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With the fast-growing interconnection of smart technologies, the Industrial Internet of Things (IIoT) 
has revolutionized how industries work by connecting devices and sensors and automating regular 
operations via the Internet of Things (IoTs). IoT devices provide seamless diversity and connectivity 
in different application domains. This system and its transmission channels are subjected to targeted 
cyberattacks due to their round-the-clock connectivity. Accordingly, a multilevel security solution 
is needed to safeguard the industrial system. By analyzing the data packet, the Intrusion Detection 
System (IDS) counteracts the cyberattack for the targeted attack in the IIoT platform. Various 
research has been undertaken to address the concerns of cyberattacks on IIoT networks using machine 
learning (ML) and deep learning (DL) approaches. This study introduces a new Bayesian Machine 
Learning with the Sparrow Search Algorithm for Cyberattack Detection (BMLSSA-CAD) technique in 
the IIoT networks. The proposed BMLSSA-CAD technique aims to enhance security in IIoT networks 
by detecting cyberattacks. In the BMLSSA-CAD technique, the min-max scaler normalizes the input 
dataset. Additionally, the method utilizes the Chameleon Optimization Algorithm (COA)-based feature 
selection (FS) approach to identify the optimal feature set. The BMLSSA-CAD technique uses the 
Bayesian Belief Network (BBN) model for cyberattack detection. The hyperparameter tuning process 
employs the sparrow search algorithm (SSA) model to enhance the BBN model performance. The 
performance of the BMLSSA-CAD method is examined using UNSWNB51 and UCI SECOM datasets. 
The experimental validation of the BMLSSA-CAD method highlighted superior accuracy outcomes of 
97.84% and 98.93% compared to recent techniques on the IIoT platform.
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The emergence of the Internet of Things (IoT) paradigm in Industrial Automation and Control Systems (IACS) 
is named Industrial IoT (IIoT), which currently has become very famous1. The IACS has been used recently to 
retain an eye on manufacturing machines and methods, so the IIoT-based systems have become a vital part of each 
crucial infrastructure in smart industries. The significant portions of these methods are the data acquisition and 
supervisory methods that frequently control the IACSs2. Real monitoring, contact with the devices, data analysis, 
and logging of every event in the methods are the foremost parts of these systems. Therefore, the arrival of the 
IoT model in these systems improves the safety and network intellect in the optimization and computerization 
of industrial methods3. Industrial Internet of Things (IIoT) systems handle vast amounts of data, and their 
applications are often mission-critical and require high availability. It is, therefore, essential to implement robust 
cybersecurity measures to protect these systems adequately. In data management, cybersecurity has become 

1Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint 
Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia. 2 Centro de Investigación en Ciencias Humanas 
y de la Educación - CICHE, Facultad de Ingenierías, Ingeniería industrial, Universidad Tecnológica Indoamérica, 
Ambato, Ecuador. 3Department of Electrical and Computer Engineering, College of Engineering and Information 
Technology, Ajman University, Ajman, United Arab Emirates. 4Department of Computer Science, School of Arts and 
Sciences, University of Central Asia, Naryn, Kyrgyzstan. 5Computer Science Department, Faculty of Computers and 
Information, South Valley University, Qena 83523, Egypt. 6Faculty of Industry and Energy Technology, New Assiut 
Technological University (N.A.T.U.), New Asyut 71684, Egypt. email: josevarela@uti.edu.ec

OPEN

Scientific Reports |        (2024) 14:29285 1| https://doi.org/10.1038/s41598-024-79632-4

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-79632-4&domain=pdf&date_stamp=2024-11-21


indispensable in the current Internet of Things (IoT) environment4. The widespread adoption of IoT devices in 
homes, the integration of smart cars and smart power grids, and the complexity of communication protocols 
used by IoT consumers have significantly increased the exposure of IoT systems to cyber-attacks. Assaults can 
arise through various physical and cyber methods, and both can happen in smart industries and cities5. These 
attacks contain a permanent denial of service (DoS), side-channel, sleep denial attacks, malicious code injection, 
radio frequency blocking, and false node injection. In a cyber-attack, the attacker initially tries to obtain illegal 
access to the system modules by inserting dangerous software like malware into the devices6.

These types of attacks contain distributed DoS attacks (DDoS), ransomware, and man-in-the-middle attacks 
(MITM). Only some models (like signature base) were developed in the literature to resolve the problem. In 
the signature-based model, a group of attacks is tested beside the present doubtful models. If the signature 
extractor technique is not completely capable of taking the separate feature of attacks, it may mainly generate 
false alarms or misdetection of attacks7. This system is not appropriate for classifying unknown assaults and 
undergoes excellent handling overhead. Machine learning (ML) models can identify assaults at execution time 
and consume less processing time than other models. The application of numerous DL models can recognize 
assaults with dual identification and categorize dissimilar types of attacks using multiclass classification, which 
is an active study domain8. While numerous extensive analyses have explored this emerging field of study, the 
survey needs to provide a balanced comparison of various deep learning approaches, particularly in applying 
novel datasets for intrusion detection. The rapid expansion of interconnected devices within IIoT environments 
also intensifies the potential susceptibilities to cyber threats9. Protecting these systems from malevolent attacks is 
paramount to conserving significant infrastructure, averting potential disruptions, and preserving data integrity. 
This study uses novel models to innovate cyberattack recognition methodologies in IIoT settings. By improving 
the resilience and security posture of IIoT systems, this study aims to safeguard the reliability and safety of 
industrial procedures in the face of growing cybersecurity challenges10.

This study introduces a new Bayesian Machine Learning with the Sparrow Search Algorithm for Cyberattack 
Detection (BMLSSA-CAD) technique in the IIoT networks. The proposed BMLSSA-CAD technique aims to 
enhance security in IIoT networks by detecting cyberattacks. In the BMLSSA-CAD technique, the min-max 
scaler normalizes the input dataset. Additionally, the method utilizes the Chameleon Optimization Algorithm 
(COA)-based feature selection (FS) approach to identify the optimal feature set. The BMLSSA-CAD technique 
uses the Bayesian Belief Network (BBN) model for cyberattack detection. The hyperparameter tuning process 
employs the sparrow search algorithm (SSA) model to enhance the BBN model performance. The performance 
of the BMLSSA-CAD method is examined using UNSWNB51 and UCI SECOM datasets. The significant 
contribution of the BMLSSA-CAD method is as follows:

•	 The BMLSSA-CAD approach utilizes min-max scaling to normalize the input dataset, significantly safeguard-
ing uniform feature ranges to improve model convergence and training stability. This step contributes to an 
enhanced predictive accomplishment by reducing the impact of varying data scales, facilitating more efficient 
learning and accurate cyberattack recognition within diverse and dynamic datasets.

•	 The COA method is employed for feature selection, crucial in improving cyberattack detection by detecting 
the most relevant features. This technique mitigates dimensionality, enhancing computational efficiency and 
confirming that the model concentrates on critical indicators of cyber threats. By optimizing feature sets dy-
namically, COA contributes crucially to the accuracy and efficiency of the model in recognizing and reducing 
various cybersecurity risks.

•	 The BMLSSA-CAD model utilizes BBN to model dependencies among features, giving a probabilistic frame-
work that improves cyberattack recognition and classification. By comprehending complex associations 
between variables, BBNs enable the method to conclude potential cyber threats more precisely, enhancing 
overall recognition performance. This method contributes to robust cybersecurity by giving a structured 
methodology to analyze and respond to growing attack patterns based on probabilistic reasoning and feature 
interactions.

•	 The SSA is applied to tune the BMLSSA-CAD technique, which is central in optimizing model parameters 
to improve BBN performance. By systematically altering hyperparameters, SSA enhances the BBN’s ability 
to recognize and reduce cyber threats effectively. This approach contributes to the model’s adaptability and 
efficiency in dynamically adjusting to changing threat landscapes, confirming robust and reliable cyberattack 
recognition and response mechanisms.

•	 The BMLSSA-CAD method innovates by incorporating COA-based feature selection with BBN for cyberat-
tack recognition. This combination gives a structured model to optimize feature sets and model parameters 
dynamically, improving detection accuracy and efficiency in complex cybersecurity environments. By utiliz-
ing COA for dimensionality reduction and BBN for probabilistic reasoning, the model gives a robust frame-
work to adaptively evaluate and respond to growing cyber threats, thereby improving cybersecurity abilities 
in real-time monitoring and threat mitigation.

Related works
Saheed et al.11 proposed the IoT-defender architecture that integrates a Modified Genetic Algorithm (MGA) 
method with the LSTM model for determining cyber threats in IoT. The GA fitness function (FF) was employed 
for fine-tuning. To resolve the problem of class imbalance, the model used the focal loss operation that offers 
superior weights to minority categories, thereby enhancing the capability of the system to learn from the specific 
classes. Alani and Awad12 considered IoT security and introduced an intelligent 2-layer IDS for IoT. The model’s 
intelligence was obtained by ML methods for IDS, with a 2-layer model dealing with packet- and flow-based 
features. The individuality and originality of the technique were developed by integrating the ML and selection 
units for flow- and packet-based features. Golchha et al.13 projected a cyberattack detection model for Industrial-
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IoTs (IIoTs) using the Voting-based Ensemble Learning algorithm. An ensemble of the standard ML methods, 
including Random Forest (RF), Histogram Gradient Boosting (HGB), CatBoost, and hard voting methods, have 
been implemented to identify cyberattacks effectively. Feng et al.14 designed an innovative adversarial security 
setup and developed a security game system which combines defence resource allocation and patrol assessment. 
SDSA computes the distribution approach of the best patrolling scheme that must be more appropriate for the 
protector by examining the strategy under the discrete action space and allows defence agents to proficiently 
cooperate via training the Dueling Double Deep Q-Network (D3QN). Awotunde et al.15 developed ensemble 
methods that assisted with the FS model for IDS in the IIoT environment. The Chi-Square Statistical technique 
could be deployed for FS, and diverse ensemble methods like AdaBoost, Bagging, RF, eXtreme gradient boosting 
(XGBoost), and extra trees (ET)techniques must be executed for the identification of intrusion utilized to the 
datasets.

Ren et al.16 introduced a multiagent deep reinforcement learning (DRL) automated security management 
technique. It forms a limited random game network attack-defense system. Leveraging RL methods, an 
autonomous defence agent will be developed. Besides, a network attack agent was designed. Additionally, 
drawing motivation in MINIMAX Q-learning, a cooperative training method, was considered for addressing the 
complexity of surrounding variability. Alattas and Mardani17 presented an innovative system model dependent 
upon a stochastic estimation of finding the parameters reliant on a new adaptive-DL (ADL) method. An 
innovative architecture can be developed to integrate the component of arbitrariness rather than determined 
models. The proposed technique deliberated the network forensic systems and IDS. The method was introduced 
based on the five ordered protection phases. Xu et al.18 projected a data-driven method for anomaly and 
intrusion detection in which various techniques could deal with and filter the information. The superiority of the 
training dataset was increased by employing the Synthetic Minority Oversampling Technique (SMOTE) model 
and mutual information (MI). Automatic ML has also been used for identifying the method with auto-tuned 
hyperparameters to be better satisfied for categorizing the data. In19, the open set recognition (OSR) challenge 
in IoT-specific Network IDS (NIDS) is addressed by utilizing image-based data representations for extracting 
geographical traffic patterns. The Recurrent Neural Networks (RNNs) exhibited suboptimal accuracy and lacked 
parallelizability for attack evaluation tasks. The study also presents the Sparrow Search Optimization Algorithm 
(SSOA) as a basis for developing an effective assault classification technique.

Harahsheh, Al-Naimat, and Chen20 propose an improved feature selection technique to mitigate the 
computational overhead on IoT resources while concurrently strengthening intrusion recognition abilities 
within the IoT environment. In21, the Weighted Variational Autoencoder-based Hunter Prey Search (WVA-
HPS) model is introduced. This method implements a weighted variational autoencoder (VA) with weight 
regularization and ensemble averaging, improved by the Hunter Prey Search optimization (HPSO) model to 
reduce overfitting and improve effectualness. Mohammed et al.22 presented a Chaotic Sparrow Search Algorithm 
with DL utilizing the Recurrent Neural Network (RNN-CSSA) model. The technique uses the Binary Pigeon 
optimization Algorithm (BPEO) method for feature selection and the RNN model for classification. Arulkumar 
et al.23 propose a model utilizing the Lanner Swarm Optimization (LSO) technique to optimize resource 
allocation and workload distribution. The LSO technique enhances effectualness. The objective function 
prioritizes diverse virtual machines (VMs) depending on their accomplishment times. Saheed, Omole, and 
Sabit24 introduce the GA-mADAM-IIoT model for IIoT, by integrating a genetic algorithm for feature selection 
with a modified Adam optimizer for LSTM networks. The model also incorporates an attention mechanism 
to improve significant data processing and utilizes SHAP for improved transparency. Gaber et al.25 propose a 
novel intrusion detection model based on the Particle Swarm Optimization (PSO) and Bat algorithm (BA) for 
feature selection and the RF classifier for the classification of malicious behaviours in IIoT-based network traffic. 
Altunay and Albayrak26 developed three techniques for intrusion detection in IIoT networks by employing DL 
techniques, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a hybrid 
CNN + LSTM.

Wankhade et al.27 present an ML approach to detect attacks and anomalies by incorporating feature extraction, 
data preprocessing, and model training. Altunay et al.28 utilized DL models such as CNN, Autoencoders 
(AE), Deep Belief Networks (DBN), and LSTM, which are used for extracting features from SCADA data for 
normal and abnormal classification. The classification process also implements techniques, namely the softmax 
function, Extreme Learning Machine (ELM), and Multilayer Perceptron (MLP). Qaddoori and Ali29 introduce a 
security paradigm for edge devices against Message Queue Telemetry Transport (MQTT)-based attacks using an 
Intrusion Detection and Prevention System (IDPS). A methodology for training ML methods is also proposed 
on high-performance platforms. Furthermore, various security techniques confirm the authenticity and privacy 
of exchanged models and data. Altunay, Albayrak, and Çakmak30 propose an AE-based IDS system to detect 
security anomalies in critical infrastructures. Ellappan et al.31 introduce the sliding principal component and 
dynamic reward reinforcement learning (SPC–DRRL) methodology, which involves preprocessing using min-
max normalization and a robust log-likelihood sliding principal component feature extraction algorithm. 
Finally, a dynamic reward reinforcement learning model is proposed. Alani, Mauri, and Damiani32 present a 
two-stage system for detecting and classifying cyber-attacks based on ML. Khadidos et al.33 introduce the binary 
hunter–prey optimization with a machine learning-based phishing attack detection (BHPO-MLPAD) method 
by utilizing a binary HPO model for feature selection. A cascaded forward neural network (CFNN) model 
is used for classification, with the variable step fruit fly optimization (VFFO) method used to adjust CFNN 
parameters.

Khan et al.34 introduce a novel hybrid Trust Management Scheme to enhance trustworthiness and reliability 
(MASTER) in industrial sensor networks. By utilizing a clustering approach, MASTER efficiently detects and 
mitigates adversarial attacks. It also features a flexible weighting scheme that prioritizes recent interactions in 
direct and indirect trust evaluations. Alwasel et al.35 employed a comprehensive experimental method. The model 
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also integrated graph features into ML techniques. Zhang et al.36 introduce a CNN-based intrusion detection 
model with a Sparse Transformer (CST) that extracts local features via CNN and temporal features utilizing 
sparse self-attention. To address class imbalance in the dataset, the EQL v2 loss function is used to enhance 
the weights of minority classes. Pundir et al.37 present MADP-IIME, a malware detection mechanism for IoT-
enabled industrial multimedia environments that employ four ML models, such as Naive Bayes (NB), logistic 
regression (LR), artificial neural networks (ANN), and RF, to efficiently detect malware attacks. Ghasemkhani et 
al.38 introduce Federated Multi-Label Learning (FMLL), a novel methodology integrating federated learning (FL) 
principles with a multi-label learning technique. Employing ML strategies, FMLL attained crucial enhancements 
in classification accuracy. Alrowais et al.39 propose the MFO-RELM model, which integrates Mayfly 
optimization (MFO) with a regularized extreme learning machine (RELM) for cybersecurity threat detection 
in IoT environments. Tiwari et al.40 developed a high-accuracy intrusion detection model. This method utilizes 
PSO for feature selection and employs feature reduction models such as PCA, LDA, and t-SNE. Moreover, the 
Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS) are utilized to detect 
potentially disruptive payloads. Table 1 summarizes the existing studies on cyberattack detection.

The existing studies incorporate an MGA with an LSTM methodology to improve cyber threat detection 
while addressing class imbalance utilizing focal loss. A two-layer intelligent IDS utilizes the ML technique 
for packet and flow-based feature analysis, although scalability could be a concern. An ensemble method 
implementing diverse standard ML approaches aims for effectual cyberattack detection but may complicate 
model interpretation. Other studies present adversarial safety setups incorporating resource allocation and 
patrol strategies, while some employ feature selection methods that could overlook relevant attributes, resulting 
in computational overhead. Multiagent reinforcement learning for security management exhibit’s ability but 
may face difficulty with real-time implementation due to complexity. Techniques, namely stochastic estimation 
and data-driven methods, encounter threats in variability and overfitting, while hybrid models integrating 
several optimization approaches risk inconsistent detection rates. The dependence on complex architectures 
and ensemble methods can hinder effectiveness and interpretability in dynamic IoT environments. Despite 
enhancements in IoT security, there still needs to be a substantial gap in addressing the real-time adaptability and 
interpretability of IDSs. Many existing models depend on complex approaches that, while efficient in controlled 
environments, need help performing consistently in dynamic, real-world scenarios. Moreover, the incorporation 
of growing threats and the balance between detection accuracy and computational efficiency still need to be 
explored, underscoring the requirement for more robust and streamlined approaches in growing IoT landscapes.

The proposed model
This study presents a novel BMLSSA-CAD method for IIoT networks. The technique mainly intends to improve 
security in the IIoT platform by detecting cyberattacks. The BMLSSA-CAD technique contains procedures like 
min-max normalization, COA-based FS, BBN-based cyberattack detection, and SSA-based hyperparameter 
tuning. Figure 1 illustrates the workflow of the BMLSSA-CAD method.

Min-max normalization
Initially, the BMLSSA-CAD technique undergoes a min-max scalar that can be used to normalize the input data. 
Min-max scaling (feature scaling or min-max normalization) is a commonly used data preprocessing in statistics 
and ML models41. Min-max scaling aims to convert the numerical value of a feature into a particular range, 
usually between 0 and 1. This can be done by subtracting the least values from the data points and dividing the 
results by the range (the difference between the minimum and maximum values). Min-max scaling is especially 
suitable when handling features with varying scales, as it ensures that each feature equally contributes to the 
analysis. This normalization method helps enhance the performance of ML approaches, particularly those 
sensitive to the measure of input features and can improve convergence during training.

Feature selection using COA
The BMLSSA-CAD technique involves a COA-based FS method to elect an optimal feature subset. Chameleon is 
a hierarchical clustering method that uses a qualitative model42. This model is advantageous for feature selection 
because it can effectively balance exploration and exploitation. Unlike conventional models, COA adapts 
dynamically to the landscape of the feature space, allowing it to detect optimal feature subsets that enhance model 
performance while minimizing redundancy. Its hybrid nature incorporates the merits of swarm intelligence 
and local search strategies, making it robust against local minima. Furthermore, COA is appropriate for high-
dimensional datasets, often in complex domains like IoT security. By concentrating on the most informative 
features, COA can improve computational efficiency and mitigate model complexity, ultimately improving 
generalization and accuracy. These merits make COA a compelling choice over other feature selection techniques, 
particularly in scenarios where data quality and relevance are critical. In this work, if the computations and 
intersections between them correspond to the computations and intersections of cluster items, then the two 
clusters are merged. Then, the data item is converted into a small sub-cluster from the shared images, and later, 
the sub‐class is combined with the hierarchical clustering to get the actual outcome. The unified model assists 
in detecting homogeneous or natural groups and is employed for all types of data if the feature is similar. The 
Chameleon algorithm considers cluster computation and connectivity, particularly the inherent properties of 
clusters, to detect related sub-clusters. Figure 2 indicates the workflow of the COA approach.

The Chameleon method describes the property as a k-nearest neighbour graph. The K‐point signifies a 
data object in the nearest neighbour graph, and if the data A is the k‐nearest object of data B, then the A and 
B objects are the edges. The closest image of the K-community can be attained dynamically. Community: The 
concept of K‐ concept is formulated: the local electricity of an object can be defined by the place density where 
the object is. The sibling density defines the electrical community of objects. In dense population areas, the 
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Ref. 
No. Objective Method Dataset Measures

11 To develop the IoT-defender framework for detecting 
cyberattacks in IoT networks

MGA, LSTM, fine-tuning of LSTM 
parameters using a GA fitness 
function

BoT-IoT, UNSW-NB15, 
N-BaIoT

Accuracy, detection rate, precision 
score, and false alarm rate

12 To develop an intelligent two-layer IDS for IoT Two-layer architecture, ML, feature 
selection Standard dataset Packet and flow-based accuracy

13 To develop a cyber-attack detection framework for the IIoT HGB, CatBoost, and RF, hard voting 
classifier CICIDS2017 dataset Accuracy, recall, precision, F1-score, 

AUC, ROC, and MCC
14 To develop a DRL-based security defence strategy SDSA, D3QN IoT traffic datasets Standard measures

15 To develop a model for efficient intrusion detection in IIoT 
networks

Chi-square statistical method, 
XGBoost, bagging, ET, RF, 
AdaBoost

TON_IoT dataset Accuracy, recall, precision, and 
F1-score

16 To develop a multiagent DRL approach for autonomous security 
management in decentralized networks

Finite random game network 
attack–defence model, synchronized 
interactive training mechanism

Experimental simulations 
in various network 
configurations

Standard measures

17 To develop a stochastic framework utilizing a novel ADL model Network forensic systems Bot-IoT dataset Simulation of IoT network traffic

18 To develop a data-driven approach SMOTE, automated ML IoT network traffic 
datasets Standard measures

19 To address the open set recognition challenge in IoT-specific 
NIDS SSOA, RNN Benchmark dataset Classification accuracy

20 To enhance intrusion detection capabilities in IoT environments Supervised classification techniques InSDN dataset Accuracy

21 To strengthen cybersecurity threat detection in IoT environments WVA, HPSO BoT-IoT, MQTTset, 
IoT-23

Precision, accuracy, specificity, 
F-measure, and recall

22 To accurately detect anomalies in IoT-enabled smart cities CSSA, RNN, BPEO UCI-SECOM, UNSW 
NB-15 Accuracy

23 To enhance resource allocation and workload distribution in 
cloud-assisted CIoT

LSO, load balancing and workload 
scheduling techniques Benchmark dataset

Makespan, response time, resource 
utilization rate, execution time, 
latency, throughput, and delivery rate

24 To propose a GA-mADAM-IIoT for effective intrusion threat 
detection in IIoT networks GA, LSTM, mADAM, CCE, SHAP SWaT, WADI Accuracy, AUC, recall, precision, 

F1-score, MCC

25 To propose a novel intrusion detection model PSO, BA, RF WUSTL-IIOT-2021 
dataset

Accuracy, recall, precision, and 
F1-score

26 To develop and evaluate three deep learning models for intrusion 
detection in IIoT networks CNN, LSTM, CNN + LSTM UNSW-NB15, X-IIoTID 

dataset Accuracy

27 To enhance the security of IIoT networks ML models IIoT network data Attack detection rates and False 
positive rates

28 To analyze the efficiency of various DL models for anomaly-based 
intrusion detection systems in SCADA networks

CNN, AE, DBN, LSTM, softmax 
function, ELM, MLP SCADA network datasets Positive and negative aspects of each 

approach

29 To develop a security paradigm for edge devices that utilizes ML 
models to detect MQTT-based attacks ML, IDPS MQTT attack datasets Standard measures

30 To develop and evaluate an AE-based IDS AE UNSW-NB15 dataset Accuracy

31 To develop and evaluate an SPC-DRRL model for enhancing the 
detection performance in IIoT networks SPC, DRRL TON_IoT dataset Attack detection time, computational 

overhead, and error rate

32 To develop a two-stage ML system for the efficient detection and 
classification of cyber-attacks on smart grids ML DNP3 intrusion 

detection dataset
Detection and attack type 
classification score

33 To develop a BHPO-MLPAD method for detecting phishing 
attacks in IoT BHPO, CFNN, VFFO UNSW dataset Accuracy, precision, recall, F-score, 

and AUC

34 To enhance security, trustworthiness, and collaboration in IWSNs 
through a novel hybrid Trust Management Scheme

Multi-layered assessment and 
clustering approach, ML models

Varying percentages of 
malicious sensor nodes

Malicious behavior detection rate, 
FNR, throughput rates, and energy 
consumption

35 To enhance the accuracy of portscan attack detection in IIoT 
networks

Graph representation, data 
preprocessing, ML techniques ISOT-CID Standard measures

36 To develop an effective intrusion detection model for IoT 
networks

CNN, sparse transformer, EQL v2 
loss function

Edge_IIoT, UNSW-
NB15, CICIDS-2017, 
CICIDS-2018

Detection accuracy, recall rate and 
F1 score

37 To develop a robust MADP-IIME for IoT-enabled industrial 
multimedia environments NB, LR, ANN, RF Standard dataset Accuracy, precision, recall, and F1 

score

38 To develop and evaluate an FMLL approach FL principles, multi-label 
classification strategy, base classifier

Amphibians, Anuran-
Calls-(MFCCs), 
HackerEarth-Adopt-A-
Buddy datasets

Accuracy, precision, recall, and 
F-score

39 To develop and evaluate the MFO-RELM model for effective 
cybersecurity threat detection and classification in IoT

Preprocessing of IoT data, RELM, 
MFO N-BaIoT dataset Accuracy, precision, recall, and 

F-score

40 To develop a high-accuracy intrusion detection technique for 
IIoT networks

PSO, PCA, LDA, t-SNE, GAM, 
MARS WUSTL-IIOT-2021 Accuracy, latency reduction

Table 1.  Summary of existing studies on cyberattack detection in IIoT.
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community can be defined narrowly. In the object distribution, the group defined is more comprehensive, and 
the density area is represented by edge weight. The Chameleon defines the similarity among the clusters using 
the relative approximation RC(Ci, Cj) and the relative connection RI(Ci, Cj) of both clusters.

	(1)	� Relative interconnection RI(Ci, Cj) defines the standardization of the internal connection of both clusters 
and the absolute connection between Ci and Cj

Fig. 1.  Working flow of BMLSSA-CAD technique.
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�	
RI (Ci, Cj) = |ECi,Ci |

1
2 |ECi | +

∣∣ECj

∣∣ � (1)

�Where ECCi,Ci  denotes the truncated edge of the cluster having Ci and Cj  categorized into Ci and Cj ;ECCi (
or ECCj ) shows the size of minimal truncated bisector (the weight amount of edges that should approximately 
split into two equivalent parts)

	(2)	� Relative approximation (Ci,Cj) defines the Normalization of absolute approximation between Ci and Cj  
regarding the internal approximation of both clusters.

Fig. 2.  Workflow of COA technique.
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�	

RC (Ci, Cj) =
SEC(C1,Cj)

|Ci|
|Ci|+|Cj |SEC + |Cj |

|Ci|+|Cj |SECCj

� (2)

�Where the average weight of edges interconnecting vertices and minimal truncated bisector Ci and Cjare 
indicated asSEC  and SEC(C1,Cj ),correspondingly.
The FF assumes the classifier results and the number of selected attributes. It increases the classifier efficiency 
and reduces the size of chosen attributes. Then, the following FF is used to assess the solutions.

	
F itness = α ∗ ErrorRate + (1 − α) ∗ #SF

#All_F
� (3)

In Eq. (3), ErrorRate indicates the classifier error value using the chosen attributes and is calculated as the 
ratio of incorrect classifier to the number of classifications made, ranging within [0,1]. α controls the impact of 
classifier quality and subset length, and α is fixed at 0.9. #All_F  is the overall quantity of features from the new 
data, and #SF  refers to the number of attributes chosen.

Cyberattack detection using BBN model
The BMLSSA-CAD technique uses the BBN model for cyberattack detection43. This approach is an ideal choice 
for cyberattack detection due to its capacity to handle uncertainty and incomplete data, which are general in 
real-world scenarios. BBNs utilize a probabilistic framework that allows for integrating prior knowledge and 
updating beliefs based on new evidence, making them adaptable to growing threats. Figure  3 illustrates the 
structure of BBM model. This characteristic enables the approach to efficiently analyze complex relationships 
between diverse variables, such as attack vectors and system vulnerabilities. Furthermore, BBNs provide clear 
interpretability, allowing security analysts to comprehend the rationale behind detection decisions. Compared 
to conventional ML techniques, BBNs can present enhanced robustness in dynamic environments where data 
may fluctuate. This makes them specifically suited for cybersecurity applications where precise risk assessment 
is significant. As a directed acyclic graph (DAG), BBN contains a collection of nodes and conditional probability, 
indicating joint distribution probability amongst the node variables. The parent node and child node are two 
kinds of nodes in BBN. One of the significant aspects of BBN is that joint distribution probability is easily 
determined. In BBN, joint distribution probability P (X) ,X = (X1, X2, X3, . . . , Xn) when the probability of 
Xi parent node is described by P a (Xi):

	
P (X) = (X1, X2, X3, . . . , Xn) =

n∏
i=1

P (Xi|P a (Xi))� (4)

In Eq. (4), X =(X1, X2, X3, . . . , Xn) represents the BBN variable, and the amount of variables in BBN is n
. When there is new evidence, then the probability can be dynamically updated. If the event Y  is given to BBN, 
then P (X| Y ) of event X  is represented as:

	
P (X|Y ) = P (X) P (Y |X)

P (Y ) = P (X) P (Y |X)∑n

i=1 P (Y |Xi)
� (5)

In Eq. (5), P (Y ) and P (X) marginal probability and the previous probability of events Y  and X .
The architecture of BBN mainly consists of two stages: (1) Parameter learning defines the conditional 

probability at node variable. (2) Structure learning defines the factor nodes (variables) and finds the independent 
or dependent relationships between them to design a DAG. The construction of BBN has the following:

	1.	� The variable node of BBN is defined by expert experience and domain knowledge (DK) or prior knowledge.
	2.	� The BBN is obtained by automatically learning the sample dataset through ML methods.
	3.	� The structure of BBN is acquired through the data fusion method using ML and DK.

Meanwhile, the third technique incorporates the strengths of DK  and ML; it removes the pitfalls that arise by 
using specific processes. The popular ML methods, including hill-climbing and K2, perform structural learning 
from the dataset. The K2 model performs structured learning that searches according to the nodes’ order 
through a limited number of parent nodes. The K2 model exploits posterior probability as a scoring function:

	(1)	� Compute the Cooper-Herskovits (CH) score for Xj  based on the order of node ρ.

�	
CH =

n∑
i=1

qi∑
j=1

[
log

Γ (αij∗)
Γ (αij∗ + mij∗) +

ri∑
k=1

log
Γ (αijk + mijk)

Γ (αijk)

]
� (6)
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�In Eq. (6), the amount of samples mijk  subjected to Xi = k,π (Xi) = j,mij∗ =
∑ri

k=1mijk,αij∗ =
∑ri

k=1αijk

, and αijk = P (Xi = k|π (Xi) = j).

	(2)	� If Xi(i ̸= j), then add arc (Xi → Xj), which makes the CH (Xj , πj ∪ Xi)maximum. πj  is the parent of 
Xj .

Hyperparameter tuning process
Finally, the hyperparameter tuning process is performed by utilizing the SSA model to enhance the performance 
of the BBN technique44. This utilization presents various merits over conventional optimization techniques. SSA 
is inspired by the foraging behaviour of sparrows, allowing it to effectively explore the solution space and avoid 
local optima, thereby enhancing the convergence rate. Its population-based approach improves exploration and 
exploitation, resulting in a more robust search for optimal hyperparameters. Unlike gradient-based techniques, 
SSA does not need derivative data, making it appropriate for intrinsic and non-differentiable objective functions 
often faced in BBNs. Moreover, SSA effectively handles high-dimensional spaces, which is significant for BBNs 
with various parameters. Overall, its adaptability and effectiveness make SSA an ideal option for improving BBN 
performance compared to other hyperparameter tuning methods.

The SSA simulates the behaviour of sparrow populations that are separated into scroungers and producers 
when discovering food. Mainly, the producers are highly liable for locating food in an extensive atmosphere. They 
want to find the sparrow population’s position and way of food. Every separate sparrow’s portion is not stable, 
and they want to be capable of adapting to change as per the condition. Naturally, sparrows on the border are 

Fig. 3.  Architecture of BBN technique.
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very weak to attack; they slowly alter their locations to change nearer to the midpoint of the populace to upsurge 
their safety. Furthermore, every sparrow knows that if a single sparrow identifies risk, the entire population 
travels from its place to a secure situation to endure searching.

SSA progresses by initially setting a cluster of randomly generated particles and series the highest iteration 
count. N  denotes the population dimension. Every particle has speed and location assets.

Producer: They have a higher foraging exploration region when compared to the scrounger because to meet 
its food requirements, it also wants to deliver the way of the foraging area for the whole populace. The location 
of the ith particles is upgraded at every iteration as:

	
xk+1

i =
{

xk
i · exp

(
−i

α·kmax

)
if R < ST

xk
i + Q · L if R > ST

� (7)

Here, k denotes the existing iterations count, kmaxspecifies the highest number of iterations, α refers to the 
randomly produced value from the interval of zero and one, Q represents the randomly generated number 
focused on the usual distribution, L refers to the matrix of 1×D where entire elements are 1, R refers to the 
alarm value in the interval of [0and1], and ST  states to be secure threshold within [0.5, 1].

If R < ST , the region has no risk, and the producer searches nearby. If R ≥ ST , the producer intellects 
hazard and changes to an arbitrary path.

Scrounger: All particles without producers are said to be scroungers. They always follow the producer data. 
When the scrounger observes that the producers have originated a superior foraging region, it offers an existing 
location and travels to the superior foraging region to stare for food. The location of the ith scrounger particles 
(xi) has been upgraded throughout every iteration as follows:

	
xk+1

i =

{
Q · exp

(
pk

w−xk
i

i2

)
if i > N

2

pk+1
b +

∣∣xk
i − pk+1

b

∣∣ · A′ · L if i ≤ N
2

� (8)

Here, pb refers to the global finest place, pw  denotes the worst location, and A′ denotes the D × D matrix with 
a random number1 or −1.

The volume of food attained by the scrounger is too small (i > N
2 ), then it flies towards another location to 

discover food. If i ≤ N
2 , the scrounger monitors the producer to an optimum foraging region.

Watchman: In the set instructions, every particle has an investigation and initial cautionary device. It may be 
alert of hazards and so unrestraint the existing region and travel to a secure area. A particle is named watchman. 
T﻿he location of the ith watchman particle is upgraded as below:

	
xk+1

i =

{
pk

b + β ·
∣∣xk

i − pk
b

∣∣ if fi > fb

pk
b + K · xk

i −pk
w

|fi−fw|+ϵ
if fi = fb

� (9)

Here, β denotes the factor of step size regulation, and its significance is a randomly generated integer with a 
normal distribution by the variance of 1 and the mean of 0. K  refers to the randomly produced number within 
[1 and 1]. At the same time, fw  and fb correspondingly specify the worst and best fitness values. A small constant 
ϵ is used to stop the denominator from being 0.

If fi > fb, the particle is situated at the border of the populace, and it especially travels nearer to the midpoint. 
When fi = fb, the particle is located in the centre of the populace, and it travels arbitrarily to acquire near to 
other particles to evade being hunted.

The comprehensive calculation workflow of SSA is given below. Figure 4 depicts the flowchart of SSA.
Step 1: Set the populace by initializing the size N , the highest iteration count, a protection threshold, and the 

ratio of producers and sparrows alert of hazards.
Step 2: Compute the fitness of the existing populace’s individual and type to discover the present worst and 

best values.
Step 3: Pick the particle with decent fitness value as a producer as per the percentage and upgrade the location 

as per Eq. (7);
Step 4: Give the residual particles as scroungers and upgrade their locations as per Eq. (8);
Step 5: Arbitrarily pick a few individuals as particles that are alert of hazards per the percentage and give 

them as watchmen. Upgrade their locations based on Eq. (9) and compute the novel fitness value. Upgrade the 
locations when the fitness is superior to the present optimum value.

Step 6: Compute the value of fitness and preserve the location of the optimum individuals;
Step 7: Confirm that the termination condition is stratified, then stop the process and return to the optimum 

outcome. Otherwise, go to Step 2.
The SSA develops an FF to accomplish enriched classifier accuracy and describes a positive integer to 

characterize the higher performance of the solution candidate. Now, the reduction of classifier error is taken as 
a FF, as follows:

	

fitness (xi) = ClassifierErrorRate (xi)

= No. of misclassified samples

T otal No. of samples
× 100

� (10)
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Fig. 4.  Flowchart of SSA.
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Performance validation
The performance validation of the BMLSSA-CAD method utilizes dual benchmark datasets such as the UCI 
SECOMD and UNSWNB51 datasets45.

Dataset description
The UNSWNB51 dataset contains 10,000 samples under ten classes, as defined in Table 2. The UNSW-NB15 
dataset contains 42 features (excluding labels) across 10 class labels, encompassing nine attack types and one 
normal category, such as Normal, Fuzzers, Analysis, Exploits, Backdoors, Generic, Shellcode, DoS, Worms, and 
Reconnaissance. Additionally, the UCI-SECOM dataset consists of 591 features with two classes, providing a 
rich resource for evaluating ML techniques in the context of intrusion detection and anomaly classification.

The datasets are chosen due to their relevance in cybersecurity, especially for network intrusion detection. 
Recognized for its representation of real-world network traffic patterns and diverse cyber threats, this dataset is 
ideal for training and assessing models focused on efficiently recognizing anomalies and attacks. Its extensive 
coverage of several attack scenarios and network activities confirms thorough testing of the performance and 
applicability of the BMLSSA-CAD model in complex cybersecurity environments.

Data Analysis
Figure 5 establishes the classifier results of the BMLSSA-CAD model below the UNSWNB51 dataset. Figure 5a 
and b portrays the confusion matrices offered by the BMLSSA-CAD model on 70%ofTRAS:30%ofTESS. The 
experimental value indicated that the BMLSSA-CAD method has detected and classified each of the ten classes. 
Also, Fig. 5c and d demonstrates the attack recognition analysis of the BMLSSA-CAD model on 70:30 of TRAS/
TESS. The figure stated that the BMLSSA-CAD approach has detected ten classes proficiently.

The attack detection outcomes of the BMLSSA-CAD technique on the UNSWNB51 dataset are described in 
Table 3; Fig. 6. The simulation value implies that the BMLSSA-CAD technique recognizes ten classes proficiently. 
With 70%TRAS, the BMLSSA-CAD technique gains an average accuy  of 99.56%, precn of 97.84%, sensy  of 
97.82%, specy  of 99.76%, and Fscore of 97.81%. Also, with 30%TESS, the BMLSSA-CAD method obtains an 
average accuy  of 99.55%, precn of 97.80%, sensy  of 97.76%, specy  of 99.75%, and Fscore of 97.77%.

The classifier outcomes of the BMLSSA-CAD technique are graphically offered in Fig.  7 in the training 
accuracy (TRAAC) and validation accuracy (VALAC) curves on the UNSWNB51 dataset. The figure displays 
a clear understanding of the behaviour of the BMLSSA-CAD method over various epochs, representing its 
learning procedure and generalization abilities. The figure especially concludes a constant advancement in 
the TRAAC and VALAC with increasing epochs. It shows the diverse nature of the BMLSSA-CAD method 
in the pattern detection procedure on both datasets. The increase in VALAC summarizes the capability of the 
BMLSSA-CAD model to adjust to the TRA dataset. It also precisely classifies hidden datasets, showing strong 
generalization skills.

Figure 8 exhibits the training loss (TRLOS) and validation loss (VALOS) outcomes of the BMLSSA-CAD 
method over different epochs on the UNSWNB51 dataset. The steady decrease in TRLOS shows that the 
BMLSSA-CAD method improved the weights and lessened the classifier error on both datasets. The figure 
interprets the BMLSSA-CAD model’s relationship with the TRA dataset, emphasizing its capability to take 
patterns within both datasets. The BMLSSA-CAD approach repetitively increases its parameters to decrease the 
differences between the forecast and actual TRA classes.

Inspecting the PR curve, as depicted in Fig.  9, the outcomes certified that the BMLSSA-CAD approach 
gradually achieves improved PR values below every class on the UNSWNB51 dataset. It demonstrates the better 
capabilities of the BMLSSA-CAD method in classifying different classes, exhibiting the capability to distinguish 
classes.

In addition, in Fig. 10, ROC curves formed by the BMLSSA-CAD technique outperformed the identification 
of dissimilar labels on the UNSWNB51 dataset. This delivers a comprehensive understanding of TPR and FRP 
tradeoffs over discrete detection thresholds and epochs. The figure emphasizes the boosted performance of the 
BMLSSA-CAD method below all classes, delineating its efficacy in addressing many classification problems.

UNSWNB15 dataset

Classes No. of samples

Normal 1000

Generic 1000

Exploits 1000

Fuzzers 1000

DoS 1000

Reconnaissance 1000

Analysis 1000

Backdoor 1000

Shellcode 1000

Worms 1000

Total samples 10,000

Table 2.  Details on the UNSWNB51 dataset.
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Table 4; Fig. 11 show a detailed review of the BMLSSA-CAD method with existing methods on the UNSWNB51 
dataset45. The experimental value stated that the BMLSSA-CAD method reaches enhanced performance. It 
is noticed that the ANN and KNN models have shown reduced performance. Simultaneously, DT, VLSTM, 
SSA-CRNN, MFSDL-ADIIoT, and GJODL-CADC models have achieved considerable performance. But, the 
BMLSSA-CAD approach surpassed the other models with maximum precn, recal, accuy , and Fscore of 
97.84%, 97.82%, 99.56%, and 97.813%, correspondingly.

The UCI SECOM dataset comprises 5000 samples under two classes, as expressed in Table 545.
Figure 12 exhibits the performance of the BMLSSA-CAD approach below the UCI SECOM dataset. Figure 12a 

and b exemplifies the confusion matrices the BMLSSA-CAD approach provides on 70%of TRAS:30%of TESS. The 
simulation outcome implied that the BMLSSA-CAD method has precisely recognized and classified all 2-class 
labels. Similarly, Fig. 12c and d exhibits the attack recognition analysis of the BMLSSA-CAD methodology at 
70:30 of TRAS/TESS. The figure stated that the BMLSSA-CAD methodology identified two classes proficiently.

The attack recognition outcomes of the BMLSSA-CAD methodology on the UCI SECOM dataset are described 
in Table 6; Fig. 13. The outcomes imply that the BMLSSA-CAD approach identifies dual classes proficiently. 

Fig. 5.  UNSWNB51 dataset (a, b) Confusion matrices and (c, d) Classifier outcome.
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With 70%TRAS, the BMLSSA-CAD approach obtains an average accuy  of 98.97%, precn of 98.97%, sensy  
of 98.97%, specy  of 98.97%, and Fscore of 98.97%. Also, with 30%TESS, the BMLSSA-CAD method gains an 
average accuy  of 98.93%, precn of 98.93%, sensy  of 98.93%, specy  of 98.93%, and Fscore of 98.93%.

The performance of the BMLSSA-CAD technique is graphically shown in Fig. 14 in the TRAAC and VALAC 
curves method on the UCI SECOM dataset. The figure shows beneficial clarification into the behaviour of 
the BMLSSA-CAD technique over numerous epochs, validating its learning process and generalization skills. 
The figure determines a progressive enhancement in the TRAAC and VALAC with increasing epoch counts. 
It guarantees the adaptive nature of the BMLSSA-CAD method in the pattern detection procedure on both 
datasets. The increasing tendency in VALAC describes the capability of the BMLSSA-CAD method to adapt to 
the TRA dataset, which also excels in providing precise identification of hidden datasets, representing strong 
generalization abilities.

Figure 15 provides a detailed review of the TRLOS and VALOS outcomes of the BMLSSA-CAD technique 
over different epochs on the UCI SECOM dataset. The gradual decrease in TRLOS highlights the BMLSSA-CAD 
technique’s improved weights and decreased classifier error on both datasets. The figure specifies an extensive 
knowledge of the BMLSSA-CAD model’s relationship with the TRA dataset, underlining its ability to take 
patterns within both datasets. Notably, the BMLSSA-CAD methodology repeatedly improves its parameters in 
decreasing the alterations among the forecast and real TRA classes.

The results of inspecting the PR curve, as exposed in Fig. 16, showed that the BMLSSA-CAD method gradually 
achieves improved PR values below every class on the UCI SECOM dataset. This confirms the improved skills of 
the BMLSSA-CAD technique in classifying separate classes and demonstrates its ability to detect classes.

Besides, in Fig. 17, ROC curves formed by the BMLSSA-CAD methodology outperformed in identifying 
different labels on the UCI SECOM dataset. This provides extensive knowledge of the tradeoff between TPR 
and FRP over separate detection thresholds and epochs. The figure highlighted the improved performance of 
the BMLSSA-CAD technique below all classes, delineating its efficacy in addressing the classification problem.

Table 7; Fig. 18 show the comparative results of the BMLSSA-CAD method with current methods on the 
useful UCI SECOM dataset. The outcome concluded that the BMLSSA-CAD methodology attains greater 
performance. It is observed that the DNN and ensemble techniques have shown condensed performance. 
Simultaneously, PSO ensemble, SSA-CRNN, and GJODL-CADC methodologies have attained considerable 
performance. However, the BMLSSA-CAD approach exceeded the other models with the highest precn, recal, 
accuy , and Fscore of 98.93%, 98.93%, 98.93%, and 98.93%, respectively. Thus, the BMLSSA-CAD approach was 
executed for an enhanced detection process.

UNSWNB15 Dataset

Classes Accuy P recn Sensy Specy F Score

TRAS (70%)

 Normal 99.56 97.76 97.61 99.76 97.68

 Generic 99.51 99.27 95.89 99.92 97.55

 Exploits 99.70 99.16 97.93 99.90 98.54

 Fuzzers 99.63 99.26 96.97 99.92 98.10

 DoS 99.51 96.23 98.81 99.59 97.50

 Reconnaissance 99.69 97.65 99.30 99.73 98.47

 Analysis 99.64 99.71 96.78 99.97 98.22

 Backdoor 99.16 93.86 98.01 99.29 95.89

 Shellcode 99.56 97.36 98.32 99.70 97.84

 Worms 99.67 98.13 98.56 99.79 98.35

 Average 99.56 97.84 97.82 99.76 97.81

TESS (30%)

 Normal 99.63 97.90 98.79 99.74 98.34

 Generic 99.60 98.62 97.28 99.85 97.95

 Exploits 99.57 98.16 97.09 99.82 97.62

 Fuzzers 99.47 98.34 96.42 99.81 97.37

 DoS 99.50 97.01 98.48 99.63 97.74

 Reconnaissance 99.63 98.26 97.92 99.82 98.09

 Analysis 99.77 99.64 97.90 99.96 98.77

 Backdoor 99.33 95.42 97.99 99.48 96.69

 Shellcode 99.60 96.61 99.30 99.63 97.94

 Worms 99.43 98.01 96.41 99.78 97.20

 Average 99.55 97.80 97.76 99.75 97.77

Table 3.  Attack detection outcome of BMLSSA-CAD technique on the UNSWNB51 dataset. Significant values 
are in bold.
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Conclusion
This study presents a novel BMLSSA-CAD method in the IIoT environment. The presented BMLSSA-CAD 
method mainly intends to improve security in the IIoT platform by detecting cyberattacks. The BMLSSA-
CAD technique contains procedures such as min-max normalization, COA-based FS, BBN-based cyberattack 
detection, and SSA-based hyperparameter tuning. Initially, the BMLSSA-CAD technique utilizes a min-max 
scalar to normalize the input data. Also, the BMLSSA-CAD technique employs a COA-based FS approach to elect 
an optimum feature subset. The BMLSSA-CAD technique uses the BBN model for cyberattack detection. The 
hyperparameter tuning method is performed by using the SSA to improve the performance of the BBN model. 
The performance of the BMLSSA-CAD method can be studied using a benchmark dataset. The experimental 
validation of the BMLSSA-CAD method highlighted superior accuracy outcomes of 97.84% and 98.93% 
compared to recent techniques on the IIoT platform. The limitations of the BMLSSA-CAD approach comprise 
potential threats in scaling to massive datasets due to the computational demands of the COA model for feature 
selection and the SSA for hyperparameter tuning. Furthermore, while BBN is effectual for modelling reliabilities 
among features, they may encounter limitations in comprehending convolutional associations in highly dynamic 
and growing cyberattack scenarios. Future studies may concentrate on optimizing the effectualness of COA and 
SSA methods, exploring ensemble models to improve the robustness of the model, incorporating real-time data 
streams for continuous monitoring, and addressing interpretability threats to enhance trust and usability in 
practical cybersecurity applications.

Fig. 6.  Average of BMLSSA-CAD method on UNSWNB51 dataset.
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Fig. 7.  Accuy  curve of BMLSSA-CAD method on UNSWNB51 dataset

 

Fig. 8.  Loss curve of BMLSSA-CAD technique on UNSWNB51 dataset.
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Fig. 9.  PR curve of BMLSSA-CAD technique on UNSWNB51 dataset.

 

Fig. 10.  ROC curve of BMLSSA-CAD technique on UNSWNB51 dataset.
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UNSWNB15 Dataset

Methods P recn Recal Accuy F Score

ANN 57.84 58.92 79.26 54.98

KNN 63.03 53.26 71.22 52.93

DT 64.29 53.57 70.74 48.83

VLSTM 67.08 53.27 96.08 58.83

SSA-CRNN 67.14 59.17 98.82 59.91

MFSDL-ADIIoT 67.11 60.35 99.10 60.37

GJODL-CADC 97.30 97.17 99.34 97.20

BMLSSA-CAD 97.84 97.82 99.56 97.81

Table 4.  Comparative analysis of the BMLSSA-CAD model with existing approaches on the UNSWNB51 
dataset45.

 

Fig. 11.  Comparative analysis of the BMLSSA-CAD method on the UNSWNB51 dataset.

 

UCI SECOM Dataset

Classes No. of samples

Class 1 2500

Class 2 2500

Total samples 5000

Table 5.  Details of the UCI SECOM dataset. Significant values are in bold.
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Fig. 12.  UCI SECOM dataset (a, b) Confusion matrices and (c, d) Classifier outcome.
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Fig. 13.  Average of BMLSSA-CAD technique on UCI SECOM dataset.

 

UCI SECOM Dataset

Classes Accuy P recn Sensy Specy F Score

TRAS (70%)

 Class 1 99.25 98.68 99.25 98.70 98.96

 Class 2 98.70 99.26 98.70 99.25 98.98

 Average 98.97 98.97 98.97 98.97 98.97

TESS (30%)

 Class 1 98.96 98.96 98.96 98.91 98.96

 Class 2 98.91 98.91 98.91 98.96 98.91

 Average 98.93 98.93 98.93 98.93 98.93

Table 6.  Attack detection outcome of BMLSSA-CAD technique on the UCI SECOM dataset. Significant values 
are in bold.
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Fig. 15.  Loss curve of BMLSSA-CAD technique on UCI SECOM dataset.

 

Fig. 14.  Accuy  curve of BMLSSA-CAD technique on UCI SECOM dataset
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Fig. 16.  PR curve of BMLSSA-CAD technique on UCI SECOM dataset.

 

Fig. 17.  ROC curve of BMLSSA-CAD technique on UCI SECOM dataset.
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Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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