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Identifying which patients should undergo serologic screening for celiac disease (CD) may help 
diagnose patients who otherwise often experience diagnostic delays or remain undiagnosed. Using 
anonymized outpatient data from the electronic medical records of Maccabi Healthcare Services, 
we developed and evaluated five machine learning models to classify patients as at-risk for CD 
autoimmunity prior to first documented diagnosis or positive serum tissue transglutaminase (tTG-
IgA). A train set of highly seropositive (tTG-IgA > 10X ULN) cases (n = 677) with likely CD and controls 
(n = 176,293) with no evidence of CD autoimmunity was used for model development. Input features 
included demographic information and commonly available laboratory results. The models were then 
evaluated for discriminative ability as measured by AUC on a distinct set of highly seropositive cases 
(n = 153) and controls (n = 41,087). The highest performing model was XGBoost (AUC = 0.86), followed 
by logistic regression (AUC = 0.85), random forest (AUC = 0.83), multilayer perceptron (AUC = 0.80) 
and decision tree (AUC = 0.77). Contributing features for the XGBoost model for classifying a patient as 
at-risk for undiagnosed CD autoimmunity included signs of anemia, transaminitis and decreased high-
density lipoprotein. This model’s ability to distinguish cases of incident CD autoimmunity from controls 
shows promise as a potential clinical tool to identify patients with increased risk of having undiagnosed 
celiac disease in the community, for serologic screening.

Celiac disease (CD) is an immune-mediated disease characterized by small bowel enteropathy triggered by dietary 
exposure to gluten. The classic clinical presentation of CD includes signs of malabsorption and gastrointestinal 
symptoms such as abdominal pain, bloating and diarrhea1,2. However, many patients experience predominantly 
non-specific extra-intestinal symptomatology3,4, or are asymptomatic5. The diverse manifestations of CD can 
make it challenging for primary care providers (PCPs) to identify and diagnose CD in the general population6. 
Indeed, a majority of adult patients with CD today are likely undiagnosed5–8. Patients who eventually receive 
a diagnosis experience a mean delay of eleven years from symptom onset to diagnosis, with more than half 
reporting a delay of five or more years till the diagnosis is established6. CD has an estimated global prevalence 
of over 1%9, and a rising incidence in recent years6,10–12. Diagnostic delays and underdiagnosis of CD therefore 
represent an important healthcare problem13.

Screening for CD is typically performed by highly sensitive and widely available serum tests for CD 
autoimmunity (CDA): the most accurate and commonly used being the assay for antibodies to tissue-
transglutaminase (tTG-IgA)14. Seropositivity is suggestive of underlying CD, and such patients typically 
undergo endoscopic evaluation to establish or rule out the diagnosis of CD via biopsy of intestinal mucosa15. 
High seropositivity (tTG-IgA > 10X ULN) is associated with a high (> 95%) positive predictive value (PPV) 
for villous atrophy and, in the proper clinical setting, is considered sufficient for diagnosis without a biopsy in 
children and possibly in adults7,14–16.

Clinical guidelines do not provide clear and consistent definitions on when to screen for CDA. General 
population screening is not currently recommended17, although screening high-risk patients may be 
warranted18,19. What defines high-risk groups for CD varies somewhat between reports, although the focus has 
typically been on a family history of CD and medical comorbidities with established associations with CD20. 
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Beyond these factors, laboratory abnormalities such as iron-deficiency anemia are common among patients with 
CD21. While PCPs may be aware of specific risk-factors, signs and symptoms of undiagnosed CD, more subtle 
combinations of clinical features may go missed.

Machine learning (ML) algorithms have the potential to use existing data within a patient’s electronic medical 
record (EMR) to provide risk assessments to providers22. ML models have been developed to alert intensive care 
unit physicians to patients at risk of circulatory failure23, to identify clinically significant portal hypertension 
in non-alcoholic steatohepatitis patients from pathology reports24, to predict incident hypertension25 and 
hypertension outcomes26, to identify patients with undiagnosed psoriatic arthritis27, hepatitis C28, to predict 
dementia onset29, IgA nephropathy30, future Parkinson’s disease diagnosis31, and to flag patients at risk of 
advanced colorectal cancer32. One previous study that attempted to develop ML models to identify patients 
with incident CD using a variety of modeling methods found that the models were not consistently better 
than chance33. Another study showed positive results, but the study size was small and the models relied on 
symptoms extracted from unstructured clinical documents and diagnostic codes34. Neither study included 
objective laboratory test results as predictive input features, which may have hindered performance and limited 
generalizability.

The goal of the current study was to develop and assess a prescreening EMR-based tool to classify adult 
and adolescent patients by risk of having unidentified CD autoimmunity using commonly available clinical 
features. Five algorithms were trained and tested: logistic regression, decision tree, random forest, XGBoost and 
multilayer perceptron. Each algorithm was then assessed on discriminative ability as measured by estimated 
area under the ROC (AUC). Input features included age, biological sex and results from commonly available 
laboratory tests performed as part of complete blood counts and comprehensive metabolic, iron and lipid panels. 
Incident cases were identified from a large retrospective community-based dataset using results from tTG-IgA 
testing. Highly seropositive cases (tTG-IgA > 10X ULN) with probable underlying CD were used for model 
training and evaluation against cohorts of controls with no evidence of disease. Performance was additionally 
assessed for the highest performing model in a test set consisting of a cohort of seropositive cases (tTG-IgA > 2X 
ULN) who may require endoscopic evaluation for CD and a cohort of controls. In both test sets AUC was 
assessed at multiple time points before first documented evidence of CD autoimmunity.

Methods
Dataset
The dataset for this retrospective study consisted of deidentified EMR data from Maccabi Health Services 
(MHS), Israel’s 2nd largest health maintenance organization (HMO)35. Data were accessed via the Kahn Sagol 
Maccabi Research and Innovation Centre (KSM), and extracted using the MDClone platform (version 5.5.0.4; 
https://www.mdclone.com/), a proprietary software. The dataset was de-identified by KSM, and no personal 
identifying information was made available to the researchers. The dataset contains records from 2,963,864 
unique patients with longitudinal data, as members rarely change HMOs. Unstructured data, including progress 
notes and pathology or procedure reports were not made available by KSM. The study therefore relied entirely on 
the structured data, specifically patient demographics and laboratory results. Approval for use of the dataset and 
the retrospective analysis was obtained by the Maccabi institutional review board (approval #0052-20-MHS), 
and the study was conducted in accordance with the Declaration of Helsinki and all relevant guidelines and 
regulations. Informed consent was waived as all identifying information had been removed by KSM.

Study cohort definitions
Patients were eligible for inclusion if they (1) were MHS members during the study period (2005–2021), and (2) 
joined MHS before 2005. The eligible population was randomly split into train (80%) and test (20%) sets. The 
split was performed by assigning patients with digits 2 or 6 as the third to last digit in their randomly generated 
hash ID to test, and all others to train.

In this study we distinguish between seropositive cases in general and highly seropositive cases with likely 
underlying CD. Cohorts of highly seropositive cases were selected in both train and test sets, and an additional 
cohort of seropositive cases was identified using case identification criteria (CIC) described below.

Highly seropositive cases were defined as patients having at least one documented tTG-IgA test ≥ 10X 
ULN, which has an extremely high (> 95%) PPV for duodenal biopsy proven CD7,36–38. CIC for seropositive 
cases included all patients with at least one documented tTG-IgA > 2X ULN. This definition is more sensitive 
for underlying CD, but also includes a higher proportion of cases that would not have pathologic evidence of 
disease7. Reports of procedures including endoscopic evaluations were not available to researchers, so pathologic 
evidence of CD could not be confirmed or ruled out.

To reduce the possibility that cases were not newly diagnosed, cases were excluded if they had a history 
of tTG-IgA levels within normal limits before their first positive tTG-IgA, or a CD diagnosis code > 1 year 
before their first positive tTG-IgA. Providers may order serology on patients with known CD to check patient 
compliance with a gluten-free diet (GFD), so such cases may have been previously diagnosed and therefore not 
incident cases relevant for this study. For each seropositive case, the earlier of the first positive serology or first 
diagnosis of CD was defined as that patient’s index date.

Screening serology was performed with one of two commercial kits used during the study period: Celiakey 
(Thermo Fisher Scientific-USA) for years 2005–2011 and Elia (Thermo Fisher Scientific-USA) for years 2012–
2021, each with manufacturer established ULN values of > 5 U/mL, and > 7 U/mL respectively.

Controls were identified as eligible MHS patients with no documented CD diagnosis code and no serologic 
evidence of CD autoimmunity. One cohort of controls was selected to match the train set cases and two cohorts 
of controls in the test set were selected to match the two cohorts of cases (highly seropositive and seropositive). 
Controls were matched to cases by years of data availability at the maximal possible ratio of controls to cases. 
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Controls were assigned the same index dates as the case to which they were matched. Controls were not matched 
by demographic characteristics to allow the model to learn the relationship between these features for predicting 
incident CD seropositivity.

Each patient included in the train or test sets was additionally assigned a run date, defined as the first of July 
of the calendar year preceding the patient’s index date. This gap between run date and index date is referred to as 
the one-year gap, referring to the mean time between run date and index dates of the cohort. The gap between the 
run date and the index date was added to account for potential clinical suspicion for CD immediately preceding 
the index date. Analyses were also conducted at further time gaps of up to four years prior to index dates to 
test the ability of the model to identify patients years before initial suspicion of disease. This methodology was 
described in detail in a previous report on patients with psoriatic arthritis27. Patients were additionally excluded 
if on their run date they did not meet the following criteria: (i) age ≥ 12 and age ≤ 85 years-old, (ii) members of 
MHS for at least four years, and (iii) at least one complete blood count (CBC) during the four years prior to their 
index date. The patient selection process is depicted in Fig. 1.

Model development
Five candidate models were developed to classify patients as at-risk or not for having undiagnosed CD 
autoimmunity. Each model was fit to the training data using the following algorithms: logistic regression, 
decision tree, random forest, XGBoost and multilayer perceptron. Logistic regression estimates the log-odds 
of an outcome by linear combination of weighted input features. The estimate can then be converted into a 
probability using a logit function, which can be used for binary classification given a predefined cutoff. A 
decision tree performs classification by recursively partitioning based on the given set of input features. Random 
forest is a method that uses multiple decision trees, and then performs classification based on the result of the 
majority of the decision trees39,40. XGBoost builds multiple decision trees sequentially using gradient boosting to 
minimize the errors made by previous trees26,39–41. A multilayer perceptron is a type of artificial neural network 
that consists of an input layer, one or multiple hidden layers and an output layer40. Neurons of the input layer 
represent input features, which activate neurons in the hidden layer to produce an output from the output 
layer. This output can then be converted into a classification. The models were trained and evaluated using data 
available during the three years prior to the run date. Training was performed at a one-year time gap between 
run dates and index dates. All models were implemented using the scikit-learn library v1.342 and the scikit-learn 
compatible XGBoost library.

Candidate independent predictors consisted of basic demographic information (biological sex and age at 
run date), and laboratory test results extracted from the structured data (Supplementary Table 1). Laboratories 
included as features all individual components of the comprehensive metabolic panel and complete blood count 

Fig. 1.  Flow chart of patient selection. Highly seropositive (tTG-IgA > 10X ULN) cases with no previous 
evidence of celiac disease seropositivity were identified and excluded if at their index date they were (i) age < 12 
or age > 85 years-old, (ii) members of MHS for fewer than four years, and (iii) had no documented complete 
blood count (CBC) during the four years prior to their index date. Controls were matched to cases by years of 
data availability at the assigned run date where they met eligibility criteria.
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with differential, ferritin and high-density lipoprotein (HDL) as patients with celiac often have iron deficiency 
anemia4 and low HDL43. The most recent available laboratory result of each type log-transformed by sex and age 
group. Missing data were given a special indication and the model treated these as null values. For the logistic 
regression, null values were replaced by median values for the feature as calculated by biological sex and age 
group. SHapley Additive exPlanations (SHAPs) were used both for model selection and to explain the output of 
the XGBoost model44.

Models were developed to provide each patient with an output score given the patient’s input features. The 
score can be converted at a given threshold to perform binary classification of positive (at-risk for undiagnosed 
CD) or negative (not at-risk for undiagnosed CD) classes. The predicted classes assigned to each patient are then 
evaluated against the ground truth labels established by the CIC as described above (i.e. incident case of CD 
autoimmunity or control with no documented evidence of CD).

The hyperparameters for each algorithm were selected by performing five-fold cross validation within the 
train set and optimizing for average precision (Supplementary Table 2). Each model was then retrained on the 
entire train set with the selected hyperparameters to produce one model with each of the five algorithms for 
evaluation on the test set.

Model selection and evaluation
To test the ability of the models to identify incident CD seropositivity prior to the first documented evidence 
of disease, the performance of each model was assessed one year prior to patients’ run dates in the test set 
with cohorts of highly seropositive cases and controls. The model with the highest AUC was then additionally 
evaluated at run dates of two-, three- and four-year time gaps prior to each patient’s run date, as well as at all four 
time gaps in the test set consisting of seropositive patients and controls. Tests at each time gap were performed 
on the same base cohort selected according to the criteria described above. Patients from each test cohort who 
did not meet eligibility criteria at previous time gaps were removed from analyses.

Results
Cohorts of cases of CDA and controls in the train and test sets are described in Table 1.

Performance for each model on the high seropositivity test cohort at a gap of one year are shown in Fig. 2. At 
the one-year gap, discriminatory AUC was highest for the XGBoost model at 0.86, followed by the models using 
logistic regression (AUC = 0.85), random forest (AUC = 0.83), multilayer perceptron (AUC = 0.80) and decision 
tree (AUC = 0.77). Feature contributions for the XGBoost model are depicted for this test by SHAP analysis 
(Fig. 3). The XGBoost also had the best performance at the two-, three-, and four-year gaps, with AUC values of 
0.83, 0.82 and 0.81 respectively (Supplementary Table 3).

The models was then tested on the test set consisting of seropositive cases and controls. The XGBoost model’s 
ability to distinguish between cases and controls in this test set was assessed by AUC as 0.79, 0.77, 0.75, 0.75 at 
gaps of one, two, three and four years (Supplementary Table 4).

Discussion
In the current study, we describe the development and comparative evaluation of five ML models for identifying 
adult and adolescent patients with incident CD autoimmunity prior to the first documented evidence of disease. 
Based on AUC, XGBoost exhibited the strongest ability of the models to distinguish between cases of highly 
seropositive cases of CD autoimmunity and controls one year prior to initial documentation, followed by the 
models using logistic regression, random forest, multilayer perceptron and decision tree respectively. XGBoost 
is a particularly robust ML method for tabular data, which often produces the best performance compared to 
other ML methods26,30,39–41. This model showed excellent discriminatory ability (AUC > 0.80) between cases 
of highly seropositive patients with likely CD at gaps of one, two, three and four years. The model also showed 
good discriminatory ability (AUC > 0.7) at all time gaps for more broadly defined seropositive cases compared 
to controls. These findings suggest the potential utility of this model as a prescreening tool to identify patients 
at risk of having CDA for eventual evaluation for CD. The final model achieved these results using commonly 
available laboratory results and demographic features.

Patients, n Age, mean (SD), y Female sex, n (%)

Train cohort

 Controls 176,293 50.7 (18.2) 110,978 (63.0%)

 Highly seropositive cases 677 37.8 (17.1) 499 (73.7%)

Highly seropositive CD autoimmunity

 Controls 41,087 49.9 (17.5) 25,657 (62.4%)

 Highly seropositive cases 153 36.2 (16.5) 114 (74.5%)

Seropositive CD autoimmunity

 Controls 78,923 49.9 (17.5) 49,483 (62.8%)

 Seropositive cases 301 37.1 (17.1) 210 (69.8%)

Table 1.  Descriptive characteristics of the train and test cohorts. The first test cohort includes cases of celiac 
disease autoimmunity with high seropositivity (tTG-IgA > 10X ULN) and matched controls. The second test 
cohort includes all cases of seropositivity with tTG-IgA > 2X ULN.
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The relationships between demographic and lab features of the XGBoost model as depicted in the SHAP 
are consistent with established phenomena among patients with untreated CD. The model identified decreased 
hemoglobin, ferritin, mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC) and mean 
cell volume (MCV) as predictive of undiagnosed CD autoimmunity. These laboratory findings are indeed 
characteristic of anemia secondary to malabsorption of dietary iron and chronic inflammation in the setting 
of CD1. Increased liver function tests (LFTs), specifically alanine transaminase (ALT) and aspartate transferase 
(AST) and alkaline phosphatase contributed positively to classification as at-risk for the model. In patients with 
newly diagnosed CD, 20–50% of patients have elevated LFTs, and undetected CD accounts for an estimated 4% of 
cases of unexplained transaminitis45,46. Low high density lipoprotein (HDL) has frequently been associated with 
untreated CD47, and the combination of unexplained iron-deficiency anemia and low HDL may be particularly 
suggestive of CD48. For the model, low HDL contributed to a positive classification as at-risk for undiagnosed CD 
autoimmunity. Longitudinal studies have found that these lab abnormalities typically resolve after initiation of a 

Fig. 2.  Receiver operating characteristics (ROC) plot for identification of patients with highly seropositive 
(tTG-IgA > 10X ULN) celiac disease autoimmunity versus controls one year prior to first documented evidence 
of disease. The performance of five modeling modalities is compared: XGBoost (XGB), logistic regression, 
random forest, multilayer perceptron (MLP) and decision tree. Figure prepared with Matplotlip v3.8 ​(​​​h​t​t​p​s​:​/​/​m​
a​t​p​l​o​t​l​i​b​.​o​r​g​/​​​​​)​.​​​​
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Fig. 3.  SHAP plot depicting contribution of the input features at the one year time gap prior to first 
documentation of celiac disease (CD) autoimmunity for the XGBoost model. Positive SHAP values contribute 
positively to classification of a patient as at-risk for undiagnosed CD autoimmunity. A higher value for a given 
feature is indicated in red, with lower values in blue. Biological sex was coded as a binary: 1 = Female; 0 = Male. 
Figure prepared with SHAP v0.42 (https://shap.readthedocs.io).
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GFD, including anemia49, transaminitis50, and low HDL51,52, further highlighting the importance of identifying 
undiagnosed cases of CD early.

Earlier identification and treatment of CD have been shown to have clinical benefits: screen-detected 
asymptomatic and mildly symptomatic adult patients typically show improved intestinal histology and reduced 
serum autoantibody levels after following adherence to a GFD53,54. Late diagnosis in contrast has been associated 
with unfavorable clinical outcomes. Patients diagnosed after 40 years of age are more likely than younger patients 
to show persistent signs of intestinal mucosal injury, including villous blunting and intraepithelial lymphocytes 
in the duodenum despite following a strict GFD55. Among symptomatic patients, diagnostic delays are associated 
with poorer long-term outcomes even after initiation of a GFD, including persistent gastrointestinal and 
extra-gastrointestinal symptoms3,4,56, increased utilization of healthcare resources, and lower reported quality 
of life measures8,57,58. Nevertheless CD is a highly heterogeneous disease, and the long-term benefits of early 
identification by screening should be established in future studies59.

To our knowledge, this is the first report of a ML model showing the ability to identify cases of incident 
CDA from controls within a large community-based setting using only commonly available laboratory results, 
biological sex and age in adults and adolescents. This tool may have clinical value as a prescreening tool to 
identify patients who should be evaluated for CDA. Patients who are found to be seropositive can then undergo 
further evaluation for CD according to clinical guidelines, including additional serologic testing or endoscopic 
evaluation with multiple biopsies60.

A major strength of the study was the size and continuity of follow-up in the longitudinal data set, which 
allowed for large patient cohorts with rich historical data. An additional strength is that by using commonly 
available lab results and demographic information, the model can be portably implemented in most EMR 
systems. Follow-up studies are needed to evaluate the robustness of the models to other datasets with different 
population demographics and EMR systems. Additionally, prospective studies should explore the PPV that a 
flagged patient is seropositive for CDA, and for undiagnosed CD. This model, if validated, may assist PCPs in 
identifying patients with CDA at point of care, or health systems identifying patients in their populations who 
may benefit from screening for CDA.

The study also had limitations. Due to lack of access to unstructured data such as clinical documentation, 
patients were selected by the proxy of test results rather than by endoscopy results. Some patients selected as 
cases with CDA may not have had CD. Diagnostic status as reported in clinical documents such as were not 
made available to establish CD status. Highly seropositive patients are very likely to have CD7. Some controls 
may also have CD that was not documented or undiagnosed at the time the study was conducted. Additionally, 
there may be heterogeneity in the full population that was not captured in the cohorts of cases and controls used 
for model training and evaluation. Future studies should examine the robustness of the model, and its ability to 
perform on different populations and health care systems that may differ from MHS through retrospective and 
prospective validation studies.

In conclusion, this study presents a ML model based on a large population dataset that can identify adults 
and adolescents at risk of undiagnosed CD autoimmunity using commonly available structured clinical and 
demographic data.
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