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Research on the timing for
subsequent water flooding in
Alkali-Surfactant-Polymer flooding
in Daqing Oilfield based on
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Determining the optimal timing for subsequent water flooding in Alkali-Surfactant-Polymer (ASP)
flooding is essential to maximizing both the technical and economic outcomes of oilfield blocks. This
study identified eight critical parameters that influence the benefits of ASP flooding and established
parameter ranges based on data from completed blocks and actual field measurements. The optimal
timing for subsequent water flooding was determined by evaluating cumulative net profit variations
throughout the ASP flooding lifecycle. Given the complexity and high-dimensional nature of evaluating
multiple parameters across diverse blocks, a machine learning-driven optimization model was
developed. This model enhances work efficiency by automating complex analyses. However, predictive
uncertainties and limitations remain due to the variability in oilfield development and the potential

for unpredictable changes in reservoir conditions, external market factors and so on, which may affect
the model’s results. The model was applied to six blocks in the Daqing oilfield currently in the chemical
flooding phase, where injection schemes, such as extending the polymer slug, were adjusted according
to the model’s optimized results. These adjustments yielded an increase in cumulative net profit of
224.9 million CNY compared to the original scheme, with a potential total increase of 752.1 million
CNY by the end of the flooding process.

Keywords Dagqing oilfield, Subsequent water flooding, ASP flooding, Whole process economic evaluation,
Automatic machine learning

Alkali-Surfactant-Polymer (ASP) flooding is an effective technique for enhancing oil recovery by combining
the benefits of three chemical agents. In this system, polymers increase the viscosity of the injected fluid,
which expands the swept volume and improves the displacement efficiency. Surfactants reduce the interfacial
tension between oil and water, allowing trapped oil to mobilize more easily. Alkaline agents react with acidic
components in the crude oil to form in-situ surfactants, further enhancing the displacement process. Together,
these components synergistically contribute to a significant improvement in oil recovery'-®. It has made a
tremendous contribution to the oil production of the Daqing Oilfield’~!!. The annual oil production of ASP
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flooding in Dagqing Oilfield has exceeded 4 million tons for seven consecutive years, providing strong support
for high and stable production of Daqing Oilfield.

According to the laboratory research'??’, reservoir numerical simulation results*’?* and oilfield
experience?=!, in order to achieve the optimal EOR effect and economic benefits, the development process
of ASP flooding in Daqing Oilfield is set as blank water flooding, pre polymer, ASP main, ASP sub, subsequent
polymer and subsequent water flooding(hereinafter referred to as SWF). The chemical concentration and slug
size are demonstrated and the development effect is predicted in the development program before the block
is put into development. However, due to various uncertainties in the development, the actual effect may be
different from the prediction in the original scheme®2. In order to achieve the optimal technical and economic
result, the subsequent polymer slug should be appropriately extended to further improve the recovery and
expand the economic benefit when the actual development effect of the block is better than the prediction of
the original plan. While the development effect is worse than expectation, the injection of chemicals should
be stopped prematurely at an appropriate time, and the SWF should be transferred to avoid economic losses.
Therefore, it is of vital importance for efficient development of ASP flooding to optimize the optimal time of
transferring to SWE.

At present, some studies were done on the timing for SWF in polymer flooding and the oil increment per
ton of polymer was used as the objective function for the transfer timing of SWE When the economic benefits
obtained by increasing crude oil per ton of polymer was the same as the polymer price, it was considered that the
optimized timing for SWF was reached. However, this index only took the chemical agent cost into account and
did not fully take other costs of block development into account, nor did it analyze the impact of input-output
ratio and net profit on the opportunity of SWE. Whats more, there are no literature reports on the exploration of
the optimal opportunity for the transfer to SWF in ASP flooding.

In the ASP flooding blocks already completed in Daqing Oilfield, due to the deterioration of block
development effectiveness, there had been precedents of prematurely ceasing chemical injection and transfer to
SWE in blocks X12 and N6. Additionally, for blocks where the development effectiveness closely aligns with the
predicted schemes, no injection scheme adjustments are implemented; this situation includes blocks such as N5,
X6D2, and LBD. In actual development of ASP flooding in Daqing Oilfield, a more common scenario is that,
due to the better-than-expected development effectiveness of blocks, the subsequent polymer plug segments
are extended to enhance development effectiveness and economic benefits. This situation includes blocks such
as B2X, X6D1, and X6D2. In practical field operations, the aforementioned injection scheme adjustments for
prematurely transfer to SWF blocks and extending subsequent polymer plug segment blocks both employ a
combination of similar block analogies and reservoir engineer experiential decision-making, lacking scientific
rigor and quantitative basis. Therefore, there is an urgent need to explore and establish a precise prediction
method for transfer to SWF based on actual development conditions, achieving the optimized decision for
improving the recovery degree and economic benefits of ASP flooding blocks.

In this paper, by calculating the changes of the total cost and net profit of the ASP flooding blocks in the
whole process, the optimal opportunity of SWF in ASP flooding block was established. In addition, a high-
precision prediction model for the optimal timing for SWF was established using machine learning technology,
which made the work automatic and intelligent, and greatly improved the work efficiency.

33-42

Current situation of SWF after ASP flooding in Daging Oilfield

The basic information of the completed ASP flooding field trials and industrial blocks in Daging Oilfield was
summarized. Blocks with abnormal development processes were excluded. Details of their basic characteristics
and the timing for SWF were presented in Table 1.

The results shows that the water cut of the completed blocks were between 91.55% and 98.19% when
transferred to SWE.

It can be observed from Fig. 1 that the water cut when transfer to SWF is negatively correlated with EOR
per unit chemical agent and reservoir permeability, and positively correlated with the effective thickness of the
reservoir. The Pearson coeflicients between each parameter in Table 1 and the water cut when transfer to SWF
also confirm this observation. Additionally, the absolute value of the Pearson coefficient between the EOR per
unit chemical agent dosage and the water cut is as high as 0.905, indicating a very strong linear relationship
between the two.

The injection methods, types of chemicals, and other parameters of the injection schemes for all blocks
were similar, only slight variations existed in the concentration of chemicals used and the size of the plugs.
Consequently, the EOR per unit chemical agent dosage was comparable across all blocks. The variations of
water cut and recovery degree curves for ASP flooding blocks with different development effect were depicted
in Fig. 2. A more favorable development effect for a block implies a higher increase in recovery rate per unit
chemical agent dosage. Under such circumstances, the decline of water cut is more pronounced, the rate of water
cut recovery is slower, and the water cut at the end of chemical agent injection is lower. Permeability serves as an
indicator of the quality of reservoir rock, higher permeability facilitates easier oil recovery within the reservoir,
leading to better development effect. Consequently, higher permeability correlates with a higher increase in EOR
per unit chemical agent dosage, resulting in lower water cut when transfer to SWE. A greater effective thickness
of a block may imply both a larger reservoir volume and potential oil extraction. The recovery degree represents
the ratio of the two. In this regard, its impact on increasing the EOR and water cut when transfer to SWF is
relatively minor. However, a large effective thickness of the development strata may be caused by either a thick
individual oil layer or a greater number of oil layers within the strata. These scenarios could respectively increase
the likelihood of intra-layer and inter-layer heterogeneity, resulting in poorer development effect, reduced EOR,
and higher water cut when transfer to SWE
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Water cut for PV)
Number | Block name SWE(%) Peareon
Pearson coefficient Pearson coefficient coefficient
Value | with water cut for | Value | with water cut for | Value | with water
SWF SWF cut for
SWEF
1 B1DD 93.30 7.7 0.67 27.75
2 N5 97.40 10 0.501 19.59
3 B2X 91.55 6.6 0.533 28.35
4 LBD 95.50 8.8 0.676 20.95
5 X6D1 93.34 5.6 0.583 21.56
6 X6D2 95.51 5.7 0.76 0.528 | -0.267 17.15 | -0.905
7 B3DSF 94.22 7.1 0.387 22.71
8 B1DX 97.62 13.6 0.46 13.14
9 XQCY 97.31 11.5 0.537 10.43
10 DQ 97.78 10.8 0.521 11.52
11 X34D1 98.19 9.3 0.52 11.34
Table 1. Statistics of the time for SWF of the completed ASP flooding blocks.
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Fig. 1. The relationship between development parameters of completed ASP flooding block and water cut for
SWE (a) Relationship between water cut for SWF and effective thickness. (b) Relationship between water cut
for SWF and permeability. (c) Relationship between water cut for SWF and enhanced oil recovery per chemical
dosage. (d) Bubble chart of water cut for SWE, effective thickness, permeability and enhanced oil recovery per
chemical dosage (Bubble size represents water cut, bubble color represents EOR per chemical dosage).
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Fig. 2. Dynamic change curve of evaluation model.

The research of optimal timing for SWF in ASP flooding
In order to evaluate the optimal timing for SWF in ASP flooding, the evaluation parameters and their selection
range were selected first. And then, objective function was established.

The selection of evaluation parameters

The evaluation parameters were mainly divided into two categories. First, five parameters were selected to
determine expenditure, which were single well construction cost and depreciation, operating cost, chemical
agent expense, management expense and financial expense. The second type was the parameters related to
income. Three parameters were selected, namely, EOR value of the scheme, single well controlled reserves and
oil price.

(1) Values of parameters affecting expenditure.

At present, when evaluating the total cost of ASP flooding in Daging Oilfield, the economic parameters
mainly taken into consideration are single well construction cost and depreciation, operating cost, chemical
agent expense, management expense and financial cost. According to the actual condition of Daqing Oilfield,
the values of the above five parameters were set as follows. The comprehensive drilling and construction cost
of a single well was 4 million CNY/well, and the period of depreciation was 10 years. The operating cost was
918.74 CNY/ton. As for chemical agent expense, 11508.62 CNY/ton was set for high molecular weight polymer,
6637.93 CNY/ton for petroleum sulfonate surfactant and 2132.22 CNY/ton for sodium carbonate. Ratio of pore
volume to reserves was 1.94. The management cost was 378.4 CNY/ton, including 361.41 CNY/ton of general
management cost and 17 CNY/ton of safety production cost. The financial cost was 121.1 CNY/ton, including
64.9 CNY/ton of long-term loan interest, 6.0 CNY/ton of working capital loan interest, 34.4 CNY/ton of short-
term loan interest and 15.8 CNY/ton of retirement cost financial cost.

(2) Values of parameters affecting income.

In order to characterize the average development level of the ASP flooding blocks in Daqing Oilfield to
a greater extent and make the evaluation model more representative, on the basis of referring to the ASP
benchmark curves*® and the development level of the completed ASP flooding blocks, the oil displacement
effects of the evaluation models were designed as three levels and the ultimate EOR was 15%, 18%, and 21%
respectively. The dynamic changes of the model were shown in Fig. 2.

In addition, under the condition of similar enhanced oil recovery level, the single well controlled reserves
have an important influence on the economic performance. At present, the single well controlled reserves of the
completed ASP flooding blocks are between 20,000 and 40,000 tons/well. Therefore, the single well controlled
reserves of the models were set as 20,000, 25,000, 30,000 and 35,000 tons/well in this study.

Based on the established basic value combination, various values for each parameter were selected within a
reasonable range, as shown in Table 2. Subsequently, the appropriate transfer timings to the SWF under various
parameter values were analyzed. The management and financial fees were minimally affected by external factors,
and their rate of change was small over the years. Hence, they were considered constants.

Determination of the optimal timing for SWF based on variation in net profit during
development process and its sensitivity analysis
Most literature currently considers the cost of chemical agents and oil prices when evaluating the transfer of
polymer flooding to SWF?4-32, However, the timing of the SWF needs to consider the overall profitability of the
block. Therefore, the cumulative net profit was chosen as evaluation indices for the optimized timing of the SWE.
The cumulative net profit of the ASP flooding block is the most direct indicator of block earnings. The
cumulative net profit for the entire ASP flooding process was calculated, and the maximum value on the index
and water cut curve was identified as the optimized timing for SWE At this point, the income and expenditure
are equal. The net profit at this stage is zero, and the cumulative net profit reaches its maximum. After this point,
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Number | Classification Item Parameter Base value | Optional values
1 Drilling and construction cost(10*CNY/well) 400 300. 350. 400. 450
2 Period of depreciation(Year) 10 10
3 Operation cost(CNY/ton) 918.74 —_
4 High molecular polymer 11508.62
Chemicals Adjustment coefficient of
5 (CNY/ton) Petroleum sulfonate surfactant | 6637.93 chemicals cost 0.7 0.85. 1. 115
6 Sodium carbonate 2132.2
Affect expenditure
7 Administration expense | Management cost 361.41 o
8 (CNY/ton) Production expense 17
9 Long-term loan interest 64.9
10 Financial expense Liquidity loan interest 6.0
11 (CNY/ton) Short-term loan interest 344
12 Abandonment cost 15.8
13 EOR of ASP scheme(%) 18 15, 18, 21
+—— Affect income
14 Controlled reserves(10*ton/well) 2.5 2, 25, 3, 35

Table 2. Selection of economic evaluation parameters and values.

net profit becomes negative, and losses begin. Therefore, the transfer to SWF must be completed before this
point. (Fig. 3)

Cumulative net profit = Cumulative input — Cumulative output (1)

(In Fig. 3a and ¢, the dashed line indicates the maximum cumulative net profit, which corresponds to the
optimized timing of the SWE Figure 3d illustrates the relationship between Enhanced Oil Recovery, Oil Price,
and Water Cut. The color of the points represents the Cumulative Net Profit. Red solid circles denote the
optimized timing for SWE while the gray plane connects these points, representing the surface of optimized
SWF timings.)

The findings indicate that when considering cumulative net profit, the optimized timing for transitioning
to SWF for a single well with a controlled reserve of 30,000 tons, under varying oil prices, ranges from 91.47
to 97.56% water cut(Table 3). Correlation analysis in Fig. 4 reveals that the factors influencing the optimized
timing, in order of decreasing impact, are oil price, single-well controlled reserves, operating costs, single-well
drilling and completion costs, chemical agent costs, and pore-to-reserve ratio. Single-well controlled reserves
show a positive correlation, while the other factors show negative correlations. The analysis indicates that oil
price and single-well controlled reserves are positively correlated with revenue: higher values result in a later
stage when net profit reaches zero, permitting a higher water cut at the transition point to SWE In contrast,
operating costs, single-well drilling and completion costs, chemical agent costs, and pore-to-reserve ratio are
positively correlated with costs: higher values lead to an earlier stage when net profit reaches zero, requiring
a lower water cut at the transition point. The enhanced oil recovery (EOR) index is a comprehensive metric,
and differences in water cut patterns do not affect stage net profit. Following this methodology, the optimized
timing for transitioning to SWF was determined for 189 scenarios, and the results would be used in the machine
learning modeling in the next section.

Optimal timing optimization for SWF in ASP flooding based on automatic machine
learning

The aforementioned method determines the optimized timing for transitioning to SWE, but it requires calculating
various indicators that affect block development expenditure and revenue throughout the entire ASP flooding
process. This process is complex and labor-intensive, potentially delaying the timely adjustment of injection
schemes and leading to irreversible economic losses for the flooding block. To address this issue, a high-precision
prediction model for the optimized timing of transitioning to SWF was developed using automated machine
learning techniques, based on the calculated results of the optimized timing.

Automated machine learning systems

In this study, we utilized the Autosklearn2.0 automated machine learning system, which integrates three key
functionalities: meta-learning, Bayesian optimization, and model ensembling. This platform offers substantial
advantages in its algorithmic structure (Fig. 5). Meta-learning* facilitates knowledge transfer from previous
tasks, enabling Autosklearn2.0 to select machine learning framework instances likely to perform well on
the target dataset, thereby preheating the Bayesian optimization process and enhancing model optimization
efficiency. Bayesian optimization*® operates by fitting a probabilistic model to capture the relationship
between hyperparameter combinations and model performance. It leverages this model to choose optimized
hyperparameter settings, computes hyperparameter combinations, updates the model based on the results,
and iteratively reduces errors, thereby automating the model optimization process. Model ensembling involves
storing multiple high-performing models during the automatic modeling process and constructing an ensemble
model. Typically, an ensemble model outperforms individual models, especially when the base models within the
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Fig. 3. Relationship between cumulative net profit and water cut when transfer to SWE. (a) Enhanced oil
recovery is 15% (b) Enhanced oil recovery is 18%. (c) Enhanced oil recovery is 21% (d) Three-dimensional

scatter plot.
45 0.685 91.61 0.750 91.47 0.820 91.58
55 0.855 94.8 0.925 94.76 0.995 94.76
65 0.965 96.23 1.030 96.18 1.105 96.21
75 1.045 97.02 1115 97.03 1.190 97.04
85 1.120 97.55 1.190 97.56 1.265 97.56
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Table 3. Optimized timings for SWF calculated by cumulative net profit. Notes: Table 3 shows the situation

where the controlled reserve of a single well is 30,000 tons.

ensemble are robust and have uncorrelated errors

46,47

. Due to these integrated advantages, automated machine

learning generally surpasses conventional machine learning algorithms across most datasets*®%. In this study,

we employed this automated machine learning framework to conduct a 24-hour run.

Other machine learning modeling
To benchmark the automated machine learning system, this study selected five well-established machine
learning algorithms: Random Forest, Bagging, KNN, Adaboost, and LightGBM. The choice of these algorithms
as benchmark algorithms is based on their proven performance across diverse datasets and their unique
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Fig. 4. Heat map of Variable Correlation Matrix. The heat map was generated by the Matplotlib library
(Python 3.9.11, https://matplotlib.org/).
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Fig. 5. Schematic diagram of automatic machine learning process®.

strengths. Random Forest and Bagging are ensemble methods known for reducing variance and providing
robust predictions, which is valuable in capturing the nonlinear relationships present in oilfield data. K-Nearest
Neighbors (KNN), as a non-parametric method, was included to evaluate performance on locally weighted
observations, which could offer insights into block-specific variability. Adaboost, as an adaptive boosting
algorithm, was selected for its ability to improve predictive accuracy by focusing on difficult-to-predict
instances. LightGBM, known for its high efficiency and scalability in handling large datasets, was chosen for
its suitability in complex reservoir modeling and real-time application demands. Together, these algorithms
provide a comprehensive comparison for assessing the effectiveness of the AutoML framework. We utilized these
algorithms for modeling and compared their predictive performance to that of the automated machine learning
system. The detailed implementation steps are as follows.

(1) Data preprocessing.

To eliminate the influence of differences in magnitude between features, the feature set was standardized
using formulas (5) to (7). Additionally, the dataset was randomly divided into a training set and a test set in a
75:25 ratio.

Ty —

a

2
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(4)

Where: z, is the standardized score of the sample i; xi is the sample i; y is the mean value of the samples; o is the
standard deviation of the samples; n is the number of samples.

(2) Model training and optimization.

The model’s hyper-parameters were optimized using 7-fold cross-validation, comparing the average cross-
validation error. The entire training set was then used with the optimized hyper-parameters, and the algorithm’s
accuracy was evaluated using a test set that had not participated in model training.

(3) Support library, hyper-parameter adjustment and model evaluation.

In this study, the Scikit-learn library?® was used to implement various conventional machine learning
algorithms. Hyper-parameter tuning was conducted using grid search. The coefficient of determination (R*) was
used to evaluate model performance.

: LY -Y
R2: 1— 2 zfl< )2 (5)

> (YY)

Where: n is the number of samples; Y is the actual value of the sample i; Yjis the predicted value of the sample
i; Yiis the average of all samples.

Result analysis

Figure 6 compares the predictive performance of five conventional machine learning algorithms with that of
the automated machine learning model (Fig. 6). The results show that the automated machine learning model
achieves higher predictive accuracy than other algorithms, such as Random Forest, without overfitting. Its R
on the test set is close to 1. The comparison between predicted and actual values clearly demonstrates that the
model’s predictions are very close to the actual values, indicating high precision (Fig. 7).

Limitations of the machine learning model

While the machine learning model used in this study demonstrates high predictive accuracy and practical utility
in determining the optimal timing for transitioning to SWE, it has inherent limitations due to its reliance on
historical data and the complex, dynamic nature of reservoir conditions.

Firstly, the model’s predictions are based on historical data from previously developed blocks, which may
not fully capture real-time changes in reservoir conditions. Properties such as permeability, pressure, and fluid
composition can evolve over time during prolonged chemical flooding, altering the effectiveness of subsequent
water flooding. This can introduce uncertainties, especially when the model is applied to blocks with significantly
different or dynamically changing reservoir characteristics.

Secondly, external factors, particularly fluctuations in operational costs, can substantially impact the
economic evaluation of SWF timing. Although the model performs well under relatively stable conditions, it is
not designed to dynamically adjust to sudden cost changes. For instance, an increase in operational costs may
make an earlier transition to SWF more economically viable, while a decrease may extend the favorable period
for chemical flooding, potentially deviating from the model’s suggested optimal timing.

Lastly, like many predictive models, this machine learning approach may be susceptible to overfitting historical
patterns, limiting its adaptability in novel scenarios or with outlier data. Thus, while the model provides robust
guidance for SWF timing, continuous monitoring and integration with real-time field data are reccommended to
make adaptive adjustments as reservoir and operational conditions evolve. Future improvements could include

B Train Set
B Test Set

‘ Total Set
KNN

Autoskleam  Bagging Random  Adaboost LightGBM Linear
Forest Regression

1.00

Py

0.98

0.96

0.94

092

090

Coefficient of Determination R

Fig. 6. Comparison of different machine learning algorithms in calculating the optimized timing for transition
to SWE
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Predicted
Ultimate
Enhanced
Oil
Controlled Reserve per Recovery

ID | Block Name | Effective Thickness (m) | Permeability (D) | Well (10,000 tons) Porosity-Permeability Ratio | (%)

1 X34D2 9.3 0.482 2.053 1.774 12.43

2 X7D1 6.1 0.52 1.944 1.851 16.02

3 B2DZ 11.6 0.384 1.858 1.938 20.29

4 B2XD 10.7 0.392 2.842 1.774 21.71

5 B2DX 14.1 0.403 2.358 1.9 24.45

6 N6D 7.9 0.222 1.491 2.015 25.95

Table 4. Basic parameters of ASP flooding blocks in Daging Oilfield in the subsequent polymer slug.

the incorporation of adaptive algorithms or hybrid models that combine machine learning with reservoir
simulation techniques, enhancing flexibility and predictive accuracy under changing conditions.

Field application

Using the prediction method based on the full-process techno-economic evaluation indicators proposed in
Sect. 2 and the prediction model based on automated machine learning established in Sect. 3, we predicted
the water cut timing for SWF in six ASP flooding blocks in Daqing Oilfield that are in the subsequent polymer
slug phase. The basic parameters of these blocks are shown in Table 4. All evaluation parameters were selected
based on the actual values during the development process of each block. When using the method based on
full-process techno-economic evaluation indicators, future indicators that change over time were predicted
using a reservoir numerical simulation model calibrated by historical fitting for oil production, while other
indicators were replaced by their current values. The optimized timing for SWF using both methods and the
timing according to the original injection scheme are compared in Table 5.

The prediction results for the timing of transferring to SWF using the two optimization methods were similar,
further validating the strong predictive performance of the model. Currently, five blocks (X7D1, B2DZ, B2XD,
B2DX, N6D) have achieved actual enhanced oil recovery values higher than the predicted values, indicating that
their development performance exceeds the original plan. The optimized timing for these blocks for SWF is later
than the original predictions, suggesting the need to extend the size of the subsequent polymer slug.

For Block X34D2, located in the distal areas of the Changyuan Oilfield in Daqing, the ASP flooding
performance is hindered despite favorable geological parameters such as high permeability. This reduced
performance can be attributed to significant horizontal and vertical heterogeneity. Specifically, pronounced
horizontal heterogeneity leads to poor connectivity between injection and production wells, diminishing ASP
flooding efficiency. Additionally, strong vertical heterogeneity may impede recovery in medium- and low-
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Optimized Predicted Water Cut (%) Adjustment of Injection Plan
Actual
Predicted by Water
Predicted Water Cut | Predicted by Calculation | Machine Learning Cut
ID | Block Name | of Original Plan (%) | Method in Sect. 1 Model Relative Errors | Adjustment Method (%)
1 X34D2 97.23 95.85 95.62 0.240 Early Transition to SWF | 95.65
2 | X7D1 96.55 97.09 97.32 0.237 Extended Polymer Slug | 97.27
3 B2DZ 94.63 96.09 95.83 0.271 Extended Polymer Slug | 95.85
4 | B2XD 9227 95.58 95.2 0.398 Extended Polymer Slug | 95.18
5 | B2DX 94.52 96.49 96.74 0.259 Extended Polymer Slug | 96.72
6 Né6D 96.38 96.88 97.25 0.382 Extended Polymer Slug | 97.22

Table 5. Prediction and evaluation of the timing for SWF in ASP flooding fields.

permeability layers. These factors collectively contribute to the lower development effectiveness observed in
this block than anticipated and others, indicating a need to terminate chemical injection earlier and transition
to SWE. To enhance oil recovery in highly heterogeneous reservoirs, adaptive injection strategies tailored to
specific reservoir characteristics—such as variable injection rates or modified injection patterns—could improve
sweep efficiency. Furthermore, advanced hydrophobically associating polymers may increase the effectiveness
of ASP flooding in heterogeneous reservoirs, providing improved adaptability to complex geological conditions.
It is important to note that for blocks with unique characteristics, particularly those with strong reservoir
heterogeneity, the model’s predictive accuracy may decrease. Future studies could address this limitation by
incorporating additional representative factors related to heterogeneity or by using reservoir simulation methods
to supplement machine learning predictions, thereby enhancing decision-making accuracy.

Following the optimal timing predicted by the machine learning model in Table 5, these blocks were
transferred to SWE Due to uncertainties in actual field development, to minimize the impact of any fluctuations
in water cut, SWF is initiated only if the water cut exceeds the transition threshold for two consecutive months.
If the water cut surpasses the threshold in the first month but then drops below it in the second month, SWF is
postponed. Therefore, the actual transition timing may have slight variations compared to the optimal timing
predicted. As of January 2024, four blocks should have completed the injection according to the original plan but
are currently in the extended polymer slug phase based on the optimization results. The other two blocks have
reached the optimized timing and have already transitioned to SWE, as shown in Table 5.

Economic benefit calculation

Using the technical and economic evaluation metrics calculation method proposed in Sect. 2, we assessed the
economic benefits for the six blocks adjusted according to this study’s results. The calculation method involved
determining the cumulative net profit for each block under the original plan and the optimized injection plan
(Fig. 8). We then calculated the predicted final increase in cumulative net profit by January 2024 and at the
end of block development (Table 6). Upon transitioning to SWE, the sudden reduction in chemical costs leads
to a significant short-term increase in cumulative net profit. However, extending the polymer slug results in a
longer-term increase in crude oil production, leading to more substantial long-term net profit for the extended
polymer slug blocks.

After optimizing the plans for the six blocks according to the model, the cumulative net profit increased by
224.9 million CNY compared to the original plan by January 2024. By the projected end of development, the
cumulative net profit could increase by up to 752.1 million CNY, assuming stable conditions. These findings
suggest that the technology developed in this study has contributed to higher recovery rates and economic
benefits in the Daqing Oilfield. However, it should be noted that actual results may vary due to fluctuations in
operational costs and other reservoir-specific factors.

Conclusion

(1) The water cut for subsequent water flooding ranged between 91.55% and 97.4% in the completed field
test, and between 93.34% and 98.19% in the extended blocks. The water cut during subsequent water flooding
was found to be negatively correlated with the enhanced oil recovery per unit of chemical agent and reservoir
permeability, while being positively correlated with effective reservoir thickness. The correlation with EOR per
unit of chemical agent was the strongest.

(2) By using cumulative net profit as an objective function, the optimal timing for subsequent water flooding
was determined for 189 different parameter combinations. The results showed that the optimal timing for
subsequent water flooding varied from 91.47 to 97.56% across different schemes. The influencing factors for the
optimal timing, in order of impact, were oil price, single-well controlled reserves, operating costs, single-well
drilling, chemical and expenses, and porosity-reservoir ratio. Among these, single-well controlled reserves were
positively correlated, while the other factors were negatively correlated.

(3) An optimization model for optimal subsequent water flooding was established using automated machine
learning techniques for ternary composite flooding and compared with models established using other
conventional machine learning algorithms. The results indicated that the automated machine learning model
outperformed other conventional machine learning models, providing the highest prediction accuracy.
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Fig. 8. Relationship between cumulative net profit and water cut varying with volume of injected chemical
agent before and after optimization in each block. (a)X34D2 Block (b)X7D1 Block. (¢)B2DZ Block (d)B2XD
Block. (e)B2DX Block (f)N6D Block. (The blue line represents the original plan, while the red line signifies
the optimized plan. The solid lines indicate the actual progress that has already been achieved. The dashed
blue line represents the unimplemented part of the original plan, and the dashed red line represents the future
projection, with January 2024 serving as the demarcation point).
Cumulative Net Profit (Million CNY)
Original Plan Optimized Plan Increase in Net Profit (Million CNY)
ID | Block As of January 2024 | Predicted final value | As of January 2024 | Predicted final value | As of January 2024 | Predicted final value
1 | X34D2 1824.5 1824.5 1864.8 1864.8 403 40.3
2 X7D1 1884.6 1886.9 1882.5 1897.4 -2.1 10.5
3 B2DZ 1820.8 1843.6 1857 2043.9 36.3 200.3
4 | B2XD 2375.6 2375.6 2451.9 2638 76.2 262.4
5 B2DX 2021 2021 2073.7 2169.7 52.8 148.7
6 N6D 2822.6 2822.6 2844.1 2912.4 215 89.8
Total 2249 752.1
Table 6. Economic benefit calculation for optimized timing for SWF.
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(4) Using two methods - the entire process indicator changes and the automated machine learning prediction

model - the optimal timing for subsequent water flooding was predicted for six blocks in the Daqing Oilfield
currently in the follow-up polymer slug phase. The results obtained by both methods were similar, further
validating the strong practical prediction capability of the model. Adjusting the injection plan for these blocks
based on the optimal timing predicted by the machine learning model resulted in an economic benefit.

Data availability
The data and code involved in this study can be downloaded from the following GitHub link: https://github.co
m/jwc10201/transferring_to_subsequent_water_flooding_in_ASP.git.
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