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The large deformation and strong rheological characteristics of the underground rock body under 
complex geological conditions have led to the failure of the support system and even the instability 
of tunnels from time to time. Based on the theory of groundwater seepage, the elastic solution of the 
mechanical model of the tunnel anchorage support system under seepage is solved, which reveals 
the influence of seepage on the peripheral rock and the support parameters of the anchorage support 
system; the viscoelastic solution is solved according to the corresponding principle of elasticity—
viscoelasticity, which analyses the influence of seepage on the rheological process of the anchorage 
support system; and the model is simulated with the help of finite element software, which analyses 
the agreement and discrepancy of the numerical solution and the theoretical solution. The results show 
that the analytical and numerical solutions are basically consistent. This study can provide important 
guidance for controlling long-term stability of water-rich tunnel rocks.
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Rheological behavior mainly occur in soft and loose rock masses and sediment-filled rock masses. Even for 
the rock mass with a high hardness, developed joints and fractures can also give rise to obvious rheological 
properties, which can significantly affect the long-term safety of the support system and the tunnel1–3. For 
anchorage support as one of the major means of tunnel support, how to keep tunnel support stability under the 
action of groundwater has become a major challenge.

Since the twentieth century, some scholars have started to study rock masses for deep engineering as an 
important topic4–6. Under high in-situ stress conditions, rock masses are in a state of tri-axial compression, and 
due to high bearing capacity, their deformation and failure exhibit certain time-varying effects and rheological 
properties7. A number of scholars8,9 have conducted a large number of tri-axial compression tests on surrounding 
rock masses, and concluded that the failed rock masses can experience brittle failure, followed by ductile failure, 
as the confining pressure increases. On this basis, the conditions and processes of the occurrence of creep 
phenomena were comprehensively described10–14. With the continuous improvement of test conditions, a large 
number of scholars have conducted studies on rheological properties of rock masses and structural planes15,16.

Although many existing studies have analyzed the rheological processes of deep rock masses from different 
perspectives, most of them haven’t considered the inherent time-varying effects of the rock masses themselves, 
or the effect of seepage on the support system, or even on the rheological process of bolts. As the depth of 
excavation in underground projects increases, the rheological phenomenon of the rock mass caused by high 
in-situ stresses is becoming more common. Many scholars have conducted theoretical and analytical studies 
on the time-dependent behaviors of rock-supporting systems from various perspectives17–21 simplified the 
action of a full-length bonded bolt on the surrounding rock as a volume force acting within the rock mass. 
Wang et al.22,23 treated the deeply-buried circular tunnel rock mass and supporting structure as independent 
rheological bodies, and established a coupled rheological model for the surrounding rock and end-anchored bolt 
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supporting structure. Chu et al.2 proposed a coupled analytical solution that considers both rock rheology and 
tunnel development effects, and used five different viscoelastic models to obtain the convergence displacement 
characteristics of unlined tunnels with and without development effects.

As summarized above, the existing studies fall short of fully revealing the rheological law of tunnel anchoring 
support systems under seepage flow, in which the selection of the rheological models is too simplistic, with few 
attention paid to the impact of bolt pre-load on the rheological characteristics of anchoring support structures 
under seepage flow. Therefore, based on the seepage principle of groundwater and the load transfer mechanism 
of bolts and surrounding rock, we established rational rheological models for both bolts and surrounding rock to 
analyze the elastic and rheological properties of the circular tunnel anchoring support system under the influence 
of seepage flow, which reveals the influence of seepage flow on the surrounding rock and supporting parameters 
of the anchoring support system, and obtains a viscoelastic solution of the rheological model. Additionally, we 
conducted numerical simulation on the rheological model to analyze the consistence between the numerical and 
theoretical analytical solutions, and discuss the rationality and correctness of the theoretical analytical solution. 
The study results offer a dependable theoretical basis for the study of seepage flow in underground engineering.

Mechanical modelling of tunnel anchorage support system under seepage flow 
action
Establishment of mechanical model
We selected the distributed force model as the basis of the mechanical model of the anchoring support under 
seepage flow, which also considers the interaction between the bolt and the surrounding rock (the surrounding 
rock may deform due to the influence of the seepage flow force and the stress of primary rock. There is a force 
and reaction force relationship between the bolts and the surrounding rock: Under the action of seepage flow, the 
bolts deform, the axial force of the bolts changes accordingly, and thus the supporting effect for the surrounding 
rock is also influenced. This relationship between the bolts and surrounding rock is synergistic, which means 
that they are coupled. To aid theoretical analysis, we categorized the surrounding rock into two zones: anchored 
zone and non-anchored zone (original rock zone), as shown in Fig. 1. Hydrodynamic pressure, the pressure 
exerted by water in the pores on the surrounding rock in the form of seepage, causes groundwater seepage 
pressure.

It is assumed that the excavation radius of the circular tunnel is r, the water head is ha, the pore water pressure 
is Pa; the radius of the boundary in the non-anchored area is R, the water head is h1; the seepage radius at the 
far end is R0, the water head is h0 and the pore water pressure is P0. The length of the bolt L = 4 m, the diameter 
φ = 20 mm, its average uniform force on the inner wall of the tunnel is T, the pre-stress is T0, and the average 
uniform force on the outer boundary of the anchored zone is (rT/R)24. Since the considered seepage flow is 
mainly in the radial direction and the influence of buoyancy is not considered for the time being, we adopted 
the principle of effective stress for theoretical derivation. All the following stress fields and displacement fields 
are effective fields.

In order to facilitate the theoretical derivation and analysis, we make the following basic assumptions:
(i) The tunnel is an infinite-length tunnel with equal cross-sections, which simplifies it into a plane strain issue; 

(ii) Tunnel excavation and bolt installation should be carried out simultaneously, regardless of the excavation 
effect; (iii) Both the tunnel and seepage flow are axis-symmetric and in accordance with Darcy’s law; (iv) The 
permeability coefficient of the surrounding rock does not change with time and stress; (v) The surrounding 
rock is a homogeneous, isotropic and porous continuum; (vi) There is no relative slip between the bolts and the 
surrounding rock; (vii) It is deeply buried, independent of gravity.

The anchored zone under seepage flow
The mechanical action of the mechanical model of the pre-anchored support system in the non-anchored zone 
is shown in Fig. 2.

According to the mechanical model of the anchorage support system under seepage flow, the bolt force is 
simplified as a uniformly distributed force acting on the inner and outer boundaries of the surrounding rock 
in the anchored zone. Therefore, the mechanical problem of the anchored area can be simplified as a problem 
of a thick-wall cylinder under the uniform distribution pressure on the inner and outer boundaries of the 

Fig. 1.  Simplified model of tunnel anchoring support system under the effect of seepage flow.
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seepage physical action. The state of the element in the anchored zone of the mechanical model, when reaching 
equilibrium, is shown in Fig. 2.

According to the static equilibrium condition of the anchored micro-element, the equilibrium differential 
equation of the anchored zone is established:

	
d
dρ

σρ1 + σρ1 − σθ1

ρ
− γ (h1 − ha)

ρ ln (α) = 0� (1)

Geometrical and physical equations are combined into:
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)
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The general solution for the displacement of the anchored zone can be obtained as follows by substituting Eqs. 
(2) and (3) into Eq. (1):

	
uρ1 = C1ρ + C2

ρ
+ γρ (1 + µ) (−1 + 2µ) (h1 − ha) (2 ln (ρ) − 1)

4 (−1 + µ) Er ln (α) � (4)

The general stress solutions of σρ1 and σθ1 can be obtained as follows by substituting Eq. (4) into Eqs. (2) and (3):
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The general strain solutions of ερ1 and εθ1 can then be obtained:

	
ερ1 =

Er (−1 + µ)
(
C1ρ2 − C2

)
ln (α) + (ln (ρ) + 1/2) (h1 − ha) (1 + µ) (−1/2 + µ) ρ2γ
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εθ1 =

Er (−1 + µ)
(
C1ρ2 + C2

)
ln (α) + (h1 − ha) (1 + µ) (−1/2 + µ) ρ2 (ln (ρ) − 1/2) γ
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� (8)

where ρ is the radial coordinate, θ is the circumferential coordinate, σρ1 is the radial stress of the anchored zone, 
σθ1 is the tangential stress of the anchored zone, ερ1 is the radial strain of the anchored zone, εθ1 is the tangential 
strain of the anchored zone, μρ1 is the radial displacement of the anchored zone, Er is the Young’s modulus of 
the surrounding rock, μ is the Poisson ratio of the surrounding rock, α = R/r, C1 and C2 are the undetermined 
coefficients.

The non-anchored zone under seepage flow
The mechanical problem of the non-anchored zone can be regarded as the problem of the round hole bearing 
pressure in an infinite area under the action of the primary rock stress and the action of the seepage force. Since 
the stress forms of the anchored micro-elements in the anchored and non-anchored zones are the same, the 
differential equation can be obtained as follows according to the principle of stable continuous seepage flow 
between layers:

Fig. 2.  Mechanical state, equilibrium state of the anchorage region and its further simplification in the 
mechanical model of the anchorage support system under seepage action.
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ρ
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ρ ln (β) = 0� (9)

The general equation for the displacement of non-anchored zone can be obtained by solving Eq. (9) simultaneously 
with Eqs. (2) and (3):

	
uρ2 = C3ρ + C4

ρ
+ γρ (1 + µ) (−1 + 2µ) (h0 − h1) (2 ln (ρ) − 1)

4 (−1 + µ) Er ln (β) � (10)

Substitute Eq. (10) into Eqs. (2) and (3) to obtain the general stress solutions of σρ2 and σθ2, which are substituted 
into Eqs. (8) and (9) to obtain the general strain solutions of ερ2 and εθ2:
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where σρ2 is the radial stress of the non-anchored zone, σθ2 is the tangential stress of the non-anchored zone, ερ2 is 
the radial strain of the non-anchored zone, εθ2 is the tangential strain of the non-anchored zone, uρ2 is the radial 
displacement of the non-anchored zone, E and μ are the Young’s modulus and Poisson’s ratio of the surrounding 
rock, respectively, β = R0/R, C3 and C4 are the undetermined coefficients.

Bolt support under seepage flow
After the circular tunnel is supported with bolts, the actual displacement and strain of the surrounding rock 
under the action of seepage flow can be expressed as:

	 u′
ρ1 = uρ1 − uρ0� (15)

	 u′
ρ2 = uρ2 − uρ0� (16)

	 ε′
ρ1 = ερ1 − ερ0� (17)

	 ε′
ρ2 = ερ2 − ερ0� (18)

According to the hypothesis presented in this study, the deformation of the anchorage and surrounding rock 
occurs cooperatively. As a result, the strain ερ of the bolts in the axial direction is equal to that of the surrounding 
rock in the radial direction. Therefore, the axial force of the bolts can be expressed as:

	 Tρ = EbAbερ − T0 = EbAb

(
ε′

ρ1 |ρ=r − ε′
ρ0 |ρ=r

)
− T0� (19)

Then the average supporting force exerted by the bolts on the surrounding rock at the inner wall of the tunnel 
can be expressed as:

	
T = Tρ+T0

SθSZ
= EbAb

SθSZ

(
ε′

ρ1 |ρ=r − ε′
ρ0 |ρ=r

)
� (20)

where Tρ is the axial force of the bolt at the radial coordinate of ρ, T0 is the pre-stress applied when the bolts are 
installed, Eb is the elastic modulus of the bolts, Ab is the cross-sectional area of the bolt body, uρ0 is the radial 
displacement of the primary rock before excavation, ερ0 is the radial strain of the primary rock before excavation, 
Sθ and SZ are the line spacing of the bolts in the radial and tangential directions of the tunnel, respectively. uρ1′, 
uρ2′, ερ1′ and ερ2′ represent the radial displacements in both anchored and non-anchored zones and the radial 
strains in both anchored and non-anchored zones.

Elastic analytical solution for the mechanical model of tunnel anchorage support system under seepage flow
The general equation for the elastic solutions of the anchored and non-anchored zones contains two unknowns. 
We determined the four boundary conditions based on the elastic theory and the mechanical model of the 
anchorage support system under the action of seepage flow. With these boundary conditions, we can determine 
the unknowns and obtain the elastic analytical solution. In the inner wall of the circular tunnel, the relationship 
between radial stress and bolt support force is a relationship between force and reaction force, thus the stress 
boundary condition is:
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σρ1|ρ=r = −T + T0

SθSZ
� (21)

At the junction of the anchored and non-anchored zones, the stress boundary condition can be expressed using 
the following equilibrium equation:

	
σρ1|ρ=R− + r

R

(
T +T0

SθSZ

)
= σρ2|ρ=R+ � (22)

As this study only considers the existence of hydrodynamic pressure, the stress boundary condition at the far 
end can be expressed as:

	 σρ2 |ρ=R0 = σ0� (23)

At the junction of the anchored and non-anchored zones, the displacement continuity conditions expressed as 
follows should be met:

	 u′
ρ1

∣∣
ρ=R− = u′

ρ2
∣∣
ρ=R+ � (24)

The unknown parameters C1, C2, C3 and C4 can be determined by combining the above boundary conditions 
with the equations of elastic solutions of the anchored and non-anchored zones. These parameters can then be 
used in the general equations of stress, strain and displacement of both zones to obtain the elastic solution of 
the mechanical model of the tunnel anchorage support system under the action of seepage flow. The calculation 
details can be found in the Appendix SI.

Example analysis of elastic characteristics
After obtaining the elastic solutions of stress field and displacement field of the mechanical model, we analyzed 
the elastic characteristics of the anchoring support system under the action of seepage flow based on 11 
calculation columns. The values of relevant parameter are listed in Table 1.

Analysis of normal stress evolution characteristics of surrounding rock
Figure 3 shows the evolution curve of the relationship between normal stress and radial distance of surrounding 
rock with different seepage flow directions. The absolute value of the radial stress of the surrounding rock goes 
up with the increase of the radial distance and tends to keep constant; meanwhile, the absolute value of tangential 
stress decreases and also tends to keep constant eventually. It is important to note that the evolution curve of 
both radial stress and tangential stress is discontinuous: there is a sudden change in the stress at the anchorage 
end of the bolt, and the sudden change is the direction of stress absolute value reduction. The stress release of the 
surrounding rock in the anchored zone is limited by the bolting force, but the stress in the non-anchored zone is 
less affected by the bolting action, resulting in unequal stress on both sides of the junction between the anchored 
and the non-anchored zones.

Additionally, Fig. 3 compares the normal stress variation of the surrounding rock under three seepage flow 
states. When there is no seepage flow, i.e. h0 = 0 m and ha = 0 m, the normal stress curves finally return to the 
original rock stress (σ0 = − 1 MPa) without deviation. In contrast, when seepage flow occurs both outside and 
inside the tunnel, i.e. h0 = 20 m, ha = 0 m, the normal stress curves finally shift downwards, indicating an increase 
in the absolute value of the stress; when seepage flow occurs from inside the tunnel to outside, i.e. h0 = 0 m, 
ha = 20 m, the normal stress curves finally shift upwards, indicating a decrease in the absolute value of the stress. 

Parameter 1 2 3 4 5 6 7 8 9 10 11

β 15 15 15 15 15 15 15 15 15 15 15

R/m 8 8 8 8 8 8 8 8 8 8 8

Ab/10–4/m2 3 3 3 3 3 3 3 3 3 3 3

r/m 4 4 4 4 4 4 4 4 4 4 4

γ/(kN/m3) 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8

α 2 2 2 2 2 2 2 2 2 2 2

SθSZ/m2 1 1 1 1 1 1 1 1 1 1 1

T0/kN 10 10 10 10 10 10 10 10 10 10 10

ha/m 0 0 20 0 0 0 0 0 0 0 0

h0 /m 0 20 0 0 20 0 20 0 20 0 20

Eb/1011Pa 2.1 2.1 2.1 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.1

Er/109Pa 1 1 1 1 1 2 2 1 1 1 1

μ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2

σ0/106Pa − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 2 − 2

Table 1.  Value of each parameter.
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This is because when the seepage is from inside the tunnel to outside, the seepage force points towards the 
inner tunnel, which is consistent with the direction of the primary rock stress, thereby increasing the stress on 
the surrounding rock. As a result, the absolute value of the normal stress tends to exceed that of the primary 
rock stress. However, when seepage is from inside the tunnel to outside, this direction is opposite to that of the 
primary rock stress, which contradicts some of the stress on the surrounding rock.

Figure  4 shows the evolution curves of the relationship between normal stress and radial distance of 
surrounding rock with different elastic moduli, Poisson’s ratios, elastic moduli of bolt and primary rock stresses. 
It can be seen from Fig. 4a that different values of elastic modulus of the surrounding rock do not affect the 
change trend of the normal stress of the surrounding rock with radial distance, but have a great influence on 
the absolute value of the normal stress in the anchored zone, i.e. the absolute value of the normal stress in the 
anchored zone decreases with the increase of the elastic modulus of the surrounding rock. When there is no 
seepage flow and the elastic modulus of the surrounding rock increases from 1 to 2 GPa, the absolute value of the 
radial stress decreases from 0.0321 to 0.0188 MPa at the junction of the anchored zone and non-anchored zone, 
a sudden decrease of 41%. Similarly, the absolute value of tangential stress decreases from 0.0080 to 0.0047 MPa, 
a sudden decrease of 41%. When the seepage flows from outside to inside the tunnel, the absolute value of radial 
stress decreases from 0.0349 to 0.0202 MPa, a sudden decrease of 42%; the absolute value of tangential stress 
decreases from 0.00873 to 0.00506 MPa, a sudden decrease of 42%. It is evident that the seepage flow can lead to 
a sudden decrease of the stress absolute value, and also enhance the influence of the increased elastic modulus 
on the sudden change rate at the junction of the anchored zone and non-anchored zone. Therefore, the seepage 
flow facilitates the influence of elastic modulus on the normal stress of the surrounding rock.

As shown in Fig. 4b–d, Poisson’s ratio of surrounding rock, elastic modulus of bolts and the value of primary 
rock stress don’t influence the trend of the normal stress changing with radial distance, but do have a significant 
influence on the absolute value of normal stress, especially on the sudden change rate of the stress at the junction. 
Besides, the variation of these three values has a greater impact on the normal stress of the anchored area, but 
a lesser impact on that of the non-anchored area. The primary rock stress has a relatively minor effect on the 
radial stress of the tunnel wall, while the tangential stress has a relatively significant effect on it. Therefore, when 
seepage flow occurs in the surrounding rock with lower primary rock stress, special attention should be paid to 
the influence of seepage force on the normal stress of the surrounding rock, and it is suggested that the supports 
be strengthened and observation be intensified to ensure the safe construction and operation.

Analysis of evolution characteristics of surrounding rock displacement
Figure 5 illustrates the evolution curve of the relationship between the displacement of the surrounding rock 
and radial distance in different seepage flow directions. As the radial distance increases, the radial displacement 
of the surrounding rock gradually decreases and eventually converges to a stable value. The displacement curve 
at the junction of the anchored zone and non-anchored zone is continuous, without any sudden change, which 
is consistent with the displacement boundary conditions mentioned above. When there is no seepage flow in 
the circular tunnel, the absolute value of the radial displacement of the surrounding rock converges to zero. 
When seepage flows from inside to outside the tunnel, the absolute value of the surrounding rock displacement 
will be further reduced. When seepage flows from the outside to the inside the tunnel, the absolute value of 
surrounding rock displacement will further increase. Its causes are as follows: When the seepage force is opposite 
to the original rock stress, the surrounding rock is hindered from deforming, causing a decrease in displacement 
absolute value, and displacement increases as the radial distance decreases; if the seepage force increases beyond 
a certain point, the displacement direction changes, and the surrounding rock deforms in the opposite direction, 
resulting in a positive displacement. When seepage flows from inside to outside tunnel, the seepage force shows 
a negative correlation with the displacement absolute value; conversely, when seepage occurs from outside to 
inside tunnel, the seepage force shows a positive correlation. Furthermore, in the tunnel wall, the displacement 
value is − 4.7 mm when there is no seepage, it is − 3.6 mm when the seepage flows from inside to outside tunnel, 

Fig.3.  Evolution curve of surrounding rock normal stress with radial distance with different seepage flow 
directions.
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Fig. 5.  Evolution curve of surrounding rock displacement with radial distance in different seepage directions.

 

Fig. 4.  Evolution curves of the relationship between normal stress and radial distance of surrounding rock 
with different elastic moduli, Poisson’s ratios, elastic moduli of bolt and primary rock stresses.
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and it is − 5.7 mm when the seepage flows from outside to inside tunnel. Therefore, it is suggested that the 
supports be strengthened and observation be intensified in the radial displacement direction at the tunnel wall 
when seepage occurs from outside to inside tunnel.

Figure 6 shows the evolution curve of the relationship between displacement and radial distance of surrounding 
rock with different values of elastic modulus, Poisson’s ratio, elastic modulus of bolts and primary rock stresses. 
From Fig. 6, it is evident that variations in these four parameters do not affect the trend of radial displacement 
changing with radial distance, but have a great influence on the absolute value of radial displacement. Besides, 
when the elastic modulus of surrounding rock increases, the decreasing rate of radial displacement drops with 
the increase of radial distance, especially in the anchored area. Therefore, when the value of surrounding rock 
elastic modulus is small, supports should be enhanced. As shown in Fig. 6b, when no seepage flow occurs, with 
the increase of Poisson’s ratio, the absolute value of wall displacement also increases from 4.65 to 5.03 mm, 
an increase of 0.38 mm; when seepage occurs, the absolute value of wall displacement increases from 5.67 to 
6.09 mm, an increase of 0.42 mm. Therefore, seepage exacerbates the impact of increasing Poisson’s ratio on wall 
displacement. As shown in Fig. 6c, the effect of the elastic modulus of the bolts on the radial displacement of 
surrounding rock is only gently influenced by the seepage flow, which can be ignored. When the elastic modulus 
of bolts is increased, it has a significant impact on the supports of surrounding rock with large deformation, but 
has minimal impact on the supports after seepage. Additionally, it can also be seen from Fig. 6d that an increase 
in primary rock stress can mitigate the impact of seepage on distal radial displacement. For actual engineering 
projects, when seepage occurs in circular tunnels with relatively small primary rock stress, supports should be 
enhanced to prevent large displacements of the surrounding rock.

Fig. 6.  Evolution of the displacement of the surrounding rock with radial distance with the different 
parameters.
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Rheological modelling of tunnel anchorage support system under seepage flow
Rock rheological model is a crucial component of the rheological theory. A well-designed model can effectively 
express complex time-varying processes and rheological characteristics in a systematic and intuitive manner. 
It is essential for engineering project to select a model that conforms to the actual rheological characteristics 
and deformation forms of rock or rock mass to analyze engineering issues. Currently, the common method is 
to adopt rheological medium model and establish constitutive equation for calculus to analyse the rheological 
process of rock. This method can describe all the laws in the rheological process and is quite applicable to 
developing numerical software and engineering applications.

Selection of rheological model
Constitutive equation and rheological model of bolts
Compared to the surrounding rock, bolts have relatively simple material properties and mainly undergo axial 
deformation. This means that the axial stiffness of bolts is much higher than their transverse stiffness, making 
them an ideal one-dimensional viscoelastic material. The generalized one-dimensional viscoelastic constitutive 
equation of a bolt can be expressed as follows when the axial stress is σb and the axial strain is εb:

	
Pb (D) σb = Qb (D) εb, i.e. σb = Qb (D)

Pb (D) εb� (25)

	
Pb(D) =

m∑
K=0

pk
∂k

∂tk
, Qb(D) =

m∑
K=0

qk
∂k

∂tk
, D = ∂

∂t
� (26)

where D is the time differential operator, Pb(D) and Qb(D) are the operator function which also represent the 
viscoelastic parameters of the bolt, pk and qk are the functions that characterize the mechanical properties of the 
bolt.

One-dimensional Maxwell rheological model is selected to study and analyze the rheological properties of the 
bolt. Its one-dimensional constitutive equation is as follows:

	
σ+ η2

E0
= η2ε� (27)

Then the operator function of Maxwell rheological model is:

	
P (D) = 1 + ηb

Eb
, Qb(D) = ηbD� (28)

The forward Laplace transform of the operator function of the bolt is required for viscoelastic solutions that 
involve parameter transformation. Thus, the operator function of the Laplace space of the Maxwell rheological 
model is as follows:

	
P ′

b(s) = 1+ ηb

Gb
s, Q′

b(s) = ηbs, P ′′
b (s) = 1, Q′′

b (s) = K � (29)

where Eb is the elastic modulus of the bolt, ηb is the viscosity coefficient of the bolt, s is the independent variable 
of the Laplace space, K is the bulk modulus of the bolt, and Gb is the shear elastic modulus of the bolt.

Constitutive equation and rheological model of surrounding rock
According to the elastic theory, the one-dimensional form of the elastic constitutive relation is σ = Erε, while the 
three-dimensional constitutive relation can be expressed as:

	 Sij = 2Greij , σij = 3Kεij � (30)

where Sij is the stress deflection tensor, eij is the strain partial tensor, σij is the first invariant tensor of stress, εij 
is the first invariant tensor of strain, i is the row number of each component matrix, j is the column number of 
each component matrix.

The relationship between K, Gr, Er and μ is as follows:

	
Er = 9GrK

3K + Gr
, µ = 3K − 2Gr

2(3K + Gr) � (31)

Compared with the one-dimensional constitutive relation, it can be obtained that the extension of the viscoelastic 
constitutive model of surrounding rock to the three-dimensional constitutive relation can be expressed as:

	
Sij = 2Q′′(D)

P ′′(D) eij , σii = 3Q′′(D)
P ′′(D)εii� (32)
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In Eq. (32), Q'(D) and P'(D) correspond to Q(D) and P(D) mentioned above, but the viscoelastic modulus and 
coefficient in the operator functions Q(D) and P(D) need to be replaced by the corresponding shear viscoelastic 
modulus and shear viscoelastic coefficient in Q'(D) and P'(D). Q''(D) and P''(D) are operators representing 
the viscoelastic volume deformation of the material. If the volume deformation of the material is elastic, then 
Q'(D) = K, P'(D) = 1 through the comparison with the Eq. (30). From Eq. (30) and Eq. (31), we can obtain:

	
Gr = Q′(D)

P ′(D) , K = Q′′(D)
P ′′(D) � (33)

Since the parameters of viscoelastic materials are similar to those of elastic materials, the variation between 
elastic parameters and three-dimensional viscoelastic parameters can be obtained as follows by substituting 
Eq. (33) into Eq. (31) :

	
E(D) = 9Q′(D)Q′′(D)

3P ′(D)Q′′(D) + P ′′(D)Q′(D) , µ(D) = 3P ′(D)Q′′D) − 2P ′′(D)Q′(D)
2(3P ′(D)Q′′(D) + P ′′(D)Q′(D)) � (34)

Equation (34) is substituted into Eq. (35) for the forward Laplace transform, and the parametric expression of 
the Laplace space is obtained as follows:

	
L (s) =

∫ ∞

0
f(t)e−stdt� (35)

	
Er(s) = 9Q′(s)Q′′(s)

3P ′(s)Q′′(s) + P ′′(s)Q′(s)
, µ(s) = 3P ′(s)Q′′(s) − 2P ′′(s)Q′(s)

2(3P ′(s)Q′′(s) + P ′(s)Q′(s))
� (36)

where P ′(s), Q′(s), P ′′(s) and Q′′(s) are the operator functions of the viscoelastic model of surrounding rock 
in Laplace space. Equation (36) is the transform expression of phase-space parameters in viscoelastic analysis.

The surrounding rock can be regarded as a three-dimensional viscoelastic material based on the spatial effect. 
We select the three-dimensional Burgers model to describe the rheological properties of surrounding rock, and 
its three-dimensional constitutive equation is:

	
Sij +

(
η2

G0
+ η2 + η1

G1

)
Ṡij + η1η2

G0G1
S̈ij = 2η2ėij + 2η1η2

G1
ëij , σii = 3Kεii� (37)

Then the operator function of Burgers rheological model is:

	
P (D) = 1 +

(
η2

G0
+ η2 + η1

G1

)
D + η1η2

G0G1
D2, Q (D) = 2η2D + 2η1η2

G1
D2� (38)

After Laplace transform, the operator function is:

	
P ′(s) = 1 +

(
η2

G0
+ η1η2

G1

)
s + η1η2

G0G1
s2, Q′(s) = η2s + η1η2

G1
s2, P ′′(s) = 1, Q′′(s) = K � (39)

where η1 is the viscosity coefficient of the surrounding rock at the creep stage No. 1, η2 is the viscosity coefficient 
of the surrounding rock at the creep stage No. 2, G0 is the shear elastic modulus of the surrounding rock, and G1 
is the shear viscoelastic modulus of the surrounding rock.

Based on the selected mechanical model of the tunnel anchorage support system and the rheological model of 
the bolt under the action of seepage flow, we obtain the distribution characteristics of the anchorage support 
system, as shown in Fig. 7. Due to the interaction between the surrounding rock and bolts in the anchored zone, 
Maxwell model and Burgers model coexist in this zone. However, in the non-anchored zone with primary rock, 
there is no bolt anchorage and thus only Burgers model existing.

Solution of viscoelastic problems
Elastic solids and viscous fluids are two common materials used in engineering projects. Unlike elastic solids, 
viscous fluids do not have a regular shape. The deformation of viscous fluids is related to the duration of the 
external load. Only a small stress can make the viscous fluids flow, without the need for the external load 
exceeding a certain value. The flow deformation scale of the viscous fluid can increase with the loading time. 
Viscoelastic materials exhibit both elastic solid properties and viscous fluid deformation properties. Within the 
small deformation range of materials, the equilibrium equation, geometric equation, constitutive equation, and 
boundary condition of the linear elastic problem are basically the same as those of the viscoelastic problem, 
except that the viscoelastic solution needs to be completed in Laplace space. Therefore, the relationship between 
these two problems is called the elastic–viscoelastic correspondence principle. Therefore, for all viscoelastic 
problems, after solving the corresponding elastic solution, it is feasible to simply make forward Laplace transform 
of the elastic solution, replace the elastic parameters with viscoelastic parameters in the expression in Laplace 
space, then substitute it into the operator function (Laplace) of the rheological model selected for the viscoelastic 
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problem, and perform inverse Laplace transform to obtain its viscoelastic solution. The process of parameter 
replacement in Laplace space can be expressed as:

	
Eb ⇒

Q′
b(s)

P ′
b(s)

� (40)

	
Er ⇒ Eb(s) = 9Q′(s)Q′′(s)

3P ′(s)Q′′(s) + P ′′(s)Q′(s)
, µr ⇒ µ(s) = 3P ′(s)Q′′(s) − 2P ′′(s)Q′(s)

2(3P ′(s)Q′′(s) + P ′(s)Q′(s))
� (41)

Numerical analysis of rheological properties
On the basis of obtaining the viscoelastic solutions of stress field and displacement field of the rheological model 
of the tunnel anchorage support system under the action seepage flow, we analyze the rheological properties 
using 15 calculation columns. The values of relevant parameters are shown in Table 2.

Analysis of radial stress evolution characteristics of surrounding rock

	(1)	� Radial stress on tunnel wall

The evolution curve of the radial stress of the tunnel wall with time in different seepage directions is shown in 
Fig. 8. With the increase of duration, the absolute value of radial stress on the tunnel wall first increases and 
then decreases until it converges. The rheological process of radial stress on the tunnel wall is divided into 
three stages. Stage I features instantaneous increase of stress. Since the tunnel excavation and bolt reinforcement 
are carried out simultaneously, and time difference effects are not considered, the bolts need to bear the huge 
pressure brought by the surrounding rock in a short time, leading to a rapid increase of the absolute value of 
their stress to the peak value. Therefore, the stage I of the rheological process conforms to the model assumption. 
Stage II features slow release of stress. Since the stress shortly generated by the surrounding rock in stage I is 
limited by the bolt supports, it can only be slowly released over time. Stage III features stress convergence. In 
the process of stress release, the absolute value of the surrounding rock stress continues to decrease, and a new 
relationship between the surrounding rock and bolt supports gradually forms. When the surrounding rock and 
support structure reach a new balance state, the tunnel wall stress tends to be stable. It can be seen from Fig. 8 
that the tunnel wall stress has converged at 2,000 h.

When the seepage flows from inside to outside tunnel, i.e. when h0 = 0 m and ha = 20 m, the absolute value 
of the radial stress on the tunnel wall decreases, the rate of stress increase in stage I decreases, the duration is 
shortened, and the peak absolute value of the stress becomes smaller, the stress release rate in stage II slows 
down, and the absolute value of the radial stress convergence in stage III also becomes smaller. When seepage 

Fig. 7.  Geometric distribution of rheological model of anchorage support system under the action of seepage 
flow.
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flows from outside to inside tunnel, i.e. h0 = 20 m and ha = 0 m, the absolute value of radial stress on the tunnel 
wall increases, the rate of stress increase in Stage I increases, the duration increases, the peak value of the absolute 
value of stress increases, the stress release rate in Stage II increases, and the absolute value of stress convergence 
in Stage III also increases. The reason is that when the seepage flow direction is opposite to the stress direction 
of the primary rock, the force hindering the stress action of the surrounding rock will be generated, resulting in 
the reduction of the stress of the surrounding rock and the slowing down of the deformation. When the seepage 
flow direction is the same as the stress direction of the primary rock, the force that intensifies the stress action of 
the primary rock will be generated, and the stress of the surrounding rock will increase with the change of time, 
resulting in larger deformation.

Figure  9a and b show the relation evolution curve of the influence of different viscosity coefficients of 
surrounding rock on the radial stress on the tunnel wall under the action of seepage flow (h0 = 20 m, ha = 0 m). 
The viscosity coefficients of the surrounding rock in both stage I and stage II do not change the variation trend 
of the radial stress on the tunnel wall with time. However, they have a significant effect on the absolute value of 
stress. Furthermore, Fig. 9a and b illustrates that the viscosity coefficient of the surrounding rock in stage II has a 
significant impact on the subsequent stress on the tunnel wall, and the two are inversely correlated. The existence 
of seepage force intensifies the influence of η1 and η2 on the radial stress on tunnel wall.

The evolution curve of radial stress on tunnel wall with time under the action of seepage flow is shown in 
Fig. 9c–f. It can be seen that changes of these parameters do not alter the changing trend of radial stress on 
the tunnel wall with time, but have a significant impact on the value and changing rate of radial stress on the 
tunnel wall. In Fig. 9c, when no seepage occurs, the initial absolute value of the radial stress on the tunnel wall 
increases with the increase of the prestressing force T0 of the bolt. The rate of stress increase in stage I increases, 
the peak value of the stress also goes up, the stress release in stage II speeds up, and the absolute value of stress 
convergence in stage III increases. When seepage occurs, the effect on the three stages of radial stress rheology 
is more significant. Therefore, there is a positive correlation between the absolute value of the radial stress on 
the tunnel wall and prestressing force. In Fig. 9d–f, when the length and diameter of the bolt increase and the 
spacing between rows decreases, both the rate of stress increase and peak stress value in stage I increase, the 
stress release in stage II accelerates, and the absolute value of stress convergence increases in stage III. However, 
it can be found that the longer the bolts, the smaller the amplitude of the change in the three stages of the 
rheological process. Therefore, the absolute value of the radial stress on the tunnel wall is positively correlated 
with the length and diameter of the bolt, and negatively correlated with the row spacing of the bolt.

	(2)	� Radial stress on surrounding rock.

When of t = 2000 h, the evolution curve of the radial stress on surrounding rock varying with the radial distance 
under the seepage flow action is shown in Fig. 10. It can be obtained from Fig. 10 that the absolute value of the 
radial stress on surrounding rock gradually decreases with the increase of the radial distance, and finally keeps 
stable. When no seepage occurs (h0 = 0 m, ha = 0 m), the absolute value of radial stress under rheological state 
(t = 2000 h) is greater than that under elastic state (t = 0 h). When seepage flows from inside to outside tunnel, 
the absolute value of radial stress in rheological state is smaller than that in elastic state. As the absolute value of 
radial stress in the non-anchored zone decreases greatly, the abrupt value of stress at the junction of the anchored 
zone and the non-anchored zone increases. The absolute value of radial stress in rheological state is greater than 
that in elastic state when seepage occurs from outside to inside tunnel.

Figure 11 illustrates the evolution curve of radial stress on the surrounding rock with radial distance for 
different bolt parameters under the seepage action when t = 2000 h. The bolt parameters do not affect the variation 
trend of radial stress on surrounding rock with time, but they significantly impact the absolute value of radial 
stress on the surrounding rock. When there is no seepage, the absolute value of radial stress increases with the 
increase of prestressing force in both the anchored and non-anchored zones. The increase of prestressing force 
has a greater impact on the anchored zone than on the non-anchored zone due to the effect of bolt supports. 
This results in a larger abrupt value of stress at the junction. Seepage flow from outside to inside tunnel causes 

Fig. 8.  Evolution curve of radial stress on tunnel wall with time in different seepage directions.

 

Scientific Reports |        (2024) 14:29030 13| https://doi.org/10.1038/s41598-024-79814-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


an increase in the absolute value of the radial stress on the surrounding rock and a larger abrupt value of the 
junction, which is also reflected in the radial stress on the tunnel wall. Increasing the length and diameter of the 
bolts while decreasing the spacing between rows can result in an increase in the radial stress on the tunnel wall. 
Additionally, the abrupt stress value at the junction decreases due to the greater influence on the anchored zone 
compared to the non-anchored zone.

Analysis of the evolution characteristics of surrounding rock displacement

	(1)	� Displacement of tunnel wall

The evolution curve of the relationship between tunnel wall displacement and time in different seepage directions 
is shown in Fig. 12. As duration increases, the absolute value of tunnel wall displacement remains stable for a 

Fig. 9.  Evolution curve of radial stress on tunnel wall with different viscosity coefficients of surrounding rock 
and bolt parameters.
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Fig. 11.  Evolution curve of radial stress on surrounding rock with radial distance for different bolt parameters 
at t = 2,000 h.

 

Fig. 10.  Evolution curve of radial stress on surrounding rock with radial distance under seepage action when 
t = 2,000 h.
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short period of time, then gradually increases, and finally tends towards a stable value. The value and direction 
of the seepage force do not alter the changing trend of tunnel wall displacement with time, but have a significant 
impact on the absolute value of displacement. The rheological process of tunnel wall displacement also includes 
three stages. Stage I is the initial stable stage, stage II is the mid-term increasing stage, and stage III is the late 
convergence stage. During the initial stage of tunnel anchorage supports, as the stress on the surrounding rock 
is still in the early stage of rheological process, the tunnel wall displacement remains basically elastic under the 
action of the surrounding rock support system, with minimal rheological displacement. As time passes, the stress 
on the surrounding rock gradually increases, and in order to release pressure on the support system, the tunnel 
wall displacement begins to increase. When the surrounding rock support system reaches a new equilibrium 
state, the tunnel wall displacement converges. When seepage flows from inside to outside tunnel, the seepage has 
a relatively smaller impact on stage I of the rheological process of the tunnel wall displacement. In stage II, the 
increase of the displacement of the tunnel wall slows down. In stage III, the absolute value of the displacement 
convergence decreases. When seepage flows from outside to inside tunnel, it also has a relatively small impact on 
the stage I of the rheological process, with the increase of the tunnel wall displacement accelerating in stage II, 
and the absolute value of the displacement convergence increasing in stage III.

The relationship between the displacement of the tunnel wall and time under the action of seepage flow 
(h0 = 20 m, ha = 0 m) with different viscosity coefficients of the surrounding rock is shown in Fig. 13a and b. Both 
the viscosity coefficient η1 in stage I and the viscosity coefficient η2 in stage II of the surrounding rock do not 
change the trend of the tunnel wall displacement varying with time, but have a significant impact on the absolute 
value of the tunnel wall displacement. η1 only affects the value of tunnel wall displacement in the initial stable 
stage and the two are negatively correlated, while η2 has a significant impact on the tunnel wall displacement in 
the mid-term stage and the two are negatively correlated. In addition, it can be seen from Fig. 13a and b that the 
presence of seepage force intensifies the influence of η1 and η2 on the tunnel wall displacement.

The relationship between the tunnel wall displacement and time under the action of seepage flow with different 
bolt parameters is shown in Fig. 13c–f. It can be obtained that the change of bolt parameters does not alter the 
trend of the tunnel wall displacement with time, but has a significant impact on its absolute value. As shown in 
Fig. 13c, when no seepage occurs, with the increase of bolt prestressing force T0, the initial stable value of tunnel 
wall displacement remains basically unchanged, the rate of increase in stage II slows down, and the absolute 
value of displacement convergence in stage III decreases. When seepage occurs, it has a relatively larger impact 
on the last two stages of the displacement rheological process of the tunnel wall. That is, the larger the seepage 
force, the faster the displacement increases, and the larger the absolute value of displacement convergence. 
Therefore, the absolute value of radial stress on the tunnel wall is negatively correlated with prestressing force, 
but the magnitude of prestressing force change has a smaller impact on the tunnel wall displacement. Similarly, 
it can be seen from Fig. 13d–f that the absolute value of radial displacement of the tunnel wall is negatively 
correlated with the length and diameter of bolts, and positively correlated with the row spacing of the bolts.

	(2)	� Radial displacement of surrounding rock.

The relationship between displacement and time of surrounding rock under different seepage directions at 
t = 2000 h is shown in Fig. 14.

As the radial distance increases, the absolute value of the radial displacement of the surrounding rock 
gradually decreases and eventually tends towards a stable value of zero. The value and direction of the seepage 
force do not change the trend of displacement with time, but have a significant impact on the absolute value 
of the displacement. It can be seen from the Fig. 14 that when there is no seepage, the absolute value of the 
surrounding rock displacement is 0.33 m, and the stable value of displacement at the far end is 0.029 m. When 
seepage flows from inside to outside tunnel, the absolute value of radial displacement of the surrounding rock 
decreases, and the rate of change with the radial distance also decreases. The absolute value of displacement at 
the tunnel wall is 0.30 m, and the stable value of displacement at the far end is 0.025 m. When seepage flows 

Fig. 12.  Evolution curve of wall displacement with time in different seepage flow directions.
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Fig. 13.  Evolution curve of tunnel wall displacement with time for different viscosity coefficients of the 
surrounding rock and bolt parameters.
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from outside to inside tunnel, the absolute value of radial displacement of the surrounding rock increases, and 
the rate of change with the radial distance also increases. The absolute value of displacement at the tunnel wall is 
0.36 m, and the stable value of displacement at the far end is 0.032 m. Therefore, when the direction of seepage is 
opposite to the direction of primary rock stress, it generates a force that resists the movement of the surrounding 
rock towards the inner tunnel. When the direction of seepage is the same as the direction of primary rock stress, 
it generates a force that intensifies the movement of the surrounding rock towards the inner tunnel.

The relationship between the surrounding rock displacement and the radial distance under the action 
of seepage flow with different bolt parameters when t = 2000 h is shown in Fig. 15. The absolute value of the 
surrounding rock displacement gradually decreases with the increase of the radial distance, and the curve 
eventually tends towards a stable value. The changes of the bolt parameters do not change the trend of the 
surrounding rock displacement with time, but have a significant impact on the absolute value of the surrounding 
rock displacement. The absolute value of the displacement of the surrounding rock is negatively correlated with 
the prestressing force, the length, and the diameter of the bolts, and positively correlated with the row spacing 
of the bolts.

Axial force on bolts
The relationship between the axial force of the bolts and time in different seepage directions is shown in 
Fig. 16. As time passes, the axial force of the bolts shows a trend of first increasing, then decreasing, and finally 
converging. The value and directional changes of seepage force do not change the variation law of the axial force 
of the bolt with time, but have a significant impact on the value of the axial force on the bolts. In the mechanical 
model of the anchorage support system under the action of seepage flow, it is assumed that there is no relative 
slippage between the bolts and the surrounding rock, and the two are coupled. This means that the rheological 
process of the radial stress between the bolt and the surrounding rock wall is similar, thus the rheological process 
of the axial force on the bolts is also divided into three stages: the stage of instantaneous increase of axial force, 
the stage of axial force release, and the stage of axial force convergence. When seepage flows from outside to 
inside tunnel, in stage I of the axial force rheological process of the bolt, the axial force increase speeds up, with 
the duration shortened and peak axial force increased. In stage II, the axial force release speeds up. In stage III, 
the axial force convergence value increases. When seepage flows from inside to outside tunnel, in stage I, the 
axial force increase speeds up, with the duration increased and the peak axial force decreased. In stage II, the 
axial force release slows down. In stage III, the axial force convergence value decreases.

Under the action seepage flow, the relationship between bolt axial force and time for different cohesion 
coefficients of surrounding rock is shown in Fig. 17a and b. Both η1 and η2 do not change the trend of the bolt 
axial force varying with time, but have a significant impact on the value of the axial force. As shown in Fig. 17a, as 
η1 increases, the initial axial force of the bolts decreases, the axial force increase rate in stage I of the rheological 
process decreases, and the axial force peak value decreases, but stage I takes longer; as time passes, it is clearly 
observed in Fig. 17 that η1 has little impact on the stages II and III of the rheological process, thus it can be 
concluded that η1 has a relatively large impact on the early rheological process for bolt axial force and the two 
are negatively correlated. Similarly, as shown in Fig. 17b, η2 has a relatively large impact on the late-stage stress 
on the tunnel wall and the two are negatively correlated, and the existence of seepage flow intensifies the impact 
of η1 and η2 on bolt axial force.

The evolution curve of bolt axial force varying with time for different bolt parameters is shown in Fig. 17c–f. 
It can be seen that the variation of bolt parameters doesn’t change the trend of bolt axial force varying with time, 
but has a significant impact on the value and change rate of bolt axial force. As shown in Fig. 17c, the axial force 
of bolt is positively correlated with the prestressing force. In Fig. 17d–f, the axial force of the bolt is positively 
correlated with the length and diameter of the bolt, and negatively correlated with the row spacing between the 
bolts. However, with the increase of length and the decrease of diameter, the influence is weakened.

Fig. 14.  Evolution curve of surrounding rock displacement with radial distance in different seepage directions 
when t = 2,000 h.
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Fig. 16.  Evolution curve of bolt axial force with time in different seepage directions.

 

Fig. 15.  Evolution curve of surrounding rock displacement with radial distance for different bolt parameters 
when t = 2,000 h.
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Fig. 17.  Evolution curve of bolt axial force varying with time for different viscosity coefficient of surrounding 
rock and bolt parameters.
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Adaptive evaluation and variability analysis of rheological models for anchored 
support systems
Numerical model
A reasonable and accurate mechanical calculation model is the prerequisite for numerical simulations to ensure 
accurate results. To intuitively verify and analyze the characteristics and laws of the stress field, displacement 
field, and bolt stress field in the surrounding rock under the rheological model of tunnel anchoring and support 
systems considering seepage effects, the establishment of the numerical model in this paper follows several 
principles:

	(1)	� It is necessary to abstract and generalize various influencing factors in a realistic manner, ensuring the ac-
curacy of the calculation results while considering other factors to the greatest extent possible.

	(2)	� Efforts should be made to ensure that the numerical model matches the theoretical model, fully reflecting 
the mechanical properties of each material.

	(3)	� To improve the precision of the model and ensure that it is not affected by boundary conditions during 
calculations, the model should be sufficiently large and include adequate boundaries, provided that Saint 
Venant’s Principle is satisfied.

	(4)	� The mesh in the primary research area should be refined, while the mesh size in secondary research areas 
or marginal areas can be appropriately increased to accelerate the calculation speed of the model.

A numerical simulation model of the rheological model of the tunnel anchorage support system under seepage 
was established using FLAC3D (Version 7.00)25, as shown in Fig. 18. Circular boundaries are not easy to be 
fixed and only one stress can be applied to one boundary, thus we used square boundaries instead of circular 
boundaries, which can effectively apply primary rock stress and facilitate the fixing of boundary conditions. The 
size of the numerical simulation model is 240 m × 240 m × 40 m, in which the tunnel is excavated in a circular 
shape with a radius of 4 m and a support radius of 4 m. According to field experience and support theories, the 
upper surface of the model is set as the stress boundary, the left, right, front, and back surfaces of the model 
are set as horizontal displacement constraints, and the upper and lower surfaces of the model are set as vertical 
displacement constraints. To simulate the deep stress environment, a uniform load of 1 MPa is applied on the 
upper and lower surfaces of the model. The initial horizontal stress in the left and right directions is set to 1 
MPa in the model. The model has a total of 28,800 units and 31,691 nodes. Based on the theoretical model, the 
positive direction of the Y axis is set as the direction of tunnel excavation, that of the Z axis is set as the vertical 
upward direction, and that of the X axis is set as the left direction of the tunnel support section.

To simplify the calculation process, the model is treated as the same rock layer, and the seepage force is kept 
the same in each region, avoiding the complex transfer process caused by the differences between different soil or 
rock layers. Considering the differences between theoretical models and numerical models, some surrounding 
rock parameters are specially fine-tuned to ensure that the calculation results are more in line with the actual 
situation under reasonable conditions. The rock mechanical parameters and seepage parameters are shown in 
Tables 3, 4 and 5.

In order to compare with the theoretical analytical solution, two simulation comparison schemes were 
designed. Scheme I refers to the seepage flowing to outside tunnel, and Scheme II refers to the seepage flowing 
to inside tunnel. They are used to compare the stress field and displacement field of the numerical solution and 
theoretical solution, as shown in Fig. 19.

Numerical calculation method
Based on theoretical models, in numerical simulations, the interaction between hydraulic and mechanics is 
considered and calculated simultaneously and interdependently. This approach allows for a more accurate 
representation of the actual behavior of support systems under seepage, including the dynamic changes in 
the stress field, displacement field of the surrounding rock, and the stress field of the bolts. In the numerical 
simulation process, the three-dimensional Burgers viscoelastic constitutive model is used to simulate the 
rheological properties of the tunnel surrounding rock, and the creep process is determined by the state of partial 

Fig. 18.  Numerical calculation model of rheology of tunnel anchoring support system under seepage.
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stress. In the rheological model of the tunnel anchorage support system under the action of seepage flow, the 
strain of the surrounding rock in the three-dimensional Burgers rheological model can be expressed as:

	
ε(t) =

(
1

G0
+ 1

η2
t + 1

G1

(
1 − e

(
− G1

ηt

)))
σ0� (42)

Fig. 19.  Two numerical simulation schemes with different percolation directions.

 

K ρw/kg·m-3 Permeability/m2 Porosity

0.18 980 1 × 10–12 0.4

Table 5.  Seepage parameters.

 

Parameters Value

ρ/kg·m-3 7600

E/GPa 200

Fc/GPa 2

Ft/MPa 200

Ab/10-4m3 3

gr_coh/MPa 100

gr_fric 0.3

gr_k/GPa 1

gr_per/m 0.6

Table 4.  Mechanical parameters of bolts.

 

Parameters Value

C/MPa 2.0

φ/° 28

E/MPa 2.0

μ 0.3

ρ/kg·m-3 2500

G0/GPa 1.5

G1/GPa 0.3

ηk/GPa·d 61.04

ηm/GPa·d 62.13

tension/MPa 0.75

n 1.14

K/GPa 2.2

Gb/GPa 2.0

Table 3.  Mechanical parameters of rock mass.
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In numerical simulation, the default property of the CABLE element software is of linear elastic plasticity, without 
time-dependent properties. To verify the stress of the bolts in the theoretical model, a secondary program 
development shall be performed on the bolt element CABLE to enable it to exhibit some creep behaviors and 
is embedded in the simulation. When the Maxwell rheological model is selected as the constitutive model for 
the bolts, since its model consists of a Hooke solid and a Newtonian fluid in series, the value of the anchor axial 
force should be divided into two parts. One part is the stress increase caused by the transient behavior of the 
spring, and the other is the stress increase caused by the viscous flow of the Newtonian fluid. In the numerical 
simulation process, it is assumed that the two ends of the bolts are fixed on the surrounding rock, and their 
deformation is synchronized with the surrounding rock. Their strain and axial force are calculated based on 
the relative velocity v0(t) between two points on the surrounding rock. The strain and stress of the bolts can be 
expressed as a function of time:

	
ε (t) = 1

L

∫ t

0
v0 (t) dt� (43)

	
σ (t) = Eb · ε (t) + ηb · dε (t)

dt
= Eb

L
·
∫ t

0
v0 (t) dt + ηbv0 (t)

L
� (44)

where Eb is the linear elastic modulus of bolts; L is the length of bolt free section; ηb is the viscosity coefficient 
of bolts.

Calculation and analysis
Using the parameters shown in Tables 3, 4 and 5, we conducted a comparative analysis of analytical and 
numerical solutions for radial stress, bolt axial force, and displacement of surrounding rock in different seepage 
flow conditions, as shown in Fig. 20. Due to the simplification of seepage force in the theoretical solution of 
the model, where it is treated as a seepage volume force acting within the surrounding rock, equivalent to an 
internal force, during the simulation process, in order to more closely align with the theoretical solution, the 
FISH was utilized to assign pore water pressure to each node, thereby controlling the seepage force and hydraulic 
boundary conditions. When seepage flows from outside to inside tunnel, the pore water pressure at the far end 
is 2 × 105 Pa, and the pore water pressure at the tunnel wall is zero, i.e., it is a full-drainage state. When seepage 
flows from inside to outside tunnel, the pore water pressure at the far end is zero, and the pore water pressure at 
the tunnel wall is 2 × 105 Pa.

When t = 2000 h, i.e., in the rheological state, whether seepage flows from outside to inside or from inside 
to outside tunnel, the numerical simulation results are generally similar to the analytical solutions in terms of 
overall patterns, and the absolute values of the analytical solutions are slightly larger than those of the numerical 
solutions. In addition, the absolute values of radial stress on the tunnel wall are relatively larger. This is because 
in the mechanical model assumption, the effect of bolts on surrounding rock is simplified as a distributed force 
model, which is equivalent to applying lining support to the inner wall of tunnel. Therefore, theoretically, it 
strengthens the supporting effect of bolts. It is because of this strengthening effect that the stress released by 
surrounding rock during the rheological process is reduced, resulting in a larger absolute convergence value of 
radial stress in the anchored zone. In the numerical simulation process, the bolt only acts between two nodes, 
and its support range for surrounding rock is limited, resulting in a larger stress released by surrounding rock 
during the rheological process and a smaller absolute convergence value. In addition, there is no sudden change 
at the junction between the anchored and non-anchored zones. This is because discrete jumps cannot be realized 
in finite differential methods like discrete element method, and there is no stress jump phenomenon.

In addition, the difference in radial stress contrast during seepage flow from outside to inside tunnel is 
smaller than that during seepage flow from inside to outside tunnel. The is because the seepage boundary used 
in this numerical simulation is a square boundary, which can lead to an increase in seepage flow volume during 
axisymmetric circular seepage flow. This can also have a certain impact on the rheological process of radial stress.

In Fig. 20b, the variation laws of the analytical and numerical solutions of the bolt axial force with the same 
bolt parameters are the same, and their evolution curves are basically consistent, which proves the correctness 
of the analytical solution. The absolute value of the bolt axial force increases first, then releases, and finally 
converges as time passes. The absolute value of the bolt axial force of the numerical solution is slightly smaller 
than that of the analytical solution, and this difference is more obvious at the initial stage. Due to the differences 
in the action mode of the bolts in the numerical model and the theoretical model, the axial deformation of the 
bolts in the numerical simulation process is not large. This results in a smaller numerical value, which, however, 
is closer to the actual value.

Judging from the above comparative analysis, it is inevitable that there will be some errors between theoretical 
and numerical solutions, which is mainly attributed to the differences between theoretical and numerical 
models. Although the “distributed force” model of the bolt can evenly distribute the bolt force to the surrounding 
rock and well reflect the synergistic effect of the bolt and the surrounding rock, the bolt and the surrounding 
rock are bonded together by the anchoring agent, the anchorage has a certain range, and the length of the bolt 
does not represent the length of the free section of the bolt. Therefore, the theoretical model only considers 
the bolt axial force, without the consideration of the shear force existing in the anchorage section. In addition, 
pore water pressure is divided into dynamic water pressure and static water pressure, and the changes in the 
rheological process of tunnel wall displacement caused by static water pressure in the anchorage supporting 
system are not considered. Through comparative analysis between analytical and numerical solutions of tunnel 
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wall displacement, as shown in Fig. 20c, it is found that the absolute value of simulated tunnel wall displacement 
is greater than the analytical result, and the numerical value is also greater than that of the analytical solution 
in the curve of the absolute value of surrounding rock displacement as a function of radial distance. In the 
numerical simulation, the bolt axial stress is less than the stress in the theoretical model, and the weakening of 
the supporting effect results in an increase in the absolute value of the surrounding rock displacement.

Conclusions
This study integrates theoretical analysis and numerical simulation methods to establish a rheological mechanical 
model for the tunnel anchoring support system under seepage effects. It reveals the time evolution laws of the 
stress field, displacement field of the surrounding rock, and the stress field of the bolts. The main conclusions 
obtained are as follows:

	(1)	� In the elastic state, the stress mutation value at the boundary between the anchored and non-anchored 
zones is related to the seepage state. When seepage occurs inwardly, the mutation value increases, and con-
versely, it decreases. Additionally, when the seepage direction points towards the tunnel interior, the final 
trend of the normal stress shifts towards an increase in the absolute value of the stress, resulting in increased 
surrounding rock displacement; conversely, it shifts towards a decrease, leading to reduced surrounding 
rock displacement.

	(2)	� The presence of seepage forces makes the influence of the elastic modulus, Poisson’s ratio of the surrounding 
rock, and the elastic modulus of the bolts on the stress of the surrounding rock more significant. When the 
initial in-situ stress increases to a certain extent, the seepage forces can be ignored. Moreover, when the 
seepage direction points towards the tunnel interior, it intensifies the influence of the initial in-situ stress, 

Fig. 20.  Comparison of analytical and numerical solutions (A-S: analytical solution; S–S: numerical solution).
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elastic modulus, and Poisson’s ratio of the surrounding rock on the tunnel wall displacement, while weak-
ening the influence of Poisson’s ratio on the displacement at the far end.

	(3)	� The rheological process of radial stress on the tunnel wall, in the anchored and non-anchored zones, and 
the axial force of the bolts can be divided into three stages: instantaneous increase, slow release, and con-
vergence. The absolute value of the normal stress of the surrounding rock and its rheological process are 
positively correlated with the prestressing force, length, and diameter of the bolts, and negatively correlated 
with the spacing between bolts. The stress mutation value at the boundary is positively correlated with the 
prestressing force and diameter of the bolts, and negatively correlated with the length and spacing of the 
bolts. η1 affects the axial force of the bolts in the first stage and is negatively correlated with it; η2 affects the 
axial force in the second and third stages and is also negatively correlated with it.

	(4)	� The rheological process of tunnel wall displacement can be divided into three stages: initial stability, mid-
term increase, and late-stage convergence. The absolute value of surrounding rock displacement and its 
rheological process are negatively correlated with the prestressing force, length, and diameter of the bolts, 
and positively correlated with the spacing between bolts. When the seepage direction points towards the 
tunnel interior, the absolute value of surrounding rock displacement increases, and conversely, it decreases. 
The greater the seepage force, the larger η2 becomes, and the smaller the absolute value of the displacement.

	(5)	� The analytical and numerical solutions show good agreement. The numerical solutions for the radial stress, 
tangential stress of the surrounding rock, and axial force of the anchor bolts are all smaller than the ana-
lytical solutions, while the numerical solution for the absolute value of surrounding rock displacement is 
slightly larger than the analytical solution. In future research, further testing and optimising the theoretical 
models and simulation methods through engineering methods is an important development direction to 
improve the accuracy of theory and simulation.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding au-
thor (Feng Jiang) on reasonable request.
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