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With the fast-growing interconnection of smart technologies, the Industrial Internet of Things (lloT)
has revolutionized how industries work by connecting devices and sensors and automating regular
operations via the Internet of Things (loTs). loT devices provide seamless diversity and connectivity

in different application domains. This system and its transmission channels are subjected to targeted
cyberattacks due to their round-the-clock connectivity. Accordingly, a multilevel security solution

is needed to safeguard the industrial system. By analyzing the data packet, the Intrusion Detection
System (IDS) counteracts the cyberattack for the targeted attack in the lloT platform. Various

research has been undertaken to address the concerns of cyberattacks on lloT networks using machine
learning (ML) and deep learning (DL) approaches. This study introduces a new Bayesian Machine
Learning with the Sparrow Search Algorithm for Cyberattack Detection (BMLSSA-CAD) technique in
the lloT networks. The proposed BMLSSA-CAD technique aims to enhance security in lloT networks
by detecting cyberattacks. In the BMLSSA-CAD technique, the min-max scaler normalizes the input
dataset. Additionally, the method utilizes the Chameleon Optimization Algorithm (COA)-based feature
selection (FS) approach to identify the optimal feature set. The BMLSSA-CAD technique uses the
Bayesian Belief Network (BBN) model for cyberattack detection. The hyperparameter tuning process
employs the sparrow search algorithm (SSA) model to enhance the BBN model performance. The
performance of the BMLSSA-CAD method is examined using UNSWNB51 and UCI SECOM datasets.
The experimental validation of the BMLSSA-CAD method highlighted superior accuracy outcomes of
97.84% and 98.93% compared to recent techniques on the lloT platform.

Keywords Industrial internet of things, Cyberattack detection, Bayesian machine learning, Chameleon
optimization algorithm, Sparrow search algorithm

The emergence of the Internet of Things (IoT) paradigm in Industrial Automation and Control Systems (IACS)
is named Industrial IoT (IIoT), which currently has become very famous!. The IACS has been used recently to
retain an eye on manufacturing machines and methods, so the IloT-based systems have become a vital part of each
crucial infrastructure in smart industries. The significant portions of these methods are the data acquisition and
supervisory methods that frequently control the IACSs?. Real monitoring, contact with the devices, data analysis,
and logging of every event in the methods are the foremost parts of these systems. Therefore, the arrival of the
IoT model in these systems improves the safety and network intellect in the optimization and computerization
of industrial methods®. Industrial Internet of Things (IIoT) systems handle vast amounts of data, and their
applications are often mission-critical and require high availability. It is, therefore, essential to implement robust
cybersecurity measures to protect these systems adequately. In data management, cybersecurity has become
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indispensable in the current Internet of Things (IoT) environment*. The widespread adoption of IoT devices in
homes, the integration of smart cars and smart power grids, and the complexity of communication protocols
used by IoT consumers have significantly increased the exposure of IoT systems to cyber-attacks. Assaults can
arise through various physical and cyber methods, and both can happen in smart industries and cities’. These
attacks contain a permanent denial of service (DoS), side-channel, sleep denial attacks, malicious code injection,
radio frequency blocking, and false node injection. In a cyber-attack, the attacker initially tries to obtain illegal
access to the system modules by inserting dangerous software like malware into the devices®.

These types of attacks contain distributed DoS attacks (DDoS), ransomware, and man-in-the-middle attacks
(MITM). Only some models (like signature base) were developed in the literature to resolve the problem. In
the signature-based model, a group of attacks is tested beside the present doubtful models. If the signature
extractor technique is not completely capable of taking the separate feature of attacks, it may mainly generate
false alarms or misdetection of attacks’. This system is not appropriate for classifying unknown assaults and
undergoes excellent handling overhead. Machine learning (ML) models can identify assaults at execution time
and consume less processing time than other models. The application of numerous DL models can recognize
assaults with dual identification and categorize dissimilar types of attacks using multiclass classification, which
is an active study domain®. While numerous extensive analyses have explored this emerging field of study, the
survey needs to provide a balanced comparison of various deep learning approaches, particularly in applying
novel datasets for intrusion detection. The rapid expansion of interconnected devices within IIoT environments
also intensifies the potential susceptibilities to cyber threats®. Protecting these systems from malevolent attacks is
paramount to conserving significant infrastructure, averting potential disruptions, and preserving data integrity.
This study uses novel models to innovate cyberattack recognition methodologies in IIoT settings. By improving
the resilience and security posture of IIoT systems, this study aims to safeguard the reliability and safety of
industrial procedures in the face of growing cybersecurity challenges.

This study introduces a new Bayesian Machine Learning with the Sparrow Search Algorithm for Cyberattack
Detection (BMLSSA-CAD) technique in the IIoT networks. The proposed BMLSSA-CAD technique aims to
enhance security in IToT networks by detecting cyberattacks. In the BMLSSA-CAD technique, the min-max
scaler normalizes the input dataset. Additionally, the method utilizes the Chameleon Optimization Algorithm
(COA)-based feature selection (FS) approach to identify the optimal feature set. The BMLSSA-CAD technique
uses the Bayesian Belief Network (BBN) model for cyberattack detection. The hyperparameter tuning process
employs the sparrow search algorithm (SSA) model to enhance the BBN model performance. The performance
of the BMLSSA-CAD method is examined using UNSWNB51 and UCI SECOM datasets. The significant
contribution of the BMLSSA-CAD method is as follows:

o The BMLSSA-CAD approach utilizes min-max scaling to normalize the input dataset, significantly safeguard-
ing uniform feature ranges to improve model convergence and training stability. This step contributes to an
enhanced predictive accomplishment by reducing the impact of varying data scales, facilitating more efficient
learning and accurate cyberattack recognition within diverse and dynamic datasets.

o The COA method is employed for feature selection, crucial in improving cyberattack detection by detecting
the most relevant features. This technique mitigates dimensionality, enhancing computational efficiency and
confirming that the model concentrates on critical indicators of cyber threats. By optimizing feature sets dy-
namically, COA contributes crucially to the accuracy and efficiency of the model in recognizing and reducing
various cybersecurity risks.

o The BMLSSA-CAD model utilizes BBN to model dependencies among features, giving a probabilistic frame-
work that improves cyberattack recognition and classification. By comprehending complex associations
between variables, BBNs enable the method to conclude potential cyber threats more precisely, enhancing
overall recognition performance. This method contributes to robust cybersecurity by giving a structured
methodology to analyze and respond to growing attack patterns based on probabilistic reasoning and feature
interactions.

o The SSA is applied to tune the BMLSSA-CAD technique, which is central in optimizing model parameters
to improve BBN performance. By systematically altering hyperparameters, SSA enhances the BBN’s ability
to recognize and reduce cyber threats effectively. This approach contributes to the model’s adaptability and
efficiency in dynamically adjusting to changing threat landscapes, confirming robust and reliable cyberattack
recognition and response mechanisms.

o The BMLSSA-CAD method innovates by incorporating COA-based feature selection with BBN for cyberat-
tack recognition. This combination gives a structured model to optimize feature sets and model parameters
dynamically, improving detection accuracy and efficiency in complex cybersecurity environments. By utiliz-
ing COA for dimensionality reduction and BBN for probabilistic reasoning, the model gives a robust frame-
work to adaptively evaluate and respond to growing cyber threats, thereby improving cybersecurity abilities
in real-time monitoring and threat mitigation.

Related works

Saheed et al.!! proposed the IoT-defender architecture that integrates a Modified Genetic Algorithm (MGA)
method with the LSTM model for determining cyber threats in IoT. The GA fitness function (FF) was employed
for fine-tuning. To resolve the problem of class imbalance, the model used the focal loss operation that offers
superior weights to minority categories, thereby enhancing the capability of the system to learn from the specific
classes. Alani and Awad'? considered IoT security and introduced an intelligent 2-layer IDS for IoT. The model’s
intelligence was obtained by ML methods for IDS, with a 2-layer model dealing with packet- and flow-based
features. The individuality and originality of the technique were developed by integrating the ML and selection
units for flow- and packet-based features. Golchha et al.!® projected a cyberattack detection model for Industrial-
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IoTs (IToTs) using the Voting-based Ensemble Learning algorithm. An ensemble of the standard ML methods,
including Random Forest (RF), Histogram Gradient Boosting (HGB), CatBoost, and hard voting methods, have
been implemented to identify cyberattacks effectively. Feng et al.'* designed an innovative adversarial security
setup and developed a security game system which combines defence resource allocation and patrol assessment.
SDSA computes the distribution approach of the best patrolling scheme that must be more appropriate for the
protector by examining the strategy under the discrete action space and allows defence agents to proficiently
cooperate via training the Dueling Double Deep Q-Network (D3QN). Awotunde et al.!> developed ensemble
methods that assisted with the FS model for IDS in the IToT environment. The Chi-Square Statistical technique
could be deployed for FS, and diverse ensemble methods like AdaBoost, Bagging, RE, eXtreme gradient boosting
(XGBoost), and extra trees (ET)techniques must be executed for the identification of intrusion utilized to the
datasets.

Ren et al.'’® introduced a multiagent deep reinforcement learning (DRL) automated security management
technique. It forms a limited random game network attack-defense system. Leveraging RL methods, an
autonomous defence agent will be developed. Besides, a network attack agent was designed. Additionally,
drawing motivation in MINIMAX Q-learning, a cooperative training method, was considered for addressing the
complexity of surrounding variability. Alattas and Mardani!” presented an innovative system model dependent
upon a stochastic estimation of finding the parameters reliant on a new adaptive-DL (ADL) method. An
innovative architecture can be developed to integrate the component of arbitrariness rather than determined
models. The proposed technique deliberated the network forensic systems and IDS. The method was introduced
based on the five ordered protection phases. Xu et al.!® projected a data-driven method for anomaly and
intrusion detection in which various techniques could deal with and filter the information. The superiority of the
training dataset was increased by employing the Synthetic Minority Oversampling Technique (SMOTE) model
and mutual information (MI). Automatic ML has also been used for identifying the method with auto-tuned
hyperparameters to be better satisfied for categorizing the data. In'?, the open set recognition (OSR) challenge
in IoT-specific Network IDS (NIDS) is addressed by utilizing image-based data representations for extracting
geographical traffic patterns. The Recurrent Neural Networks (RNNs) exhibited suboptimal accuracy and lacked
parallelizability for attack evaluation tasks. The study also presents the Sparrow Search Optimization Algorithm
(SSOA) as a basis for developing an effective assault classification technique.

Harahsheh, Al-Naimat, and Chen? propose an improved feature selection technique to mitigate the
computational overhead on IoT resources while concurrently strengthening intrusion recognition abilities
within the IoT environment. In?!, the Weighted Variational Autoencoder-based Hunter Prey Search (WVA-
HPS) model is introduced. This method implements a weighted variational autoencoder (VA) with weight
regularization and ensemble averaging, improved by the Hunter Prey Search optimization (HPSO) model to
reduce overfitting and improve effectualness. Mohammed et al.?? presented a Chaotic Sparrow Search Algorithm
with DL utilizing the Recurrent Neural Network (RNN-CSSA) model. The technique uses the Binary Pigeon
optimization Algorithm (BPEO) method for feature selection and the RNN model for classification. Arulkumar
et al.?* propose a model utilizing the Lanner Swarm Optimization (LSO) technique to optimize resource
allocation and workload distribution. The LSO technique enhances effectualness. The objective function
prioritizes diverse virtual machines (VMs) depending on their accomplishment times. Saheed, Omole, and
Sabit?* introduce the GA-mADAM-IIoT model for IToT, by integrating a genetic algorithm for feature selection
with a modified Adam optimizer for LSTM networks. The model also incorporates an attention mechanism
to improve significant data processing and utilizes SHAP for improved transparency. Gaber et al.?*> propose a
novel intrusion detection model based on the Particle Swarm Optimization (PSO) and Bat algorithm (BA) for
feature selection and the RF classifier for the classification of malicious behaviours in IloT-based network traffic.
Altunay and Albayrak®® developed three techniques for intrusion detection in IIoT networks by employing DL
techniques, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a hybrid
CNN+LSTM.

Wankhade et al.?’” present an ML approach to detect attacks and anomalies by incorporating feature extraction,
data preprocessing, and model training. Altunay et al.?® utilized DL models such as CNN, Autoencoders
(AE), Deep Belief Networks (DBN), and LSTM, which are used for extracting features from SCADA data for
normal and abnormal classification. The classification process also implements techniques, namely the softmax
function, Extreme Learning Machine (ELM), and Multilayer Perceptron (MLP). Qaddoori and Ali* introduce a
security paradigm for edge devices against Message Queue Telemetry Transport (MQTT)-based attacks using an
Intrusion Detection and Prevention System (IDPS). A methodology for training ML methods is also proposed
on high-performance platforms. Furthermore, various security techniques confirm the authenticity and privacy
of exchanged models and data. Altunay, Albayrak, and Cakmak®® propose an AE-based IDS system to detect
security anomalies in critical infrastructures. Ellappan et al.*! introduce the sliding principal component and
dynamic reward reinforcement learning (SPC-DRRL) methodology, which involves preprocessing using min-
max normalization and a robust log-likelihood sliding principal component feature extraction algorithm.
Finally, a dynamic reward reinforcement learning model is proposed. Alani, Mauri, and Damiani®? present a
two-stage system for detecting and classifying cyber-attacks based on ML. Khadidos et al.?* introduce the binary
hunter-prey optimization with a machine learning-based phishing attack detection (BHPO-MLPAD) method
by utilizing a binary HPO model for feature selection. A cascaded forward neural network (CFNN) model
is used for classification, with the variable step fruit fly optimization (VFFO) method used to adjust CFNN
parameters.

Khan et al.* introduce a novel hybrid Trust Management Scheme to enhance trustworthiness and reliability
(MASTER) in industrial sensor networks. By utilizing a clustering approach, MASTER efficiently detects and
mitigates adversarial attacks. It also features a flexible weighting scheme that prioritizes recent interactions in
direct and indirect trust evaluations. Alwasel et al.’> employed a comprehensive experimental method. The model
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also integrated graph features into ML techniques. Zhang et al.’® introduce a CNN-based intrusion detection

model with a Sparse Transformer (CST) that extracts local features via CNN and temporal features utilizing
sparse self-attention. To address class imbalance in the dataset, the EQL v2 loss function is used to enhance
the weights of minority classes. Pundir et al.*’ present MADP-IIME, a malware detection mechanism for IoT-
enabled industrial multimedia environments that employ four ML models, such as Naive Bayes (NB), logistic
regression (LR), artificial neural networks (ANN), and RE, to efficiently detect malware attacks. Ghasemkhani et
al.*¥ introduce Federated Multi-Label Learning (FMLL), a novel methodology integrating federated learning (FL)
principles with a multi-label learning technique. Employing ML strategies, FMLL attained crucial enhancements
in classification accuracy. Alrowais et al.*® propose the MFO-RELM model, which integrates Mayfly
optimization (MFO) with a regularized extreme learning machine (RELM) for cybersecurity threat detection
in IoT environments. Tiwari et al.** developed a high-accuracy intrusion detection model. This method utilizes
PSO for feature selection and employs feature reduction models such as PCA, LDA, and t-SNE. Moreover, the
Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS) are utilized to detect
potentially disruptive payloads. Table 1 summarizes the existing studies on cyberattack detection.

The existing studies incorporate an MGA with an LSTM methodology to improve cyber threat detection
while addressing class imbalance utilizing focal loss. A two-layer intelligent IDS utilizes the ML technique
for packet and flow-based feature analysis, although scalability could be a concern. An ensemble method
implementing diverse standard ML approaches aims for effectual cyberattack detection but may complicate
model interpretation. Other studies present adversarial safety setups incorporating resource allocation and
patrol strategies, while some employ feature selection methods that could overlook relevant attributes, resulting
in computational overhead. Multiagent reinforcement learning for security management exhibit’s ability but
may face difficulty with real-time implementation due to complexity. Techniques, namely stochastic estimation
and data-driven methods, encounter threats in variability and overfitting, while hybrid models integrating
several optimization approaches risk inconsistent detection rates. The dependence on complex architectures
and ensemble methods can hinder effectiveness and interpretability in dynamic IoT environments. Despite
enhancements in IoT security, there still needs to be a substantial gap in addressing the real-time adaptability and
interpretability of IDSs. Many existing models depend on complex approaches that, while efficient in controlled
environments, need help performing consistently in dynamic, real-world scenarios. Moreover, the incorporation
of growing threats and the balance between detection accuracy and computational efficiency still need to be
explored, underscoring the requirement for more robust and streamlined approaches in growing IoT landscapes.

The proposed model

This study presents a novel BMLSSA-CAD method for IToT networks. The technique mainly intends to improve
security in the IIoT platform by detecting cyberattacks. The BMLSSA-CAD technique contains procedures like
min-max normalization, COA-based FS, BBN-based cyberattack detection, and SSA-based hyperparameter
tuning. Figure 1 illustrates the workflow of the BMLSSA-CAD method.

Min-max normalization

Initially, the BMLSSA-CAD technique undergoes a min-max scalar that can be used to normalize the input data.
Min-max scaling (feature scaling or min-max normalization) is a commonly used data preprocessing in statistics
and ML models*!. Min-max scaling aims to convert the numerical value of a feature into a particular range,
usually between 0 and 1. This can be done by subtracting the least values from the data points and dividing the
results by the range (the difference between the minimum and maximum values). Min-max scaling is especially
suitable when handling features with varying scales, as it ensures that each feature equally contributes to the
analysis. This normalization method helps enhance the performance of ML approaches, particularly those
sensitive to the measure of input features and can improve convergence during training.

Feature selection using COA

The BMLSSA-CAD technique involves a COA-based FS method to elect an optimal feature subset. Chameleon is
a hierarchical clustering method that uses a qualitative model*2. This model is advantageous for feature selection
because it can effectively balance exploration and exploitation. Unlike conventional models, COA adapts
dynamically to the landscape of the feature space, allowing it to detect optimal feature subsets that enhance model
performance while minimizing redundancy. Its hybrid nature incorporates the merits of swarm intelligence
and local search strategies, making it robust against local minima. Furthermore, COA is appropriate for high-
dimensional datasets, often in complex domains like IoT security. By concentrating on the most informative
features, COA can improve computational efficiency and mitigate model complexity, ultimately improving
generalization and accuracy. These merits make COA a compelling choice over other feature selection techniques,
particularly in scenarios where data quality and relevance are critical. In this work, if the computations and
intersections between them correspond to the computations and intersections of cluster items, then the two
clusters are merged. Then, the data item is converted into a small sub-cluster from the shared images, and later,
the subMclass is combined with the hierarchical clustering to get the actual outcome. The unified model assists
in detecting homogeneous or natural groups and is employed for all types of data if the feature is similar. The
Chameleon algorithm considers cluster computation and connectivity, particularly the inherent properties of
clusters, to detect related sub-clusters. Figure 2 indicates the workflow of the COA approach.

The Chameleon method describes the property as a k-nearest neighbour graph. The KXpoint signifies a
data object in the nearest neighbour graph, and if the data A is the kXnearest object of data B, then the A and
B objects are the edges. The closest image of the K-community can be attained dynamically. Community: The
concept of K concept is formulated: the local electricity of an object can be defined by the place density where
the object is. The sibling density defines the electrical community of objects. In dense population areas, the
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Ref.
No.

Objective

Method

Dataset

Measures

To develop the IoT-defender framework for detecting
cyberattacks in IoT networks

MGA, LSTM, fine-tuning of LSTM
parameters using a GA fitness
function

BoT-IoT, UNSW-NBI15,
N-BaloT

Accuracy, detection rate, precision
score, and false alarm rate

To develop an intelligent two-layer IDS for IoT

Two-layer architecture, ML, feature
selection

Standard dataset

Packet and flow-based accuracy

To develop a cyber-attack detection framework for the IToT

HGB, CatBoost, and RF, hard voting
classifier

CICIDS2017 dataset

Accuracy, recall, precision, F1-score,
AUGC, ROC, and MCC

To develop a DRL-based security defence strategy

SDSA, D3QN

ToT traffic datasets

Standard measures

To develop a model for efficient intrusion detection in IloT
networks

Chi-square statistical method,
XGBoost, bagging, ET, RF,
AdaBoost

TON_IoT dataset

Accuracy, recall, precision, and
Fl-score

To develop a multiagent DRL approach for autonomous security
management in decentralized networks

Finite random game network
attack—defence model, synchronized
interactive training mechanism

Experimental simulations
in various network
configurations

Standard measures

To develop a stochastic framework utilizing a novel ADL model

Network forensic systems

Bot-IoT dataset

Simulation of IoT network traffic

To develop a data-driven approach

SMOTE, automated ML

IoT network traffic
datasets

Standard measures

To address the open set recognition challenge in IoT-specific
NIDS

SSOA, RNN

Benchmark dataset

Classification accuracy

To enhance intrusion detection capabilities in IoT environments

Supervised classification techniques

InSDN dataset

Accuracy

To strengthen cybersecurity threat detection in IoT environments

WVA, HPSO

BoT-IoT, MQT Tset,
ToT-23

Precision, accuracy, specificity,
F-measure, and recall

To accurately detect anomalies in JoT-enabled smart cities

CSSA, RNN, BPEO

UCI-SECOM, UNSW
NB-15

Accuracy

To enhance resource allocation and workload distribution in
cloud-assisted CIoT

LSO, load balancing and workload
scheduling techniques

Benchmark dataset

Makespan, response time, resource
utilization rate, execution time,
latency, throughput, and delivery rate

To propose a GA-mADAM-IIoT for effective intrusion threat
detection in IToT networks

GA, LSTM, mADAM, CCE, SHAP

SWaT, WADI

Accuracy, AUC, recall, precision,
Fl-score, MCC

To propose a novel intrusion detection model

PSO, BA, RF

WUSTL-IIOT-2021
dataset

Accuracy, recall, precision, and
F1-score

To develop and evaluate three deep learning models for intrusion
detection in IToT networks

CNN, LSTM, CNN + LSTM

UNSW-NBI15, X-IIoTID
dataset

Accuracy

Attack detection rates and False

classification of cyber-attacks on smart grids

detection dataset

2 To enhance the security of IIoT networks ML models IToT network data .
positive rates

To analyze the efficiency of various DL models for anomaly-based | CNN, AE, DBN, LSTM, softmax Positive and negative aspects of each
2

intrusion detection systems in SCADA networks function, ELM, MLP SCADA network datasets approach

To develop a security paradigm for edge devices that utilizes ML
29

models to detect MQT T-based attacks ML, IDPS MQTT attack datasets Standard measures
0 To develop and evaluate an AE-based IDS AE UNSW-NBI15 dataset Accuracy
31 ("1;0 de\felop and evaluate_ an SPC-DRRL model for enhancing the SPC, DRRL TON_IoT dataset Attack detection time, computational

etection performance in IToT networks overhead, and error rate

2 To develop a two-stage ML system for the efficient detection and ML DNP3 intrusion Detection and attack type

classification score

To develop a BHPO-MLPAD method for detecting phishing
attacks in IoT

BHPO, CFNN, VFFO

UNSW dataset

Accuracy, precision, recall, F-score,
and AUC

To enhance security, trustworthiness, and collaboration in IWSNs
through a novel hybrid Trust Management Scheme

Multi-layered assessment and
clustering approach, ML models

Varying percentages of
malicious sensor nodes

Malicious behavior detection rate,
FNR, throughput rates, and energy
consumption

To enhance the accuracy of portscan attack detection in IIoT
networks

Graph representation, data
preprocessing, ML techniques

ISOT-CID

Standard measures

To develop an effective intrusion detection model for IoT
networks

CNN, sparse transformer, EQL v2
loss function

Edge_IToT, UNSW-
NB15, CICIDS-2017,
CICIDS-2018

Detection accuracy, recall rate and
F1 score

To develop a robust MADP-IIME for IoT-enabled industrial
multimedia environments

NB, LR, ANN, RF

Standard dataset

Accuracy, precision, recall, and F1
score

To develop and evaluate an FMLL approach

FL principles, multi-label
classification strategy, base classifier

Ampbhibians, Anuran-
Calls-(MFCCs),
HackerEarth-Adopt-A-
Buddy datasets

Accuracy, precision, recall, and
F-score

To develop and evaluate the MFO-RELM model for effective
cybersecurity threat detection and classification in IoT

Preprocessing of IoT data, RELM,
MFO

N-BaloT dataset

Accuracy, precision, recall, and
F-score

To develop a high-accuracy intrusion detection technique for
IIoT networks

PSO, PCA, LDA, t-SNE, GAM,
MARS

WUSTL-IIOT-2021

Accuracy, latency reduction

Table 1. Summary of existing studies on cyberattack detection in IToT.
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Fig. 1. Working flow of BMLSSA-CAD technique.

community can be defined narrowly. In the object distribution, the group defined is more comprehensive, and
the density area is represented by edge weight. The Chameleon defines the similarity among the clusters using

the relative approximation RC'(C}, C;) and the relative connection RI(C;, C;) of both

(1) Relative interconnection RI(C;, C;) defines the standardization of the internal con
and the absolute connection between C; and C};

clusters.

nection of both clusters
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Step 1 Start

Step 1 Initialize the Parameters of COA

Step 1 Initialize the Population of Chameleons

Step 1 Evaluate the Fitness value of each Chameleon

Step 1 Group Chameleons into Clusters

Step 1 Apply Movement Phase

Step 1 Apply Adaptation Phase

Step 1 Re-Evaluate the Fitness of the Moved Chameleons
Step 1 Update the Best Fitness Values

Step 1 Return the Best Optimal Solution

Step 1 Stop

Fig. 2. Workflow of COA technique.

‘Ecisci |

RI(C, Cj):—%|ECi|+|E0j}

(1

Where EC¢, ¢, denotes the truncated edge of the cluster having C; and C}; categorized into C; and C;;ECg; (
or ECc; ) shows the size of minimal truncated bisector (the weight amount of edges that should approximately
split into two equivalent parts)

(2) Relative approximation (C;,C;) defines the Normalization of absolute approximation between C; and C}
regarding the internal approximation of both clusters.
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SEC(Cl,C-)

|Cil Ci )

, <]
|Ci\+|Cj|SEC+ I, H’|C |SECC

RC (Cy, Cy) =

Where the average weight of edges interconnecting vertices and minimal truncated bisector C; and Cjare
indicated asSEc and Sgc(cy ,Cj),correspondingly.

The FF assumes the classifier results and the number of selected attributes. It increases the classifier efficiency
and reduces the size of chosen attributes. Then, the following FF is used to assess the solutions.

_H#SE

Fitness = a x ErrorRate + (1 — ) * #All_F

3)

In Eq. (3), ErrorRate indicates the classifier error value using the chosen attributes and is calculated as the
ratio of incorrect classifier to the number of classifications made, ranging within [0,1]. @ controls the impact of
classifier quality and subset length, and « is fixed at 0.9. # All __F is the overall quantity of features from the new
data, and #S'F refers to the number of attributes chosen.

Cyberattack detection using BBN model

The BMLSSA-CAD technique uses the BBN model for cyberattack detection?®. This approach is an ideal choice
for cyberattack detection due to its capacity to handle uncertainty and incomplete data, which are general in
real-world scenarios. BBNs utilize a probabilistic framework that allows for integrating prior knowledge and
updating beliefs based on new evidence, making them adaptable to growing threats. Figure 3 illustrates the
structure of BBM model. This characteristic enables the approach to efficiently analyze complex relationships
between diverse variables, such as attack vectors and system vulnerabilities. Furthermore, BBNs provide clear
interpretability, allowing security analysts to comprehend the rationale behind detection decisions. Compared
to conventional ML techniques, BBNs can present enhanced robustness in dynamic environments where data
may fluctuate. This makes them specifically suited for cybersecurity applications where precise risk assessment
is significant. As a directed acyclic graph (DAG), BBN contains a collection of nodes and conditional probability,
indicating joint distribution probability amongst the node variables. The parent node and child node are two
kinds of nodes in BBN. One of the significant aspects of BBN is that joint distribution probability is easily
determined. In BBN, joint distribution probability P (X),X = (X1, X2, X3, ..., X») when the probability of
X parent node is described by Pa (X;):

P(X) = (X1, X2, Xs,..., Xo) = [ [ P(Xi|Pa (X)) (4)

In Eq. 4), X =(X1, X2, X3,...,X,,) represents the BBN variable, and the amount of variables in BBN is n
. When there is new evidence, then the probability can be dynamically updated. If the event Y is given to BBN,
then P (X|Y) of event X is represented as:

PX)P(Y]X) _ P(X)P(Y]X) 5)
P(Y) i PY]X)

P(X|Y)=

InEq. (5), P (Y) and P (X) marginal probability and the previous probability of events Y and X.

The architecture of BBN mainly consists of two stages: (1) Parameter learning defines the conditional
probability at node variable. (2) Structure learning defines the factor nodes (variables) and finds the independent
or dependent relationships between them to design a DAG. The construction of BBN has the following:

1. The variable node of BBN is defined by expert experience and domain knowledge (D K) or prior knowledge.
2. The BBN is obtained by automatically learning the sample dataset through ML methods.
3. The structure of BBN is acquired through the data fusion method using ML and DK.

Meanwhile, the third technique incorporates the strengths of DK and M L; it removes the pitfalls that arise by
using specific processes. The popular ML methods, including hill-climbing and K2, perform structural learning
from the dataset. The K2 model performs structured learning that searches according to the nodes’ order
through a limited number of parent nodes. The K2 model exploits posterior probability as a scoring function:

(1) Compute the Cooper-Herskovits (C'H) score for X; based on the order of node p.

i (atijix) (ovije + mijk)
CH = l J l J J
ZZ OgF a’L]* er”* +Z Og al}k) (6)

=1 j=1
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Fig. 3. Architecture of BBN technique.

InEq. (6), theamount of samples m . subjected to X; = k,m (X;) = f,mije = > 00 Mg, Qije = 0 Qi
,and Qi = P(Xz = k|7r (X»L) = ])

(2) IfX;(i # j),thenaddarc (X; — X;), which makes the CH (X, 7; U X;)maximum. 7; is the parent of
X;.

Hyperparameter tuning process

Finally, the hyperparameter tuning process is performed by utilizing the SSA model to enhance the performance
of the BBN technique?*. This utilization presents various merits over conventional optimization techniques. SSA
is inspired by the foraging behaviour of sparrows, allowing it to effectively explore the solution space and avoid
local optima, thereby enhancing the convergence rate. Its population-based approach improves exploration and
exploitation, resulting in a more robust search for optimal hyperparameters. Unlike gradient-based techniques,
SSA does not need derivative data, making it appropriate for intrinsic and non-differentiable objective functions
often faced in BBNs. Moreover, SSA effectively handles high-dimensional spaces, which is significant for BBNs
with various parameters. Overall, its adaptability and effectiveness make SSA an ideal option for improving BBN
performance compared to other hyperparameter tuning methods.

The SSA simulates the behaviour of sparrow populations that are separated into scroungers and producers
when discovering food. Mainly, the producers are highly liable for locating food in an extensive atmosphere. They
want to find the sparrow population’s position and way of food. Every separate sparrow’s portion is not stable,
and they want to be capable of adapting to change as per the condition. Naturally, sparrows on the border are
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very weak to attack; they slowly alter their locations to change nearer to the midpoint of the populace to upsurge
their safety. Furthermore, every sparrow knows that if a single sparrow identifies risk, the entire population
travels from its place to a secure situation to endure searching.

SSA progresses by initially setting a cluster of randomly generated particles and series the highest iteration
count. IV denotes the population dimension. Every particle has speed and location assets.

Producer: They have a higher foraging exploration region when compared to the scrounger because to meet
its food requirements, it also wants to deliver the way of the foraging area for the whole populace. The location
of the i*" particles is upgraded at every iteration as:

g [ ot e (o) if R<ST
¥4 Q L if R>ST

(7)

3

Here, k denotes the existing iterations count, kmaxspecifies the highest number of iterations, o refers to the
randomly produced value from the interval of zero and one, () represents the randomly generated number
focused on the usual distribution, L refers to the matrix of 1XDD where entire elements are 1, R refers to the
alarm value in the interval of [0and1], and ST states to be secure threshold within [0.5, 1].

If R < ST, the region has no risk, and the producer searches nearby. If R > ST, the producer intellects
hazard and changes to an arbitrary path.

Scrounger: All particles without producers are said to be scroungers. They always follow the producer data.
When the scrounger observes that the producers have originated a superior foraging region, it offers an existing
location and travels to the superior foraging region to stare for food. The location of the ith scrounger particles
(z:) has been upgraded throughout every iteration as follows:

k _ gk . .
LR Q- exp (LU o ) if >

i = (8)
piTt ek —pf T AL i i<

I\D‘Z m‘z

Here, py, refers to the global finest place, p., denotes the worst location, and A’ denotes the D x D matrix with
arandom numberl or —1.

The volume of food attained by the scrounger is too small (¢ > N 5 ), then it flies towards another location to
discover food. If i < &, the scrounger monitors the producer to an optlmum foraging region.

Watchman: In the set instructions, every particle has an investigation and initial cautionary device. It may be
alert of hazards and so unrestraint the existing region and travel to a secure area. A particle is named watchman.
The location of the ith watchman particle is upgraded as below:

S ps+ B *Pb| if fi> ©)
' pb+K'ﬁ if fi="Jo

Here, 3 denotes the factor of step size regulation, and its significance is a randomly generated integer with a
normal distribution by the variance of 1 and the mean of 0. K refers to the randomly produced number within
[1and 1]. At the same time, f., and f; correspondingly specify the worst and best fitness values. A small constant
€ is used to stop the denominator from being 0.

If fi > fu,the particle is situated at the border of the populace, and it especially travels nearer to the midpoint.
When f; = fb, the particle is located in the centre of the populace, and it travels arbitrarily to acquire near to
other particles to evade being hunted.

The comprehensive calculation workflow of SSA is given below. Figure 4 depicts the flowchart of SSA.

Step 1: Set the populace by initializing the size IV, the highest iteration count, a protection threshold, and the
ratio of producers and sparrows alert of hazards.

Step 2: Compute the fitness of the existing populace’s individual and type to discover the present worst and
best values.

Step 3: Pick the particle with decent fitness value as a producer as per the percentage and upgrade the location
as per Eq. (7);

Step 4: Give the residual particles as scroungers and upgrade their locations as per Eq. (8);

Step 5: Arbitrarily pick a few individuals as particles that are alert of hazards per the percentage and give
them as watchmen. Upgrade their locations based on Eq. (9) and compute the novel fitness value. Upgrade the
locations when the fitness is superior to the present optimum value.

Step 6: Compute the value of fitness and preserve the location of the optimum individuals;

Step 7: Confirm that the termination condition is stratified, then stop the process and return to the optimum
outcome. Otherwise, go to Step 2.

The SSA develops an FF to accomplish enriched classifier accuracy and describes a positive integer to
characterize the higher performance of the solution candidate. Now, the reduction of classifier error is taken as
a FF, as follows:

fitness (z;) = Classifier ErrorRate (z;)

_ No.of misclassified samples < 100 (10)
B Total No.of samples
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Fig. 4. Flowchart of SSA.
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Performance validation
The performance validation of the BMLSSA-CAD method utilizes dual benchmark datasets such as the UCI
SECOMD and UNSWNB51 datasets®.

Dataset description
The UNSWNB51 dataset contains 10,000 samples under ten classes, as defined in Table 2. The UNSW-NB15
dataset contains 42 features (excluding labels) across 10 class labels, encompassing nine attack types and one
normal category, such as Normal, Fuzzers, Analysis, Exploits, Backdoors, Generic, Shellcode, DoS, Worms, and
Reconnaissance. Additionally, the UCI-SECOM dataset consists of 591 features with two classes, providing a
rich resource for evaluating ML techniques in the context of intrusion detection and anomaly classification.
The datasets are chosen due to their relevance in cybersecurity, especially for network intrusion detection.
Recognized for its representation of real-world network traffic patterns and diverse cyber threats, this dataset is
ideal for training and assessing models focused on efficiently recognizing anomalies and attacks. Its extensive
coverage of several attack scenarios and network activities confirms thorough testing of the performance and
applicability of the BMLSSA-CAD model in complex cybersecurity environments.

Data Analysis

Figure 5 establishes the classifier results of the BMLSSA-CAD model below the UNSWNB51 dataset. Figure 5a
and b portrays the confusion matrices offered by the BMLSSA-CAD model on 70%0fTRAS:30%0fTESS. The
experimental value indicated that the BMLSSA-CAD method has detected and classified each of the ten classes.
Also, Fig. 5c and d demonstrates the attack recognition analysis of the BMLSSA-CAD model on 70:30 of TRAS/
TESS. The figure stated that the BMLSSA-CAD approach has detected ten classes proficiently.

The attack detection outcomes of the BMLSSA-CAD technique on the UNSWNB51 dataset are described in
Table 3; Fig. 6. The simulation value implies that the BMLSSA-CAD technique recognizes ten classes proficiently.
With 70%TRAS, the BMLSSA-CAD technique gains an average accuy of 99.56%, prec, of 97.84%, sensy of
97.82%, specy of 99.76%, and Fscore of 97.81%. Also, with 30%TESS, the BMLSSA-CAD method obtains an
average accuy of 99.55%, prec,, of 97.80%, sens, of 97.76%, specy of 99.75%, and Ficore of 97.77%.

The classifier outcomes of the BMLSSA-CAD technique are graphically offered in Fig. 7 in the training
accuracy (TRAAC) and validation accuracy (VALAC) curves on the UNSWNB51 dataset. The figure displays
a clear understanding of the behaviour of the BMLSSA-CAD method over various epochs, representing its
learning procedure and generalization abilities. The figure especially concludes a constant advancement in
the TRAAC and VALAC with increasing epochs. It shows the diverse nature of the BMLSSA-CAD method
in the pattern detection procedure on both datasets. The increase in VALAC summarizes the capability of the
BMLSSA-CAD model to adjust to the TRA dataset. It also precisely classifies hidden datasets, showing strong
generalization skills.

Figure 8 exhibits the training loss (TRLOS) and validation loss (VALOS) outcomes of the BMLSSA-CAD
method over different epochs on the UNSWNB51 dataset. The steady decrease in TRLOS shows that the
BMLSSA-CAD method improved the weights and lessened the classifier error on both datasets. The figure
interprets the BMLSSA-CAD model’s relationship with the TRA dataset, emphasizing its capability to take
patterns within both datasets. The BMLSSA-CAD approach repetitively increases its parameters to decrease the
differences between the forecast and actual TRA classes.

Inspecting the PR curve, as depicted in Fig. 9, the outcomes certified that the BMLSSA-CAD approach
gradually achieves improved PR values below every class on the UNSWNB51 dataset. It demonstrates the better
capabilities of the BMLSSA-CAD method in classifying different classes, exhibiting the capability to distinguish
classes.

In addition, in Fig. 10, ROC curves formed by the BMLSSA-CAD technique outperformed the identification
of dissimilar labels on the UNSWNB51 dataset. This delivers a comprehensive understanding of TPR and FRP
tradeoffs over discrete detection thresholds and epochs. The figure emphasizes the boosted performance of the
BMLSSA-CAD method below all classes, delineating its efficacy in addressing many classification problems.

UNSWNBI5 dataset
Classes No. of samples
Normal 1000
Generic 1000
Exploits 1000
Fuzzers 1000
DoS 1000
Reconnaissance | 1000
Analysis 1000
Backdoor 1000
Shellcode 1000
Worms 1000

Total samples 10,000

Table 2. Details on the UNSWNB51 dataset.
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Fig. 5. UNSWNB51 dataset (a, b) Confusion matrices and (¢, d) Classifier outcome.

Table 4; Fig. 11 showa detailed review of the BMLSSA-CAD method with existing methods on the UNSWNB51
dataset®. The experimental value stated that the BMLSSA-CAD method reaches enhanced performance. It
is noticed that the ANN and KNN models have shown reduced performance. Simultaneously, DT, VLSTM,
SSA-CRNN, MFSDL-ADIIoT, and GJODL-CADC models have achieved considerable performance. But, the
BMLSSA-CAD approach surpassed the other models with maximum prec,, recai, accuy, and Fscore of
97.84%, 97.82%, 99.56%, and 97.813%, correspondingly.

The UCI SECOM dataset comprises 5000 samples under two classes, as expressed in Table 5%.

Figure 12 exhibits the performance of the BMLSSA-CAD approach below the UCI SECOM dataset. Figure 12a
and b exemplifies the confusion matrices the BMLSSA-CAD approach provides on 70%o0f TRAS:30%of TESS. The
simulation outcome implied that the BMLSSA-CAD method has precisely recognized and classified all 2-class
labels. Similarly, Fig. 12¢ and d exhibits the attack recognition analysis of the BMLSSA-CAD methodology at
70:30 of TRAS/TESS. The figure stated that the BMLSSA-CAD methodology identified two classes proficiently.

The attack recognition outcomes of the BMLSSA-CAD methodology on the UCI SECOM dataset are described
in Table 6; Fig. 13. The outcomes imply that the BMLSSA-CAD approach identifies dual classes proficiently.
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UNSWNB15 Dataset

Classes ‘Accuy ‘ Prec, ‘Sensy ‘Specy ‘ Fscore
TRAS (70%)

Normal 99.56 97.76 97.61 99.76 97.68
Generic 99.51 99.27 95.89 99.92 97.55
Exploits 99.70 99.16 97.93 99.90 98.54
Fuzzers 99.63 99.26 96.97 99.92 98.10
DoS 99.51 96.23 98.81 99.59 97.50
Reconnaissance | 99.69 97.65 99.30 99.73 98.47
Analysis 99.64 99.71 96.78 99.97 98.22
Backdoor 99.16 93.86 98.01 99.29 95.89
Shellcode 99.56 97.36 98.32 99.70 97.84
Worms 99.67 98.13 98.56 99.79 98.35
Average 99.56 97.84 97.82 99.76 97.81
TESS (30%)

Normal 99.63 97.90 98.79 99.74 98.34
Generic 99.60 98.62 97.28 99.85 97.95
Exploits 99.57 98.16 97.09 99.82 97.62
Fuzzers 99.47 98.34 96.42 99.81 97.37
DoS 99.50 97.01 98.48 99.63 97.74
Reconnaissance | 99.63 98.26 97.92 99.82 98.09
Analysis 99.77 99.64 97.90 99.96 98.77
Backdoor 99.33 95.42 97.99 99.48 96.69
Shellcode 99.60 96.61 99.30 99.63 97.94
Worms 99.43 98.01 96.41 99.78 97.20
Average 99.55 97.80 97.76 99.75 97.77

Table 3. Attack detection outcome of BMLSSA-CAD technique on the UNSWNB51 dataset. Significant values
are in bold.

With 70%TRAS, the BMLSSA-CAD approach obtains an average accu, of 98.97%, prec, of 98.97%, sens,
of 98.97%, specy of 98.97%, and Fiscore of 98.97%. Also, with 30%TESS, the BMLSSA-CAD method gains an
average accuy of 98.93%, prec, of 98.93%, sens, of 98.93%, specy of 98.93%, and Ficore of 98.93%.

The performance of the BMLSSA-CAD technique is graphically shown in Fig. 14 in the TRAAC and VALAC
curves method on the UCI SECOM dataset. The figure shows beneficial clarification into the behaviour of
the BMLSSA-CAD technique over numerous epochs, validating its learning process and generalization skills.
The figure determines a progressive enhancement in the TRAAC and VALAC with increasing epoch counts.
It guarantees the adaptive nature of the BMLSSA-CAD method in the pattern detection procedure on both
datasets. The increasing tendency in VALAC describes the capability of the BMLSSA-CAD method to adapt to
the TRA dataset, which also excels in providing precise identification of hidden datasets, representing strong
generalization abilities.

Figure 15 provides a detailed review of the TRLOS and VALOS outcomes of the BMLSSA-CAD technique
over different epochs on the UCI SECOM dataset. The gradual decrease in TRLOS highlights the BMLSSA-CAD
technique’s improved weights and decreased classifier error on both datasets. The figure specifies an extensive
knowledge of the BMLSSA-CAD model’s relationship with the TRA dataset, underlining its ability to take
patterns within both datasets. Notably, the BMLSSA-CAD methodology repeatedly improves its parameters in
decreasing the alterations among the forecast and real TRA classes.

The results of inspecting the PR curve, as exposed in Fig. 16, showed that the BMLSSA-CAD method gradually
achieves improved PR values below every class on the UCI SECOM dataset. This confirms the improved skills of
the BMLSSA-CAD technique in classifying separate classes and demonstrates its ability to detect classes.

Besides, in Fig. 17, ROC curves formed by the BMLSSA-CAD methodology outperformed in identifying
different labels on the UCI SECOM dataset. This provides extensive knowledge of the tradeoff between TPR
and FRP over separate detection thresholds and epochs. The figure highlighted the improved performance of
the BMLSSA-CAD technique below all classes, delineating its efficacy in addressing the classification problem.

Table 7; Fig. 18 show the comparative results of the BMLSSA-CAD method with current methods on the
useful UCI SECOM dataset. The outcome concluded that the BMLSSA-CAD methodology attains greater
performance. It is observed that the DNN and ensemble techniques have shown condensed performance.
Simultaneously, PSO ensemble, SSA-CRNN, and GJODL-CADC methodologies have attained considerable
performance. However, the BMLSSA-CAD approach exceeded the other models with the highest prec,, reca,
accuy, and Fscore of 98.93%, 98.93%, 98.93%, and 98.93%, respectively. Thus, the BMLSSA-CAD approach was
executed for an enhanced detection process.
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Fig. 6. Average of BMLSSA-CAD method on UNSWNB51 dataset.

Conclusion

This study presents a novel BMLSSA-CAD method in the IIoT environment. The presented BMLSSA-CAD
method mainly intends to improve security in the IIoT platform by detecting cyberattacks. The BMLSSA-
CAD technique contains procedures such as min-max normalization, COA-based FS, BBN-based cyberattack
detection, and SSA-based hyperparameter tuning. Initially, the BMLSSA-CAD technique utilizes a min-max
scalar to normalize the input data. Also, the BMLSSA-CAD technique employs a COA-based FS approach to elect
an optimum feature subset. The BMLSSA-CAD technique uses the BBN model for cyberattack detection. The
hyperparameter tuning method is performed by using the SSA to improve the performance of the BBN model.
The performance of the BMLSSA-CAD method can be studied using a benchmark dataset. The experimental
validation of the BMLSSA-CAD method highlighted superior accuracy outcomes of 97.84% and 98.93%
compared to recent techniques on the IIoT platform. The limitations of the BMLSSA-CAD approach comprise
potential threats in scaling to massive datasets due to the computational demands of the COA model for feature
selection and the SSA for hyperparameter tuning. Furthermore, while BBN is effectual for modelling reliabilities
among features, they may encounter limitations in comprehending convolutional associations in highly dynamic
and growing cyberattack scenarios. Future studies may concentrate on optimizing the effectualness of COA and
SSA methods, exploring ensemble models to improve the robustness of the model, incorporating real-time data
streams for continuous monitoring, and addressing interpretability threats to enhance trust and usability in
practical cybersecurity applications.
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Fig. 8. Loss curve of BMLSSA-CAD technique on UNSWNB51 dataset.
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Precision-Recall Curve - UNSWNB15 Dataset
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UNSWNBI5 Dataset

Methods Prec, | Reca; | Accuy | Fseore
ANN 57.84 5892 | 79.26 5498
KNN 63.03 5326 | 71.22 52.93
DT 64.29 5357 | 70.74 48.83
VLSTM 67.08 5327 | 96.08 58.83
SSA-CRNN 67.14 5917 | 98.82 59.91
MESDL-ADIIoT | 67.11 6035 | 99.10 60.37
GJODL-CADC | 97.30 97.17 | 99.34 97.20
BMLSSA-CAD | 97.84 97.82 | 99.56 97.81

Table 4. Comparative analysis of the BMLSSA-CAD model with existing approaches on the UNSWNB51

dataset®.
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Fig. 11. Comparative analysis of the BMLSSA-CAD method on the UNSWNB51 dataset.
UCI SECOM Dataset
Classes No. of samples
Class 1 2500
Class 2 2500
Total samples | 5000
Table 5. Details of the UCI SECOM dataset. Significant values are in bold.
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Fig. 12. UCI SECOM dataset (a, b) Confusion matrices and (c, d) Classifier outcome.
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UCI SECOM Dataset

Classes | Accuy | Precn, |Sensy |Specy | Fscore
TRAS (70%)

Class1 | 99.25 98.68 99.25 98.70 98.96
Class2 | 98.70 99.26 98.70 99.25 98.98
Average | 98.97 98.97 98.97 98.97 | 98.97
TESS (30%)

Class1 | 98.96 98.96 98.96 98.91 98.96
Class2 | 98.91 98.91 98.91 98.96 98.91
Average | 98.93 98.93 98.93 98.93 | 98.93

Table 6. Attack detection outcome of BMLSSA-CAD technique on the UCI SECOM dataset. Significant values
are in bold.
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Fig. 13. Average of BMLSSA-CAD technique on UCI SECOM dataset.
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Training and Validation Accuracy - UCI SECOM Dataset
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Fig. 14. Accu, curve of BMLSSA-CAD technique on UCI SECOM dataset
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Fig. 16. PR curve of BMLSSA-CAD technique on UCI SECOM dataset.
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Fig. 17. ROC curve of BMLSSA-CAD technique on UCI SECOM dataset.
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Methods Prec, | Reca; | Accuy | Fgeore
DNN Layer 90.37 83.66 92.23 89.85
Ensemble 90.14 88.08 91.14 90.61
PSO Ensemble 91.11 86.84 93.48 90.69
SSA-CRNN 91.79 89.14 97.07 91.00
MESDL-ADIIoT | 92.44 89.89 97.90 91.12
GJODL-CADC | 98.43 98.42 98.54 98.42
BMLSSA-CAD 98.93 98.93 98.93 98.93

Table 7. Comparative analysis of the BMLSSA-CAD approach with existing methods on the UCI SECOM

dataset®.
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Fig. 18. Comparative analysis of BMLSSA-CAD technique on the UCI SECOM dataset.
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