Table 2 Role of excitation-inhibition balance in predicting brain-behavior-functional connectivity relationships. Statistical correlates between dynamical, functional and behavioral patterns. In the table we show the variables, the linear correlation (\(\rho\)), the sample size (n), and the p-value. In bold we show the significant p-values (two-tailed, FDR corrected, \(\alpha = 0.05\)). Inclusion of homeostatic plasticity greatly improves the prediction of functional and behavioral variability.

From: Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions

  

Normalized

Unnormalized

Variables

n

\(\rho\)

p-value

\(\rho\)

p-value

\(B(t_1) \,,\, I_1(t_1)\)

38

0.40

0.01254

0.18

0.2923

\(B(t_2) \,,\, I_1(t_2)\)

43

0.50

0.00057

0.54

0.00019

\(B(t_1) \,,\, I_2(t_1)\)

38

-0.25

0.1325

0.08

0.6261

\(B(t_2) \,,\, I_2(t_2)\)

43

-0.52

0.00040

0.01

0.9241

homo-FC\(_e(t_1) \,,\, I_1(t_1)\)

50

0.43

0.00186

0.20

0.1583

homo-FC\(_e(t_2) \,,\, I_1(t_2)\)

50

0.46

0.00081

0.38

0.00676

homo-FC\(_e(t_1) \,,\, I_2(t_1)\)

50

-0.27

0.06118

0.14

0.3286

homo-FC\(_e(t_2) \,,\, I_2(t_2)\)

50

-0.44

0.00145

-0.16

0.264

FC\(_e(t_1) \,,\, I_1(t_1)\)

50

0.23

0.1159

0.05

0.7306

FC\(_e(t_2) \,,\, I_1(t_2)\)

50

0.29

0.04364

0.29

0.04468

FC\(_e(t_1) \,,\, I_2(t_1)\)

50

-0.10

0.4739

0.15

0.2841

FC\(_e(t_2) \,,\, I_2(t_2)\)

50

-0.36

0.01012

-0.18

0.2004