Table 2 Role of excitation-inhibition balance in predicting brain-behavior-functional connectivity relationships. Statistical correlates between dynamical, functional and behavioral patterns. In the table we show the variables, the linear correlation (\(\rho\)), the sample size (n), and the p-value. In bold we show the significant p-values (two-tailed, FDR corrected, \(\alpha = 0.05\)). Inclusion of homeostatic plasticity greatly improves the prediction of functional and behavioral variability.
From: Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions
Normalized | Unnormalized | ||||
---|---|---|---|---|---|
Variables | n | \(\rho\) | p-value | \(\rho\) | p-value |
\(B(t_1) \,,\, I_1(t_1)\) | 38 | 0.40 | 0.01254 | 0.18 | 0.2923 |
\(B(t_2) \,,\, I_1(t_2)\) | 43 | 0.50 | 0.00057 | 0.54 | 0.00019 |
\(B(t_1) \,,\, I_2(t_1)\) | 38 | -0.25 | 0.1325 | 0.08 | 0.6261 |
\(B(t_2) \,,\, I_2(t_2)\) | 43 | -0.52 | 0.00040 | 0.01 | 0.9241 |
homo-FC\(_e(t_1) \,,\, I_1(t_1)\) | 50 | 0.43 | 0.00186 | 0.20 | 0.1583 |
homo-FC\(_e(t_2) \,,\, I_1(t_2)\) | 50 | 0.46 | 0.00081 | 0.38 | 0.00676 |
homo-FC\(_e(t_1) \,,\, I_2(t_1)\) | 50 | -0.27 | 0.06118 | 0.14 | 0.3286 |
homo-FC\(_e(t_2) \,,\, I_2(t_2)\) | 50 | -0.44 | 0.00145 | -0.16 | 0.264 |
FC\(_e(t_1) \,,\, I_1(t_1)\) | 50 | 0.23 | 0.1159 | 0.05 | 0.7306 |
FC\(_e(t_2) \,,\, I_1(t_2)\) | 50 | 0.29 | 0.04364 | 0.29 | 0.04468 |
FC\(_e(t_1) \,,\, I_2(t_1)\) | 50 | -0.10 | 0.4739 | 0.15 | 0.2841 |
FC\(_e(t_2) \,,\, I_2(t_2)\) | 50 | -0.36 | 0.01012 | -0.18 | 0.2004 |