Table 2 Mathematical formulas for statistical features used in the analysis.
From: Human activity recognition algorithms for manual material handling activities
Feature | Formula | Description |
---|---|---|
Mean (\(\mu\)) | \(\mu = \frac{1}{n} \sum _{i=1}^{n} x_i\) | The arithmetic average of all values in a segment. |
Standard deviation (\(\sigma\)) | \(\sigma = \sqrt{ \frac{1}{n} \sum _{i=1}^{n} (x_i - \mu )^2 }\) | The spread of data points from the mean in a segment. |
Min | \(\text {min}(x_1, x_2, \dots , x_n)\) | The smallest value in the segment. |
Max | \(\text {max}(x_1, x_2, \dots , x_n)\) | The largest value in the segment. |
Skewness (S) | \(S = \frac{n}{(n-1)(n-2)} \sum _{i=1}^{n} \left( \frac{x_i - \mu }{\sigma }\right) ^3\) | The asymmetry of the data distribution in a segment. |
Kurtosis (K) | \(K = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum _{i=1}^{n} \left( \frac{x_i - \mu }{\sigma }\right) ^4 - \frac{3(n-1)^2}{(n-2)(n-3)}\) | The “tailedness” of the data distribution in a segment. |