the adequacy of the extracted and chosen 
features in representing the characteristics of the image, and the suitability of the selected classifier. However, these 
algorithms are often susceptible to external environmental factors. For instance, Rahim & Kamran3proposed an 
algorithm that extracts geometric properties, color, and texture features from segmented hawthorn using the Gray 
Level Co-occurrence Matrix (GLCM) and various color spaces. This approach generates effective feature vectors 
through the QDA feature reduction method and classifies them using machine learning algorithms, achieving 
a 98.16% detection accuracy for hawthorn. Similarly, Kaewchote et al4. employed image processing techniques 
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to identify shrimp targets, extracting local binary patterns and Red, Green, Blue (RGB) features of shrimp. They 
applied a random forest classifier for counting and identifying shrimp targets, achieving an accuracy of 98.50%. 
Nonetheless, these object detection algorithms have notable limitations, including high computational load, 
slow processing speed, numerous redundant windows, and a focus on single-context applications.

In contrast to conventional object detection techniques, a significant number of researchers are now pivoting 
towards the application of deep learning technologies for the purposes of object detection and recognition. This 
shift is attributed to the strong feature extraction and autonomous learning capabilities of deep learning, which 
have led to outstanding achievements in the field of object detection in complex natural environments5,6. Deep 
learning techniques are particularly well-suited for application in the complex agricultural settings.

In two-stage object detection algorithms, the detection process is divided into two phases7. Initially, region 
proposal boxes are generated, followed by classification and regression correction using a convolutional neural 
network, as shown in Fig. 1(a). Two-stage detection algorithms are advantageous for their low false positive rate 
and reduced rate of missed detections. For instance, Zu et al8. used Mask R-CNN to detect and segment ripe green 
tomatoes, achieving an F1 score of 92.0% with an Intersection Over Union (IOU) threshold of 0.5. Similarly, Li 
et al9. introduced an integrated U-Net segmentation model for green apples, effectively combining U-Net’s edge 
features with high-level features using the ASPP structure, significantly improving apple segmentation precision 
and the model’s generalization ability. However, the slow speed and high computational complexity of two-stage 
object detection algorithms limit their application in real-time detection scenarios.

Single-stage object detection algorithms are regression-based detection methods10 that do not require a 
region proposal stage and directly produce the object’s class probabilities and location coordinates. With just 
a single pass for detection, these algorithms can quickly provide the final detection results, as illustrated in 
Fig.  1(b). Prominent examples of such algorithms include Your Only Look Once(YOLO)11, The Single Shot 
Detector(SSD)12, and RetinaNet13. Due to their significantly faster detection speeds compared to traditional 
and two-stage object detection algorithms, single-stage object detection methods have become one of the most 
popular research directions in the field.

In recent years, the YOLO model has gained widespread attention due to its outstanding performance. While 
YOLO versions continue to evolve rapidly, current research primarily focuses on enhancing the performance of 
existing, reliable network models rather than developing novel ones. Wu et al14. employed an improved YOLOv3 
model for cluster optimization, achieving rapid and accurate identification of banana fruits under natural lighting 
conditions with a 93% accuracy rate, striking a fine balance between speed and precision. Li et al15. proposed a 
green pepper recognition model based on YOLOv4-tiny, which integrated coordinate attention and multi-scale 
prediction mechanisms, and introduced an adaptive pyramid method to improve the detection accuracy of 
occluded and small targets, achieving a recall rate of 93.85% and an accuracy rate of 96.91%. To accurately detect 
tea buds, Xu et al16. combined the rapid detection capabilities of YOLOv3 with the high-precision classification 
ability of DenseNet201, significantly improving the detection accuracy of lateral tea buds by 10.60%.

To date, the YOLO algorithm has delivered satisfactory detection performance. However, the original 
model’s large scale, numerous parameters, and high computational cost make its deployment on mobile devices 
expensive17. In response, researchers have shifted their focus towards developing lightweight models. Current 
efforts in model lightweighting primarily concentrate on reducing the number of model parameters, minimizing 
computational complexity, and shortening runtime. For instance, Xu et al18. proposed an apple leaf disease 
detection model based on ALAD-YOLO, which combines MobileNet-V3 basic blocks to compress the model 
size and utilizes group convolution in the Spatial Pyramid Pooling Cross-Stage Partial Convolution (SPPCSPC) 
module instead of ordinary convolution. This approach increased accuracy to 90.2% while reducing floating-
point operations (FLOPs) to 6.1G. Wang & He19introduced a channel-pruned YOLOv5s model for pre-thinned 
apple fruit detection, achieving accurate detection of apples in complex environments with 91.5% accuracy. Gui 
et al20. integrated the Ghost_conv module into the YOLOv5 model and added a Bottleneck Attention Module 
(BAM) to suppress irrelevant information, resulting in a 9.66% increase in average precision and a reduction of 
52.402 G in floating-point operations.

However, these lightweight neural network models were developed using datasets obtained from laboratories, 
characterized by simple data backgrounds, resulting in limited robustness of the models. They often show a 
marked decline in performance in complex background environments. To address this issue, we propose a rapid 

Fig. 1.  Comparison between Two-Stage and Single-Stage Object Detection Algorithms.
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and lightweight centipede detection algorithm, FCM-YOLO, based on an improved YOLOv5s. This algorithm 
marks the first application of a lightweight single-object detection algorithm in the field of centipede detection 
and counting, addressing the high costs of manual counting, the inefficiency of traditional algorithms, and the 
challenges of model deployment in current centipede counting practices. FCM-YOLO represents a lightweight 
network model that strikes a balance between detection precision and processing speed. It is more easily 
deployable on mobile devices without considering computational resources. The main contributions of this 
paper are as follows:

(1) To address the issue of large parameter and computational volume in existing models, which hinders ease 
of deployment, this study introduces a lightweight module, the C3FS module. This module not only diminishes 
the floating-point operations and parameter count of the model but also enhances the capability to extract 
features of occluded targets, significantly improving the model’s recognition speed.

(2) To additionally improve the model’s precision in recognition, this research proposes a novel loss function 
algorithm, CMPDIOU loss function, to supplant the existing CIOU loss function algorithm in the model. This 
change aims to achieve higher accuracy in evaluating the performance of centipede number detection.

(3) A CBAM attention module is integrated into the model. The CBAM attention module can more effectively 
capture target spatial and channel information without impacting the model’s lightweight nature. It suppresses 
irrelevant information and extracts valuable information, thus enhancing the accuracy of the model’s detection 
capabilities.

(4) To ensure optimal performance in centipede recognition, this study constructed a centipede target 
detection dataset in the laboratory and conducted multiple photography sessions according to real-world 
application scenarios to ensure the broad applicability of the data.

Materials and methods
yolov5 model
In the field of object detection, the YOLO algorithm has emerged as one of the most popular deep learning 
models to date. Despite the algorithm evolving to its YOLOv8 version21, YOLOv5 continues to be widely applied 
due to its superior performance. YOLOv5 is an open-source project developed by Ultralytics22. In contrast to 
previous object detection methods, YOLOv5 employs a novel detection strategy that divides images into smaller 
sections for prediction, significantly enhancing efficiency. The YOLOv5 model is comprised of three principal 
elements: the backbone, neck, and head.

The backbone component of the model utilizes Conv, C3, and SPPF structures for feature extraction from 
the input images. The Conv module, a fundamental convolution unit, operates throughout the architecture, 
sequentially performing 2D convolution, 2D normalization, and SiLU activation on the input. The C3 module, 
serving as the primary structure for feature extraction, is responsible for extracting and merging features, thereby 
enriching their semantic information. The SPPF module enriches the semantic information of features through 
pooling and feature fusion, endowing the deepest feature maps with rich semantic details.

The neck component focuses on merging three different scales of feature maps used for object detection 
with shallow features. This is achieved by incorporating a feature pyramid network with a bottom-up path 
enhancement characteristic, which merges the extracted feature maps with shallow features, ensuring that the 
feature maps possess both rich semantic information and accurate positional details of objects.

The head component convolves the three differently scaled feature maps, producing feature maps of 
dimensions 80 × 80 × 255, 40 × 40 × 255, and 20 × 20 × 255, respectively. Different feature maps are utilized for 
detecting various target sizes; larger feature maps are used for detecting smaller objects, and smaller feature 
maps for larger objects. This approach effectively enables multi-scale object detection, enhancing the precision 
of the YOLO algorithm.

YOLOv5, based on network depth and feature layer width, is categorized into five distinct types: n, s, m, 
l, and x23. With the increase in network depth and feature layer width, the model’s performance improves. 
However, correspondingly, there is an increase in the number of parameters and computational requirements. 
This escalation also leads to higher demands on the hardware and longer detection times. Therefore, selecting 
an appropriate version of YOLOv5 is crucial. In this study, considering the trade-offs between the model’s 
parameter count, floating-point operations, and mean accuracy, the YOLOv5s version was chosen as the base 
model for experimentation.

Design of FCM-YOLO
This section will detail the improvement strategies employed in our model. Our objective is to develop a simple 
and efficient network model for the detection and counting of centipede images. To achieve this, we introduce an 
innovative detection architecture that, while inheriting the base model, incorporates the C3FS module to reduce 
redundant computations significantly, thus lowering the model’s computational requirements. Additionally, we 
have integrated the CBAM attention module, which effectively filters key information and suppresses irrelevant 
data. This approach not only further diminishes the parameter count but also augments the accuracy of the 
model’s detection capabilities. Furthermore, we introduce a new loss function, the CMPDIOU loss function, 
which, as demonstrated by our experimental results, exhibits superior performance compared to other loss 
functions. The improved model’s structural diagram is shown in Fig. 2.

CMPDIOU
The loss function is a crucial component of neural networks, primarily serving to measure the deviation between 
the network’s predicted output and the desired output. A smaller deviation implies a lower value of the loss 
function24. In the YOLO series, the loss function is divided into three parts. The first part is the class loss, used to 
predict the category of objects within the bounding boxes. The second part is the bounding box loss, responsible 
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for calculating the error between the model’s predicted bounding boxes and the actual bounding boxes. The 
third component is the confidence loss, assessing the precision of the model’s certainty in its forecasts. In the 
YOLOv5 model, the confidence loss and class loss are computed utilizing the Binary Cross-Entropy (BCE) loss 
function. The bounding box loss is calculated using the CIoU loss function25, the formula for which is as follows:

	
CIOU_Loss = 1− IOU +

ρ 2(B,Bgt)

c2
+ α ν � (1)

 

	
α =

ν
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Fig. 2.  Structural Model of the FCM-YOLO Network.
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In this context, B and Bgt represent the center points of the predicted and actual bounding boxes, respectively. 
ρ  denotes the straight-line distance between these two center points. c is the length of the diagonal of the 
smallest enclosing area between the predicted and actual bounding boxes. α  is the weight factor of this function. 
ν  measures the consistency of the aspect ratios between the two bounding boxes. hprd and wprd are the height 
and width of the predicted bounding box, while hgt and wgt correspond to the height and width of the actual 
bounding box.

In YOLOv5, the CIoU Loss considers three essential geometric aspects: the area of intersection, the distance 
between center points, and the proportion of dimensions. This function addresses the inclusion issue between 
the predicted and actual bounding boxes by directly regressing the distance between the centers of the two 
bounding boxes. The regression process also considers the aspect ratio of the bounding boxes. This approach 
not only enhances the accuracy of the bounding boxes but also improves the model’s robustness in dealing with 
objects of varying sizes and shapes, as illustrated in Fig. 3.

Although CIoU Loss demonstrates remarkable efficacy in various aspects, it encounters two major challenges. 
Firstly, if the center points of the actual and predicted bounding boxes align precisely, but their widths and heights 
differ, CIoU Loss reverts to the conventional IOU loss function. Secondly, when the aspect ratios of the actual 
and predicted bounding boxes match, but their width and height values vary significantly, current bounding 
box regression loss functions struggle to optimize them efficiently. To overcome these limitations, the CIoU loss 
function has been substituted with the MPDIOU algorithm. MPDIOU is a boundary box similarity comparison 
metric based on the minimum point distance26, encompassing all relevant factors considered in existing loss 
functions, as shown in Fig. 3. The MPDIOU loss function streamlines the assessment of resemblance between 
two bounding boxes, suitable for both overlapping and non-overlapping bounding box regression scenarios. 
This function eases the computation process by focusing on minimizing the direct point distances between the 
top-left and bottom-right corners of the predicted and the actual labeled boxes. The calculation method is as 
follows:

	
d21 =

(
xprd1 − xgt1

)2

+
(
yprd1 − ygt1

)2
� (4)

 

	
d22 =

(
xprd2 − xgt2

)2

+
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yprd2 − ygt2

)2
� (5)

 

	
MPDIOU =

A ∩ B

A ∪ B
− d21

w2 + h2
− d22

w2 + h2
� (6)

 

In this context, w and h represent the width and height of the input image, respectively. The coordinates ( xprd1
, yprd1 ) and ( xprd2 , yprd2 ) denote the top-left and bottom-right points of the predicted box, respectively. Similarly, 
( xgt1 , ygt1 ) and ( xgt2 , ygt2 ) represent the top-left and bottom-right points of the target box, respectively. 

During practical application, this study observed that the loss function did not fully achieve the anticipated 
results. Upon deeper investigation, it was found that although the loss function accounted for the aspect ratio of 
the real and predicted bounding boxes, the algorithm primarily focused on distance loss rather than shape loss. 
This bias resulted in a slower convergence rate for the model compared to using the CIoU loss function. In light 
of this, we propose a new loss function algorithm, which we have named the CMPDIOU loss function algorithm. 
as shown in Fig. 4. Tests have shown that this algorithm has a faster convergence rate and demonstrates superior 
applicability in tasks involving the detection and counting of centipede numbers.

Fig. 3.   Schematic Diagram of the Loss Function: (a) Schematic Diagram of the CIOU Loss Function; (b) 
Schematic Diagram of the MPDIOU Loss Function.
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CMPDIOU is a novel loss function algorithm proposed based on MPDIOU. This loss function adds a penalty 
factor for the length and width of the bounding box on top of what MPDIOU offers. This addresses the issue 
of slower convergence in terms of length and width observed in MPDIOU. In comparison to the CIoU loss 
function, CMPDIOU yields more accurate regression results. Since this loss function encompasses all relevant 
factors considered in existing loss functions, CMPDIOU can be considered an effective bounding box loss 
function algorithm for computer vision tasks. The calculation method is as follows:
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In this context, w and h denote the width and height of the input image, respectively. Cw and Ch represent 
the width and height of the smallest external rectangle encompassing both the predicted box and the target box. 
The coordinates ( xprd1 , yprd1 ) and ( xprd2 , yprd2 ) indicate the top-left and bottom-right points of the predicted box, 
respectively. Similarly, ( xgt1 , ygt1 ) and ( xgt2 , ygt2 ) represent the top-left and bottom-right points of the target box, 
respectively. rho_w and rho_h represent the difference in width and height between the predicted box and 
the target box, respectively.

Fig. 4.  Schematic Diagram of the CMPDIOU Loss Function.
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CBAM
The Convolutional Block Attention Module (CBAM)27, presented at ECCV 2018, stands as a notable work in 
the field of attention mechanisms. This method models feature maps on both spatial and channel dimensions, 
effectively learning the specific contributions of each position and channel of the feature maps towards accurately 
predicting target categories during the training process. Based on the magnitude of these contributions, the 
mechanism allocates different weights, thereby enhancing the representation capability of key features while 
suppressing less significant ones, ultimately improving the model’s overall predictive performance28. The 
structure of CBAM primarily consists of two core components: the Channel Attention Module and the Spatial 
Attention Module. The specific working mechanism is illustrated in Fig. 5.

In this study, we have innovatively incorporated the CBAM attention mechanism into the existing model. 
This integration aims to reweight the feature maps within the model, allowing it to focus more on important 
features during the feature extraction phase.

During the operation of the Channel Attention Module, the input feature map F (HWC) is first introduced 
into the channel attention process. Here, the channel attention module employs global average pooling and 
global maximum pooling to spatially compress the feature map, resulting in 11c feature maps, where c represents 
the number of channels in the feature map. Subsequently, the two pooled features are fed into a shared Multilayer 
Perceptron (MLP) to extract deeper feature information. Following this, the feature maps processed by the MLP 
are summed and passed through a sigmoid activation function to obtain the final channel attention weights. The 
corresponding formula is as follows:

	 Mc (F ) = σ (MLP (AvgPool (F )) +MLP (MaxPool (F ))) = σ
(
W1

(
W0

(
Fc
avg

))
+W1 (W0 (F

c
max))

)
� (12)

In this context, c represents the channel attention module, and σ  denotes the sigmoid function. AvgPool and 
MaxPool refer to average pooling and maximum pooling, respectively. Fc

avgand Fc
max represent the features 

obtained from average pooling and maximum pooling. W0 and W1 are the weights of the Multilayer Perceptron 
(MLP).

To obtain attention features in the spatial dimension, the feature map output from the channel attention 
is also subjected to average pooling and maximum pooling based on the width and height of the feature map. 
This process yields two wh1 feature maps. These pooled features are then concatenated and passed through a 
convolutional (Conv) layer for feature extraction. After sigmoid activation, the final spatial attention weights are 
obtained. The calculation process is as follows:

	 Ms (F ) = σ
(
f7× 7 ([AvgPool (F ) ;MaxPool (F )])

)
= σ

(
f7× 7

([
Fs
avg;F

s
max

]))
� (13)

In this context, s represents the spatial attention module. AvgPool and MaxPool correspond to average 
pooling and maximum pooling, respectively. f7× 7​ denotes a convolution operation with a filter size of 7× 7.

Fig. 5.  Schematic Diagram of the CBAM Attention Mechanism.
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C3FS module
The total number of model parameters directly impacts the computational resources required during the 
inference process. In practical application scenarios, selecting a model necessitates not only considering its 
excellence in accuracy but also its dependency on computational resources. Due to the limited storage space 
and computational capabilities of mobile terminals, it is essential to further reduce the computational demands 
and size of the model to facilitate future deployments on mobile devices. Within the context of the YOLOv5 
framework, numerous developers have explored integrating streamlined backbone networks like MobileNet 
and GhostNet29,30. Nevertheless, our evaluations indicated that while these adaptations markedly decreased 
the number of parameters, they concurrently led to a diminution in detection efficacy, rendering them less 
effective for mobile usage. To surmount these challenges, this study takes cues from the minimalist design 
ethos of FasterNet31 and introduces an innovative methodology. We have developed a C3FS module, aiming to 
significantly reduce the model’s parameter load and computational intensity while preserving or enhancing its 
overall operational effectiveness.

In the YOLOv5 architecture, the C3 module, by incorporating multiple convolutional layers (Conv layers), 
effectively increases the depth of the network and the receptive field. This design significantly enhances the 
network’s ability to extract complex features. However, the high number of parameters introduced by the Conv 
layers leads to redundant computations during inference, ultimately resulting in an increase in FLOPs, which to 
some extent hinders the model from achieving its goal of fast and lightweight detection. It is noteworthy that we 
observed that a reduction in FLOPs does not necessarily lead to a similar reduction in latency. This is mainly due 
to inefficiencies caused by low failure rates per second32.

To address this issue, we introduce a novel convolutional structure (PConv) and apply it to our model. The 
core idea of PConv is to apply traditional convolution to only a portion of the input feature map for spatial feature 
extraction while keeping the rest unchanged. During implementation, we prioritize continuous or distributed 
memory access patterns by selecting the first or last continuous channels of the feature map for computation 
to represent the entire feature map. This strategy, without compromising generality, ensures that the input and 
output feature maps maintain the same number of channels. Thus, PConv, by reducing redundant computations 
and memory access, can extract spatial features more efficiently. The specific structure is shown in the Partial 
Convolution (PConv) section in Fig. 6.

	 FLOPsConv = w × h× Kw × Kh × Cin × Cout� (14) 

	
Cp =

1

4
Cin =

1

4
Cout� (15)

 

	
FLOPsPConv = w × h× Kw × Kh × C2

p =
1

16
FLOPsConv� (16)

 

Among them, FLOPsConv represents the FLOPs value of the traditional convolution operation, and 
FLOPsPConv represents the FLOPs value of PConv. w and h are the width and height of the feature map, Kw​ 
and Kh​ denote the width and height of the convolution kernel, Cin​ and Cout​ represent the number of input and 
output channels, respectively. Cp​ denotes the number of input and output channels for PConv.

In PConv, since only 1/4 of the channels are involved in the computation, the FLOPs of PConv are only 1/16 
of those in the conventional Conv, as shown in Eqs. (15) and (16).

Fig. 6.  Schematic Diagram of C3FS.
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To strike a balance between detection accuracy and computational efficiency, we combined the PConv 
structure with the original C3 module, innovatively designing the C3FS module. As shown in Fig.  6, we 
reconstructed the Bottleneck module on the original foundation, naming it the Bottleneck_FS module. In the 
Bottleneck_FS module, we replaced part of the traditional convolution operations with PConv. This modification 
reduces the model parameters without affecting detection performance. The final results demonstrate that this 
improvement significantly reduces the computational cost during training without compromising final accuracy.

Experimental environment parameters and training parameters
Experimental Environment: All experiments in this study were conducted using the Pytorch deep learning 
framework and programmed in Python. The main specifications of the engineering machine used in this 
experiment are presented in Table 1.

Training Parameter Settings: Before training the model, hyperparameters were preset, as appropriate 
hyperparameters can enhance the model’s performance. The YOLOv5 algorithm includes 28 hyperparameters, 
encompassing the learning rate, weights of different loss functions, weight decay coefficients, and various 
data augmentation parameters. The specific hyperparameters are detailed in Table 2. In this experiment, the 
improved FCM-YOLO was used as the training model for the centipede dataset. In consideration of deploying 
the final trained model in practical applications, we have set the parameters for the number of epochs, image 
size, and mosaic data augmentation to 300, 640 × 640, and 1, respectively. This setup aims to maximize the 
model’s generalization capability without compromising image quality. Considering the performance of the 
experimental equipment, we set the batch size to 16. AP0.5 refers to the mean accuracy of all categories when 
the IOU threshold for accuracy evaluation is set to 0.5, while AP0.5-0.95 refers to the mean and weighted average 
accuracy when the IOU threshold for accuracy evaluation is increased from 0.5 to 0.95 in steps of 0.05.

Results
Model evaluation metrics
In order to evaluate the centipede detection model, this paper employs Precision, Recall, and Average Precision 
(AP) to assess the model’s detection performance on the centipede dataset. AP is a crucial metric in object 
detection algorithms. It represents the mean precision at different Recall rates and can also be viewed as the 

Hyperparameters Value

lr0 (initial learning rate) 0.01

lrf (final OneCycleLR learning rate) 0.01

momentum (SGD momentum/Adam beta1) 0.937

box (box loss gain) 005

cls (cls loss gain) 0.5

cls_pw (cls BCELoss) 1.0

obj (obj loss gain) 1.0

obj_pw (obj BCELoss) 1.0

iou_t (IoU training threshold) 0.20

anchor_t (anchor-multiple threshold) 3

hsv_h (image HSV-Hue augmentation) 0.015

hsv_s (image HSV-Saturation augmentation) 0.7

hsv_v (image HSV-Value augmentation) 0.4

translate (image translation) 0.1

scale (image scale) 0.5

fliplr (image flip left-right) 0.5

mosaic (image mixup) 1.0

Table 2.  Values of various parameters in YOLOv5s.

 

Items values

Operating system Window 11

CPU I7-13650HX

GPU RTX4060

Memory 8GB

Deep learning framework Pytorch 1.11

Cuda version 11.7

Table 1.  Main configuration of experimental equipment.
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area under the precision-Recall curve. A higher AP value indicates better detection performance of the object 
detection model on the current dataset.

	
P =

TP

FP + TP
� (17)

 

	
R =

TP

FN + TP
� (18)

 

	
AP =

∑ ∫ 1

0

P (R) dR� (19)
 

	 FLOPsConv = w × h× Kw × Kh × Cin × Cout� (20) 

Herein, P and R respectively represent Precision and Recall. TP (True Positive) refers to the number of correctly 
identified centipedes detected by the network model. FP (False Positive) denotes the count of incorrectly 
identified centipedes detected by the network model. FN (False Negative) indicates the actual number of 
centipedes that the network model failed to detect. w and h represent the width and height of the feature map, 
respectively. Kw​ and Kh​ denote the width and height of the convolution kernel, while Cin​ and Cout refer to the 
number of input channels and output channels, respectively.

Data collection and preprocessing
Data collection
Traditional centipede counting relies on laborious manual comparison, a method that is not only time-
consuming and labor-intensive but also prone to errors, potentially leading to losses for farmers or businesses. 
Deep learning, especially the rapidly advancing field of object detection algorithms, has been widely applied in 
multiple relevant domains. However, deep learning models largely depend on suitable and effective datasets33, 
and existing public datasets do not meet these requirements. To address this, our research team collected a 
large number of centipede images in the laboratory. The images were captured on September 24, 2023 (overcast 
conditions) and September 25, 2023 (sunny conditions). To ensure comprehensive data diversity and enhance 
the robustness and generalization capabilities of model training, we employed various shooting angles during 
image collection. To simulate real-world usage scenarios, we conducted the photography under both natural and 
artificial lighting conditions, ensuring the trained model’s effective application in actual scenarios. The image 
data is illustrated in Fig. 7. Moreover, we manually selected images with clear and complete targets to ensure data 
quality, ultimately obtaining a total of 224 images, containing 22,400 detection targets.

To enhance the efficiency and convenience of dataset annotation, we utilized the online annotation platform 
MAKE-SENSE for dataset labeling and processing. MAKE-SENSE is a free online tool designed for annotating 
photos, which can be operated directly on a web browser without the need for downloading or installation. It 
is highly suitable for computer vision deep learning projects and supports multiple formats, making the dataset 
preparation process more straightforward and swift. To ensure the accuracy of dataset annotations, our research 
team selected professional dataset annotators from the group and established strict annotation standards for the 
dataset, effectively reducing precision loss due to human error in the model. In this experiment, to ensure the 
uniform distribution of various types of data during training, we randomly shuffled the order of samples in the 
dataset. Subsequently, the dataset was divided into training, validation, and test sets in the proportions of 80%, 
10%, and 10%, respectively. The training set was used for model training, while the validation and test sets were 
utilized for evaluating the performance of the final model.

Data preprocessing
To enhance the generalization ability of the object detection model, enrich the image training set, effectively 
extract image features, and avoid overfitting, data augmentation was performed on the dataset before training 
in this experiment. Specifically, we employed the mosaic data augmentation technique34, which randomly 
selects four images and performs operations such as random cropping, scaling, and rotation on them, eventually 
composing a single image. This approach significantly enriches the diversity of the background in which the 
detection objects are situated. The probability of image scaling and flipping was set at 50%, while the probabilities 
for adjusting hue, saturation, and brightness in color variation were 1.5%, 70%, and 40%, respectively. The 
probability of flipping was 10%. These measures collectively aim to improve the model’s accuracy and robustness 
in processing diverse data.

Results and analysis
This paper utilizes a self-constructed dataset and conducts training for 300 epochs using an improved model. 
To prevent overfitting during the training process, this study plotted relevant curves during the training and 
validation phases. The specific results are illustrated in Fig. 8.

The two line charts in the first column display the trends of the bounding box loss function for the FCM-
YOLO model during training, covering both the training and validation sets. The x-axis indicates the training 
epochs, and the y-axis shows the corresponding loss values. These charts reveal a continuous decrease in loss 
as training progresses, with values stabilizing at a relatively low level. This decreasing trend underscores the 
effectiveness of the CMPDIOU algorithm implemented in this experiment. The line charts for Precision and 
Recall are positioned in the fourth and fifth spots of the first row. Both metrics initially increase rapidly before 
gradually stabilizing, which indicates good convergence of the model without overfitting issues. The fourth and 
fifth line charts in the second row showcase AP50 and AP50-95, respectively. These metrics illustrate that the 
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Fig. 8.  Performance Metrics of the FCM-YOLO Model.

 

Fig. 7.  Centipede Dataset. (a) Centipede image under sunny lighting conditions (b) Centipede image under 
overcast lighting conditions (c) Centipede image under artificial lighting conditions.
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model achieves a high and stable performance throughout the training process, confirming the success of the 
training strategy.

By inputting the images from the test set into the trained FCM-YOLO network model for detection, the results 
are shown in Fig. 9. From these results, it is evident that the proposed method can effectively identify and locate 
the vast majority of centipedes, demonstrating the model’s efficiency and accuracy in practical applications.

Comparison and experiment
Ablation experiment
In this study, we have innovatively improved the network structure and loss function of the Yolov5 detection 
algorithm. To comprehensively evaluate the impact of these improvements on performance, we conducted 
extensive ablation studies on the dataset constructed for the research. To ensure the reliability of the ablation 
experiments, all models were maintained with consistent hyperparameter configurations and operating 
environments. The experimental results are presented in Table 3.

Algorithms C3FS CBAM CMPDIOU Params(M) FLOPs(G) AP50(%)

YOLOv5s 7.01 15.8 94.7

Proposed Methods(1) √ 6.30 13.6 95.6

Proposed Methods(2) √ 5.99 13.8 96.4

Proposed Methods(3) √ 7.01 15.8 96.3

Proposed Methods(4) √ √ 5.28 11.7 96.6

Proposed Methods(5) √ √ 6.31 13.8 96.7

Proposed Methods(6) √ √ 5.99 13.7 96.8

Proposed Methods √ √ √ 5.28 11.5 97.4

Table 3.  Ablation data.

 

Fig. 9.  Examples of Detection Results Based on the FCM-YOLO Model: (a) Image taken in overcast 
conditions. (b) Image taken under sunny conditions. (c) Images taken from different angles under indoor 
artificial lighting conditions.
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The results indicate that modifications at different parts of the model have a positive impact. Compared to the 
original Yolov5 model, replacing the original CIOU loss function algorithm with the CMPDIOU loss function 
algorithm, while keeping other parameters constant, increased the AP to 96.3%. The use of the CBAM attention 
mechanism reduced the number of parameters to 5.99 M, and simultaneously, the AP significantly increased to 
96.4%. After adding the C3FS module to the original model, the AP rose to 95.6%, and the FLOPs substantially 
decreased, reaching 13.6G. The experimental results demonstrate that the various improvements made to the 
Yolov5 model in this study play their intended role and offer a distinct advantage in detecting and counting 
centipedes in the dataset.

Comparison of different loss functions
This study further conducted a performance evaluation of the proposed CMPDIOU loss function algorithm 
by comparing it with several other loss functions through experimental analysis. Specifically, we examined the 
impact of various loss functions on the experimental results, including GIOU35, DIOU36, CIOU, MPDIOU, and 
CMPDIOU. The specific results of this comparison are presented in Table 4.

Compared to other loss functions, the CMPDIOU loss function achieved an accuracy of 97.4%. In terms of 
Precision and Recall, the performance is illustrated in Fig. 10. The model using the CMPDIOU loss function 
outperforms the other loss functions in both accuracy and recall rate. The experimental results indicate that our 
proposed CMPDIOU loss function surpasses the other four loss functions in every aspect. Therefore, we believe 
that employing the CMPDIOU loss function as the bounding box loss function for the FCM-YOLO model is the 
optimal choice, significantly enhancing the model’s overall performance in object detection tasks.

Comparison of different models
To comprehensively validate the effectiveness of the FCM-YOLO algorithm, we compared and analyzed it against 
currently popular single-stage object detection algorithms. These comparative algorithms include the latest 
yolov7 algorithm37, yolov8 algorithm, and lightweight improved algorithms such as the mobilenet + YOLOv5s 
algorithm38, and the shufflenet + YOLOv5s39 algorithm. To ensure the accuracy of the final experimental 
results, we trained and tested these eight networks using the same training set, validation set, and test set. The 

Fig. 10.  Precision and Recall under Different Loss Functions.

 

IOU Loss Function AP50(%) AP50-95(%) Precision(%) Recall(%)

GIOU 95.9 60.8 94.4 92.2

DIOU 96.4 61.2 93.8 92.6

CIOU 96.6 60.5 95.5 91.3

MPDIOU 96.4 61.6 95.0 91.8

CMPDIOU 97.4 61.8 95.5 94.4

Table 4.  Comparative results of different loss functions.
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experimental results are presented in Table 5. It is noteworthy that, in this experiment, none of the models used 
pre-trained weights.

The experimental results demonstrate that the lightweight model proposed in this paper shows a notable 
improvement in accuracy compared to other lightweight models such as yolov5-shufflenet2 and yolov5-
mobilenet3, with increases of 5.9% and 2.9% respectively. Compared to the current mainstream models like 
yolov7 and yolov8-s, the FCM-YOLO model still manages to significantly reduce the number of parameters and 
computational demands while maintaining accuracy, with reductions in FLOPs of 56.9% and 59.5% respectively. 
This endows the FCM-YOLO model with a distinct advantage in detection speed. Figure 11 visually compares 
the FLOPs and AP50 of the eight models. Among these models, yolov5-Mobilenet-small has the smallest 
computational load but relatively poorer performance. Yolov8-s has the highest accuracy, but its computational 
load is a substantial 28.4G, the highest among all models. The FCM-YOLO model, while only requiring 11.5G 
of computational resources, enhances the detection accuracy of the original model to 97.4%. Therefore, the 
FCM-YOLO model achieves the optimal balance between parameter size and accuracy in centipede detection 
and counting.

Fig. 11.  Comparison of Different Models.

 

Algorithms Image Size Params(M) Precision(%) Recall(%) FLOPs(G) AP50(%)

YOLOv5-Shufflenet2 640 × 640 3.17 89.8 83.4 5.8 91.5

YOLOv5-Mobilenet3-small 640 × 640 1.38 93.5 87.0 2.5 94.5

YOLOv5-Mobilenet3-large 640 × 640 5.08 94.1 92.4 11.2 96.0

YOLOv5-Mobilenet3-CARAFE 640 × 640 5.07 93.6 91.8 11.6 95.7

Yolov7 640 × 640 9.32 94.4 90.7 26.7 96.3

Yolov7-tiny 640 × 640 6.01 94.8 89.5 13.2 95.3

Yolov8-s 640 × 640 11.13 95.1 93.6 28.4 97.4

FCM-YOLO 640 × 640 5.28 95.5 94.4 11.5 97.4

Table 5.  Comparative results of different models.
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Discussion
In our research, we advanced the yolov5-s model, leading to the development of the FCM-YOLO model. This 
innovative model not only enhances detection precision but also accelerates the process, thereby enhancing its 
applicability for mobile device implementation. We embarked on a series of comparative analyses to ascertain 
the efficacy of FCM-YOLO. When benchmarked against the conventional YOLOv5s model, our FCM-YOLO 
demonstrates superior accuracy in detection, marked by an increased test set accuracy of 97.4%, which is 2.7% 
higher than that of YOLOv5s, and a substantial decrease in floating-point operations to 11.5G (4.3G less than 
yolov5s). Furthermore, FCM-YOLO exhibits an optimal balance of accuracy and compactness in comparison 
with other streamlined models such as YOLOv5-Mobilenet3-small, YOLOv5-Mobilenet3-large, YOLOv5-
Mobilenet3-CARAFE, and YOLOv5-Shuffletnet2. This equilibrium positions FCM-YOLO as a more appropriate 
choice for tasks requiring both precision and efficiency.

In our in-depth study of the dataset and analysis of the test set results, we identified several issues within 
the model that warrant further exploration. Our constructed centipede dataset model covers a variety of 
scenarios encountered in practical applications, demonstrating the model’s strong potential for application even 
in complex environments. However, in the process of actual application, we observed that the current targets 
to be detected may still experience missed or false detections due to various factors, such as camera shake or 
focus issues leading to unclear images, or obstructions of the target, as illustrated in Fig. 12. Therefore, in our 
subsequent research, we will focus on addressing these issues.

Additionally, when we applied the model in real-world production settings, we observed that the model’s 
theoretical accuracy did not align with its actual detection precision. Various uncontrollable factors in practical 
usage, such as user habits and variations in the distance from which images are captured, tend to reduce the 
accuracy of the model’s detections. Consequently, our research team plans to expand the dataset in subsequent 
studies to address this issue.

Additionally, the equipment and memory consumption required for mobile deployment are also crucial 
factors in practical use. The FCM-YOLO model, while reducing the number of parameters from the original 
model and employing the traditional attention mechanism CBAM module to enhance the model’s focus on 
targets and improve detection capabilities, still has considerable room for improvement to further enhance 
efficiency and accuracy. In future research, we will actively explore more lightweight models to achieve broader 
application.

Conclusions
Exploring the implementation of centipede identification models, It’s pivotal to assess not only the precision but 
also the speed of detection and the computational demand. This research introduces FCM-YOLO, a novel and 
more efficient centipede counting approach, as a modified iteration of yolov5. This advanced network model 
integrates diverse data enhancement strategies to improve the centipede dataset, thereby optimizing the process 
of model training and assessment. FCM-YOLO, an advanced yolov5 variant, incorporates the conventional 
CBAM attention mechanism to amplify the model’s focus on relevant targets, thereby elevating its detection 
performance. This model replaces the CIOU loss with the more versatile CMPDIOU loss function, boosting 
its effectiveness and resilience in varied and complex environments. Additionally, the C3FS module is merged 
into the yolo framework, which further trims the model parameters and floating-point computations, yet 
preserves its accuracy. This significant reduction in the model size enables its deployment on portable devices. 
Empirical evaluations demonstrate that FCM-YOLO not only elevates the detection precision to 97.4% but also 
reduces the GFLOPs to 11.5G. When juxtaposed with leading detection models, FCM-YOLO excels in reduced 
computational demands, compact size, and superior detection precision. This study offers a fresh perspective on 
optimization strategies for related projects and contributes to the advancement of intelligent agriculture. Future 
investigations will aim at further refining the model to extend its applicability in diverse scenarios.

Fig. 12.  Centipede Images Prone to Missed and False Detections (a) Partially obscured centipede image (b) 
Partially blurred centipede image due to camera shake or focus failure.
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The data presented in this study are available on request from the corresponding author.
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