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This study presents a novel framework for advancing sustainable urban logistics and distribution 
systems, with a pivotal focus on fast charging and power exchange modalities as the cornerstone of 
our research endeavors. Our central contribution encompasses the formulation of an innovative electric 
vehicle path optimization model, whose paramount objective is to minimize overall operational costs. 
Integrating V2G technology, we facilitate sophisticated slow charging and discharging management of 
EVs upon their return to distribution centers, enhancing resource utilization. Moreover, we introduce 
a robust algorithmic approach for estimating battery degradation costs, meticulously accounting 
for ambient temperature fluctuations and discharge depth. This methodology, combined with the 
V2G framework encompassing both charging modes, is effectively solved using a genetic algorithm, 
ensuring the logistics distribution model’s optimal performance. Simulation outcomes underscore the 
remarkable capacity of our V2G model to augment operational flexibility in EV logistics distribution, 
culminating in substantial cost reductions. Simultaneously, it adeptly equilibrates peak and off-peak 
loads within the distribution grid, fostering a more resilient and efficient energy ecosystem. Through 
rigorous experimental comparisons, we delve into the intricacies of the charging and swapping mode 
model, offering profound insights that can inform strategic decision-making within the logistics sector 
regarding optimal charging and swapping strategies. Furthermore, we explore the ramifications of 
slow charging and discharging management on the distribution system’s performance, illuminating 
their potential benefits. A comprehensive sensitivity analysis is conducted to unravel the factors 
that influence battery loss in EVs, revealing a pronounced positive correlation between elevated 
temperatures, deeper discharge depths, and accelerated battery degradation. This revelation 
underscores the importance of considering environmental conditions in EV operation and maintenance 
strategies.

With the growth of the social economy, users’ consumption levels and frequency of online shopping have 
significantly increased, leading to a remarkable expansion of the logistics and transportation industry. Logistics 
and transportation play a pivotal role in promoting economic development. However, this growth has also 
brought about a series of problems, such as increased energy consumption and environmental pollution in 
the logistics and transportation processes, which are currently constraining the development of the logistics 
industry. Given the context of environmental and energy concerns, the progress in new technology has catalyzed 
the development of the new energy vehicle industry. As a result, new energy logistics vehicles have emerged as 
the primary focus for the development of logistics and distribution systems. According to statistics, the growth 
and application of Electric Vehicles (EVs) have been steadily increasing year by year. In comparison to traditional 
fuel vehicles, EVs offer significant advantages, including no pollution, energy efficiency, and lower energy costs. 
Consequently, the large-scale integration of EVs into logistics transportation is an inevitable trend. The Edison 
Institute1 counted a 79%, 78%, and 34% increase in electric vehicle sales in the United States, China, and Europe, 
respectively, in 2018. Projections indicate that there will be 250 million electric vehicles on the road by 20302.

In 2020, the General Office of the State Council issued the New Energy Vehicle Industry Development Plan 
(2021–2035), which aims to accelerate the in-depth integration and efficient synergy between new energy vehicles 
and energy systems, transportation networks, and communication platforms. The plan seeks to optimize energy 
consumption structures, transportation systems, and enhance city intelligence levels. EVs possess energy storage 
characteristics and can function as mobile distributed power sources, allowing them to connect to the grid. 
Leveraging Vehicle-to-Grid (V2G) technology enables the rational planning of EV charging and discharging 
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times. Consequently, this approach can effectively reduce the difference between peak and off-peak periods and 
ensure a smooth power supply, enhancing the safety and reliability of the grid.

EVs are subject to various factors that influence their performance during logistics transportation, including 
battery capacity and energy consumption. Such factors can lead to mileage anxiety among drivers. In cases 
where the battery power runs low during transportation, drivers must select appropriate charging stations for 
power exchange or fast charging. Consequently, effective EV logistics distribution path planning and electric 
energy replenishment management are of utmost importance. The electric vehicle path problems (EVRP) have 
emerged as a prominent research topic in the field of modern logistics, attracting significant attention from 
academia and industry alike. The primary focus of research in this domain revolves around charging methods 
and energy consumption models, tailored to the application scenarios and characteristics of EVs. Bruglieri3 
investigates the economic and safety benefits associated with the full charging of EVs during transportation. 
Based on this, Erdelić4 compares two strategies: partial charging and full charging. It has been determined that 
partial charging reduces waiting time and costs. However, it also leads to an increase in the psychological stress 
experienced by drivers, and results in both an expanded distribution of vehicles and an increase in driving 
distance. Erdelić5 has examined the EVRP with both single and multiple charging strategies. Yang6 proposed 
an EVRP with mixed return and charging strategies. Different charging strategies affect the path selection. The 
calculation of electrical energy consumption directly affects the accuracy of the overall path optimization model. 
He7 investigates the impact of traffic congestion on EV energy consumption. In the literature8, electrical energy 
consumption is represented using a fuzzy number based on reliability theory. Kancharla2 presents a nonlinear 
model for charging and vehicle load-related electrical consumption. Basso9 has also examined an enhanced 
electric power consumption model, taking into account factors such as terrain and speed. In recent years, 
logistics companies and operators have been striving to maximize their economic benefits from electric vehicle 
distribution and aim to apply vehicle network connectivity in a more flexible manner.

V2G technology can mitigate the electrical load on the power grid by addressing peak demand and low 
demand periods. As a result, optimizing the EV charging and discharging strategy becomes crucial. Nevertheless, 
the effectiveness and profitability of V2G technology, along with the potential impact of frequent charging and 
discharging on battery performance degradation, remain to be considered. The issue of EV dispatch in the smart 
grid is closely tied to electricity pricing. Rasheed10 proposes a distributed pricing mechanism, while11 suggests 
a coordinated dynamic pricing mechanism. Xu12 proposes an electricity pricing strategy based on regional and 
time partitioning. These novel pricing mechanisms dynamically adjust price incentives to encourage EV charging 
during off-peak periods. Implementing V2G effectively necessitates data from both vehicles and the grid. Grée13 
proposes a cloud-based big data platform to harness this data. Triviño-Cabrera14 applies V2G technology to 
EVRP. Das15 proposes a charge/discharge model for EVRP aiming to minimize both the cost of power input 
and battery degradation. Yao16 presents a two-tier optimization model that considers temporal variations in toll 
prices. Barco17 estimated electric vehicle energy consumption by employing a model with longitudinal kinetic 
equations of motion for electric vehicle charging, discharging, and scheduling. In a related study, it was shown14 
that fine-tuning driving habits can benefit electric vehicle users and improve the overall effectiveness of network 
operation. The proper design of tariffs plays a crucial role in promoting V2G participation. Currently, none of 
the existing literature addresses the charging and discharging management, as well as the resulting cost of battery 
depletion, within the context of EV logistics. Therefore, further research is required in the domains of path 
optimization and charge/discharge management for EV logistics distribution.

Upon meticulous review of the existing literature, it becomes clear that urban logistics distribution 
and air pollution have garnered significant attention in recent times. EV distribution stands as a promising 
avenue to tackle these concerns. Nevertheless, prior investigations have primarily concentrated on individual 
user behaviors towards EV charging and discharging, overlooking a comprehensive assessment of battery 
degradation dynamics within the logistics distribution cycle. Additionally, there is a notable absence of research 
delving into the management of EV charging and discharging upon their return to distribution centers. These 
limitations highlight gaps in the EVRP literature, particularly concerning the interplay of slow charge/discharge 
management and battery degradation within the intricate logistics and distribution processes, encompassing 
both charge swap and fast charging scenarios. Recognizing these gaps, the present study contributes by 
proposing two complementary models: an EV logistics distribution path optimization model and a charge/
discharge management model, both rooted in V2G technology. These models aim to comprehensively address 
the aforementioned issues, offering practical insights and solutions for the logistics sector to navigate the 
challenges of sustainable EV distribution.

Electric vehicle charging and discharging path optimization
Problem description
The problem of optimizing EV logistics distribution path and charging/discharging management in a smart 
grid can be described as follows: there is a single distribution center with charging piles for slow charging and 
discharging. Before distribution, we have information about customer demand, time windows, and geographical 
locations. The charging station is available for charging and swapping, and its location is known. Additionally, 
we have data on charging and swapping tariffs and grid tariffs. All EVs are subject to uniform specifications, and 
their load capacity and distance traveled must remain within the maximum design specifications of the vehicle. 
The distribution process must adhere to both time window and power constraints. If the electric vehicle does not 
have enough power to support the distribution needs, it needs to go to the nearest charging station for charging. 
The act of charging is only considered when the vehicle has run out of power and needs to reach a full state 
of charge. The mathematical model aims to minimize fixed costs, driving costs, electric energy consumption 
costs, and charging and discharging costs to optimize EV logistics path selection and charging/discharging 
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management. Figure  1 shows a schematic diagram of the charge/discharge management process using V2G 
technology.

The tariff program is dynamically adjusted according to the time of use, with rates varying throughout the 
day. Higher tariffs are applied at times when energy demand exceeds supply, i.e., during peak hours, while tariffs 
are comparatively lower during off-peak hours. This time-of-day tariff scenario is derived from the distribution 
network load data in Literature18, and the time-of-day tariff diagram is shown in Fig. 2.

Battery degradation analysis
Electric vehicles rely on power exchange and fast or slow charging to replenish their electric energy. In logistics 
city distribution, time efficiency is crucial. Hence, we separately consider the charging and switching costs for fast 
charging and power exchange modes. Electric vehicles handle distribution tasks, returning to the distribution 
center for slow charging and discharging management. While generating profits, the battery incurs wear and 
tear costs accordingly.

The actual lifetime of a battery is influenced by a combination of factors, including the rate of charge, state 
of charge, ambient temperature, and degree of discharge18. It is particularly important to consider the ambient 
temperature and the degree of discharge during the energy conversion process using vehicle-to-grid (V2G) 
technology. In the case of lithium-ion batteries, the performance degradation is rooted in the chemical reactions 
that occur internally, which contribute to the formation of an oxide layer on the surface of the electrodes. This 
change in turn causes an increase in the internal resistance of the battery. Moreover, the ambient temperature 
directly impacts the rate of these chemical reactions occurring inside the battery, which typically follows the 
Arrhenius formula19.

	 µ = Ae− E
kT � (1)

where µ is the reaction rate; A is the Arrhenius constant in the same units as µ; E is the activation energy, a 
temperature-independent constant; k is the Boltzmann constant; T  represents the absolute temperature,K .

Fig. 2.  Schematic diagram of time-sharing tariff.

 

Fig. 1.  Electric vehicle charging and discharging management.
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Assuming the same time for each charge and discharge cycle, denoted by ∆t, Then the increase in the internal 
resistance of the battery after a single cycle is obtained according to the Arrhenius formula.

	 ∆r = r0Ae− E
kT

∆t� (2)

where r0 is the increment of resistance value per unit time, The unit is Ω.

According to the test standard of lithium-ion battery cycle life, combining with Eq. (2), the increase in internal 
resistance of a lithium-ion battery over its full life cycle can be obtained as follows.

	 rN = LN r0Ae
− E

kTN
∆t� (3)

The subscript N  is the quasi-side value under standard conditions. It is known that at any temperature, T . The 
actual cycle life of the lithium-ion battery is

	
L = rN

µ
= e

E
k

(
1
T

− 1
TN

)
LN � (4)

where e
E
k

(
1
T

− 1
TN

)
 represents the temperature adjustment coefficient that influences the cycle life of a lithium-

ion battery at temperature T , denoted as ω.

The lifetime of Li-ion batteries is also dependent on the depth of discharge (DOD) during each charge and 
discharge cycle. The cycle life is shorter with a deeper depth of discharge20,21. The battery life test value is 
measured at a 100% depth of discharge, implying that the actual battery life exceeds the nominal value under the 
same ambient temperature conditions. Additionally, an exponential relationship exists between the actual cycle 
life and the depth of discharge22.

	 L = LN D−0.795� (5)

where: D represents the depth of discharge, expressed as a percentage; LN  denotes the lifespan of the lithium-
ion battery when operating under normal conditions (D = 1).

Thus, the value − 0.795 can be identified as the correction factor for depth of discharge, impacting the cycle life 
of lithium-ion batteries at varying depths of discharge (D), and is referred to as φ.

Models
M = {1, 2, · · · , m} is a collection of the number of EVs used. N = {0, 1, 2, · · · , n} is a collection of the 
distribution center and customer credits. W = {n, n + 1, · · · , n + m} represents the collection of m charging 
stations. qi denotes the demand of customer i. P1 stands for the fixed cost per EV unit, P2 represents the 
transportation cost per unit of time for the EV, P3 corresponds to the price per unit of electricity consumed, P4 is 
the price per unit of time of fast charging electricity, and P5 is the cost of single exchange of electricity. Q and D 
represent the maximum load and maximum distance the electric vehicle can cover, respectively. aik  and [Bi, Ei] 
indicate the arrival time of vehicle k at node i and the time window for node i. E0 is the anticipated minimum 
charge needed while driving the electric vehicle. xk

ij  is a 0–1 variable for whether the EV is transporting on that 
roadway, yk

i  is a 0–1 variable for whether the EV is delivering to that customer point, and zk
i  is a 0–1 variable for 

whether the EV is charging or switching at that charging station.
A mathematical model of EV path optimization with a minimum total cost is constructed by considering 

charging and discharging cases. The model’s cost structure includes fixed costs, transportation fees, energy use, 
expenses for charging efficiency, extra costs from slow charging and discharging, and wear and tear costs from 
prolonged battery usage.

(1) Fixed costs and transportation costs

	
C1 = K × P1 + P2

m∑
k=1

n∑
i=0

n∑
j=0

tijkxk
ij � (6)

In Eq. (6), K  represents the number of transport vehicles, m is the total number of vehicles at the distribution 
center (k = 1, 2, · · · , m), and tijk  denotes the travel time of the EVs in the selected area.

(2) Energy costs.
The energy consumption of an electric vehicle is affected by a variety of factors, mainly including the amount 

of load, driving speed, and duration, especially in a dynamically changing road network. When the vehicle 
passes through road sections [i, j], its energy consumption can be calculated as
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Eijk =

n∑
t

P
(
Qik, vt

ijk

)
∗ tijk � (7)

	
P (Qk, v) =

(Q0 + Qk) · g · f · v + Cd·A·v3

21.15
3600η

� (8)

Thus the total energy cost of the distribution process is

	
C2 = P3

m∑
k=1

n∑
i=0

n∑
j=1

xk
ijtijkEijk � (9)

In Eqs. (7), (8), P (Qk, v) represents the power level during operation,  g corresponds to the physical quantity 
of gravitational acceleration, A is set as the area of wind blowing on the electric vehicle, while Cd and f  portray 
the coefficients of air resistance and friction resistance, respectively, encountered by the vehicle during traveling. 
In addition, η reflects the efficiency of the mechanical transmission of the whole system. As for Q0 and Qk , they 
point to the performance parameters of the EV under no-load condition and the specific performance when 
carrying current load, respectively.

(3) Fast charging or power exchange cost.
When the remaining power of an electric vehicle is not sufficient for it to reach the next service point to 

complete its task, it has to travel to the nearest charging station for emergency fast charging. The cost to be 
paid for charging is related to the length of charging, where the length of charging is tc

ik = Emax−Eik
rc

zk
i . The 

corresponding cost is calculated by the formula

	
C31 = P4

m∑
k=1

w∑
i=0

tc
ik · zk

i � (10)

where Emax represents the electric vehicle’s maximum battery capacity,Eik  is the remaining power when the 
vehicle reaches charging station i, and rc indicates the charging station’s efficiency.

The cost of a battery change will vary depending on the charging method used. For electric logistics vehicles, the 
cost will be directly affected by the number of battery changes. The formula for calculating the switching cost is

	
C32 = P5

m∑
k=1

w∑
i=0

zk
i � (11)

(4) V2G slow charge and discharge costs and battery wear costs.
At the end of the distribution mission, the electric vehicle will return to the distribution center and perform 

a slow charging and discharging operation using a time-sharing tariff system to obtain some economic return. 
In this process, the costs involved in charging and discharging are

	
C4 =

(
a

T1∑
T0

PcWc − b

T1∑
T0

PdWd

)
(T1 − T0)� (12)

In Eq. (19), Pc and Pb are set as specific identifiers of the charging cost rate and the discharging cost rate, while 
Wc and Wb correspond to the power involved in the charging process and the power required in the discharging 
process, respectively. Further, a and b are introduced as parameters that assume the roles of characterizing 
the charging and discharging states, respectively: when the system is engaged in charging operations, a is 
transformed to 0, while b is changed to 1, which clearly reflects the conduct of discharging activities and the 
cessation of charging activities. In addition, two time points, T0 and T1 are precisely defined to delineate the start 
and end moments of the charging and discharging operations.

	
C6 = Pb

ωφLN Emax
� (13)

In summary, the overall cost component model for distribution, charging and discharging of EVs in the switching 
mode can be expressed as follows

Scientific Reports |        (2024) 14:30843 5| https://doi.org/10.1038/s41598-024-81449-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

C = K × P1 + P2

m∑
k=1

n∑
i=0

n∑
j=0

tijkxk
ij + P3

m∑
k=1

n∑
i=0

n∑
j=1

xk
ijtijkEijk

+P4

m∑
k=1

w∑
i=0

tc
ik · zk

i +

(
a

T1∑
T0

PcWc − b

T1∑
T0

PdWd

)
(T1 − T0) + Pb

ωφLN Emax

� (14)

The following constraints apply

	

m∑
k=1

n∑
i=1

xk
ij ≤ m, i = 0� (15)

	

m∑
k=1

n∑
j=1

xk
ij =

m∑
k=1

n∑
j=1

xk
ji, i = 0, k = 1, 2, · · · , m� (16)

	

m∑
k=1

yk
i = 1, i = 1, 2, · · · , n� (17)

	

n∑
i=1

qiy
k
i ≤ Q, i ̸= j, k = 1, 2, · · · , m� (18)

	

n∑
i=0

n∑
j=0

dijxk
ij ≤ D, i ̸= j, k = 1, 2, · · · , m� (19)

	 aik + tik ≥ Bi� (20)

	 aik + tik ≤ Ei� (21)

	

m∑
k=1

w∑
i=0

Ea
ik

(
1 − zk

i

)
+ Emax =

m∑
k=1

w∑
i=0

El
ik � (22)

	 E0 ≤ Ea
ik ≤ Emax� (23)

(15) states that the number of EVs allocated should at least match the number of distribution routes or more. 
(16) Requires that the distribution vehicles depart from the distribution center and complete the established 
distribution tasks. (17) Provide that each demand location can be visited only once by an EV and only once at 
that location. (18) Ensure that the total demand at all customer locations on each distribution route does not 
exceed the maximum load capacity of the electric vehicle. (19) Provide that the total distance of each distribution 
route must be within the maximum range of the electric vehicle. (20) and (21) relate to time window constraints. 
(22) stipulates that EVs must complete charging at a charging station prior to departure. (23) addresses the 
limitation regarding the energy supply of each electric vehicle at each customer site.

The overall expenses associated with distribution and the charging/discharging processes in the rapid 
charging mode of electric vehicles are represented as.

	

C′ = K × P1 + P2

m∑
k=1

n∑
i=0

n∑
j=0

tijkxk
ij + P3

m∑
k=1

n∑
i=0

n∑
j=1

xk
ijtijkEijk

+P5

m∑
k=1

w∑
i=0

zk
i +

(
a

T1∑
T0

PcWc − b

T1∑
T0

PdWd

)
(T1 − T0)

� (24)

The constraints are as above.

Algorithm research
An enhanced genetic algorithm is developed for addressing the electric vehicle path optimization and charging/
discharging management issues using V2G. Genetic algorithms are efficient parallel search algorithms for 
solving global optimization problems. Unlike traditional exact algorithms, they can handle various types of 
complex optimization problems. By virtue of their adaptive ability, genetic algorithms show great applicability 
when dealing with objective functions and constraints that contain nonlinear and discrete properties. Because 
of this, they show strong robustness and high efficiency in dealing with complex nonlinear and discrete problem 
challenges. Figure 3 illustrates the basic flow framework of the enhanced genetic algorithm used in this study.

In order to improve the accuracy of model solving and accelerate the process of local convergence, genetic 
algorithms incorporate a reverse evolution strategy, which in turn enhances the search efficiency. The specific 
steps of the genetic algorithm in solving the electric vehicle path planning problem are described in detail next.
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Step 1: Encoding and decoding. This step represents the order in which each client is accessed. The clients 
are encoded with natural numbers. The length of the chromosome is n + m + k − 1, where n represents 
the number of client sites, labeled as client numbers 1, 2, ,n. m represents the number of charging stations, 
denoted as n + 1, n + 2, ..., n + m. k denotes the number of electric vehicles utilized and the total number 
of distribution paths. The position of the distribution center on the chromosome is indicated by k − 1, which 
is marked as 0. For instance, the number series (6, 2, 5, 4, 3, 1, 7, 10, 9, 8) indicates the visitation sequence to 
various customer locations. After accounting for load limits, timing restrictions, and incorporating distribution 
hubs, the initial sequence transforms to (0, 6, 2, 5, 0, 4, 3, 1, 7, 0, 10, 9, 8, 0), with ‘0’ denoting a distribution hub 
or the journey’s start/end points. Moreover, should the electric vehicle require recharging en route, the plan 
includes detours through charging stations, revising the sequence to (0, 6, 2, 11, 5, 0, 4, 12, 3, 1, 7, 0, 10, 9, 8, 0), 
where ‘11’ and ‘12’ are specific charging station locations. The decoding phase reverses the encoding process, 
translating the coded sequence back into actual delivery routes. In detail, this deciphers into three routes: Route 
1 from 0 (beginning), passing through 6, 2, to 11 (charging stop), then 5, ending at 0; Route 2 starting anew at 0, 
proceeding through 4, 12 (a different charging spot), 3, 1, 7, concluding at 0; and Route 3 kicking off again at 0, 
through 10, 9, 8, to finish at 0. This setup effectively depicts task allocation among three EVs, including necessary 
charging station visits within the delivery network to recharge.

Step 2: The process of initializing the population involves calculating the total energy consumption of the 
electric vehicle path planning model from the starting node. Whenever the vehicle reaches a node, the system 
checks whether the remaining power is sufficient to travel to the next customer node or the nearest charging 
station. If the power is not enough to continue the journey, the nearest charging station marker will be inserted 

Fig. 3.  Basic flowchart of the algorithm.
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after the current node. This process will continue until all nodes have been visited. The specific way in which 
each chromosome is coded can be illustrated by the example in step 1, where the customers are arranged in a 
randomized order. We integrate the distribution centers and charging stations into the chromosome structure, 
taking into account the load and power constraints. This process is repeated until a predetermined population 
size is reached.

Step 3: Setting criteria for adaptation assessment. Adaptation functions are often tailored to the specific 
problem at hand. In the EVRP model and the charging/discharging strategy in the charge-switching mode, the 
core objective is to reduce the overall cost. Chromosomes that possess a higher fitness value are more competitive 
when passed on to the next generation. Accordingly, the fitness function is set as the reciprocal of the objective 
function value.

Step 4: Selection. In the selection phase, an elite retention strategy was first used, i.e., chromosomes were 
sorted according to their fitness values. In the subsequent population composition, the top 5% of the optimal 
chromosomes are directly retained as elites, while the remaining 95% are screened by a roulette wheel selection 
mechanism. In this process, chromosomes with higher fitness values are more likely to be selected for crossover 
and mutation operations, thus generating a new generation of populations.

Step 5: Crossover. During the chromosome encoding process of the EVRP problem, the numbering 
information of the charging stations is included. However, this practice may cause problems as the original 
layout of the charging stations may be corrupted, which in turn leads to a large number of non-optimal solutions 
in the offspring. To cope with this challenge, the extra added genes need to be removed before performing 
crossover and mutation operations. In the crossover session, we select unique gene segments from the paternal 
chromosomes and arrange them in order in the offspring. For example, if there are two paternal chromosomes 
P1 (1,2,3,4,5,6,7) and P2 (6,4,2,3,7,1), crossover may produce offspring chromosomes O1 (1,6,2,4,3,5,7) (and 
O2 (6,1,4,2,3,7,5), where the example of O1 suffers from the problem of duplicate elements, which is required to 
ensure that crossover results in practical applications are Validity.

Step 6: Mutation. Genetic variation plays a key role in the whole process of genetic manipulation. Mutation 
on chromosomes is an important means of preventing premature convergence due to rapid descent into a local 
optimum, as well as maintaining chromosomal population diversity. During the mutation phase, a number of 
gene loci are randomly selected from the parental chromosomes for rearrangement, while the remaining loci are 
maintained as they are.

Step 7: The quality of the solution can be optimized, and the acceleration of local convergence can be 
facilitated by using the evolutionary inversion technique, a process that focuses on chromosomes that have 
been subjected to selection, crossover, and mutation. In the inversion operation, two random integers are first 
generated to identify a specific interval on the chromosome. Subsequently, the genes within that interval are 
reversed in order to generate a new chromosome. In the case of the parent P1 (1,2,3,4,5,6,7), for example, if the 
random integers are 3 and 6, the offspring O1 will become (1,2,6,5,4,3,7). It is worth noting that the change is 
accepted only if the inversion operation enhances the fitness value.

The algorithm’s iteration limit is established at 500. The process automatically concludes once the iteration 
reaches this threshold.

Example analysis
Example data and parameter settings
The experimental dataset used in this study was obtained from the figshare database ​(​​​h​t​t​p​​s​:​/​/​d​o​​i​.​o​r​g​/​​​​​​​​​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​6​0​8​4​/​m​9​.​f​i​g​s​h​a​r​e​.​1​0​2​8​8​3​2​6​​​​​)​, ensuring accessibility and replicability for researchers. Specifically, 
we selected the R-2-C-30 simulation example from which to conduct the experimental analysis, as it 
comprehensively reflects a real-world scenario involving 30 customer nodes and two charging stations. This 
choice was not arbitrary but rather driven by the need to balance complexity and comprehensibility to facilitate 
a deeper understanding of potential optimization challenges. Each customer node in the dataset is identified 
by a unique number ranging from 1 to 30, representing a discrete demand point in the network. In addition, 
the distribution center, which serves as the starting point for all service routes, is designated as node 0. The two 
charging stations, which are important components of the logistics system, are explicitly labeled as nodes 31 
and 32. To substantiate the veracity and applicability of our findings, detailed information is provided for each 
customer node, which includes the demand, the service time, and the time window, among others. This careful 
attention to data granularity allows us to accurately model real-world constraints and evaluate the performance 
of our proposed strategies under different operating conditions.

Electric vehicles return to the distribution centers after completing their distribution tasks and are connected 
to the grid through batteries. Here, they are able to both charge and discharge from the grid in order to utilize 
the time-of-use tariff mechanism to generate revenue by selling excess electricity through the market. This 
decision is based on time-of-use tariff data provided in the relevant literature12 and aims to optimize charging 
and discharging behavior. The day is divided into peak and off-peak hours, and the specific time-of-day tariffs 
are shown in Table 1. When electric vehicles finish their distribution tasks and reconnect to the distribution 
center’s grid, they maximize their potential profit by deciding whether to receive or deliver power based on 
time-of-day tariff fluctuations.

The genetic algorithm was implemented on a computer equipped with a 2.20 GHz processor and 4 GB of 
random access memory, and the data were analyzed using MATLAB software (version R2018b). See Table 2 for 
specific parameter configurations.

Algorithm comparison analysis
In order to verify the effectiveness of the improved genetic algorithm in this study, it is solved with the particle 
swarm algorithm, simulated annealing algorithm, and genetic algorithm, respectively, for the optimization 
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model of electric vehicle logistics and distribution path under the above power exchange mode for comparative 
analysis. The experimental data use R-2-C-30 instances, and the iterative comparison graph of the solution 
results of the four algorithms is shown in Fig. 4, where NV denotes the number of iterations.

As can be seen from Fig. 4, the improved algorithm (IGA) of this paper solves the minimum total cost optimum 
of the electric vehicle path optimization model under the power switching model with better convergence speed. 
In contrast, the particle swarm algorithm (PSO) has a faster convergence speed, but it is easy to fall into the local 
optimal solution, is sensitive to the parameters, and needs to be carefully adjusted to ensure the stability of the 
algorithm and the convergence of the algorithm. The simulated annealing algorithm (SA) has a relatively slow 
search speed and is prone to fall into local optimal solutions. When dealing with complex problems similar to the 
model of this study, it may be difficult to find the global optimal solution due to the large search space. Genetic 
Algorithm (GA) has strong global search ability and is not easy to fall into local optimal solutions. However, 
the local search ability is poor, often can only get the suboptimal solution, slow convergence speed, and strong 
dependence on parameters. The above comparative analysis verifies the applicability and effectiveness of the 
improved algorithm of this paper in solving the electric vehicle path optimization problem.

Fig. 4.  Comparison of iteration results under different algorithms.

 

Parameters Parameter value Parameters Parameter value

P1 100 yuan/veh Q0 2t

P2 50yuan/h g 9.81 m/s2

P3 0.5 yuan/kwh f 0.015

P4 1yuan/min Cd 0.6

P5 100yuan/time Pb 60000yuan

LN 800time Emax 100kw.h

Q 100 kg v 40 km/h

∂ 0.01 η 1.46

Wc 9kw Wd 6kw

A 6 m2 rc 2 kw/h

Table 2.  Model parameter values.

 

Types Time period Charge price (yuan/kwh) Discharge price (yuan/kwh)

Peak hours 10:00–20:00 1.28 0.9

Non-peak hours 00:00–10:00
20:00–24:00 0.35 0.20

Table 1.  Time-sharing tariff.

 

Scientific Reports |        (2024) 14:30843 9| https://doi.org/10.1038/s41598-024-81449-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Analysis of distribution path planning and charging and discharging management results
In order to verify the effectiveness of the designed path planning and charge/discharge management models, 
four different scenarios are designed for comparative analysis. Scenarios 1 and 2 mainly focus on cost reduction 
by optimizing the distribution paths, where Scenario 1 employs a power switching strategy, while Scenario 2 
chooses a fast charging method that specifically considers the impact of fast charging on battery life and the cost 
it incurs. Scenarios 3 and 4 are based on the logistical framework of Scenarios 1 and 2 and further incorporate 
the management of slow charging and discharging when EVs return to the distribution center. A modified 
genetic algorithm is applied to solve the four scenarios, with examples of R-2-C-30 and R-2-60 sizes. The optimal 
path assignments for the EVs are shown in Figs. 5, 6, 7, 8, while Table 3 lists the charging times under Scenario 
2 and Scenario 4 in the R-2-30 example.

As depicted in Figs. 5, 6, 7, 8, the number of intersections among electric vehicle distribution paths in cases 
1 and 3 is noticeably lower compared to cases 2 and 4. A higher number of crossings indicates longer total 
logistics distribution paths, leading to increased logistics and distribution costs as well as longer charging times. 
Specifically, the two models employing the fast charging method during transportation have longer charging 
times than the model using the power exchange method. Due to the complexity of distribution costs, fast 
charging takes more time than power exchange. Consequently, a higher number of path crossings will result in 
increased charges and swaps, ultimately leading to higher total distribution costs.

In the experimental results, we obtained data on the number and duration of charging and discharging in the 
four scenarios. Scenarios 1 and 3 share the same charging time and frequency. As shown in Table 3, the scenario 
4 has more charging cycles but a shorter total charging time compared to scenario 2. Scenario 2’s charging 
time (h) is 1.21-0.49-1.14-1.05-0.32, while scenario 4’s charging time (h) is 1.31-0.72-1.28-0.71-1.04-1.15. This 
difference is mainly attributed to the charging and discharging costs, along with battery wear and tear, when 
scenario 4 utilizes V2G technology to connect to the grid. To maximize the benefits of charging and discharging, 
it’s essential to consider not only the time-sharing tariff differences but also the power load of the electric vehicle 
upon returning from the distribution task. By doing so, the vehicle can charge more effectively. However, it’s 

Fig. 6.  Distribution path diagrams for two scales in scenario 2.

 

Fig. 5.  Distribution path diagrams for two scales in scenario 1.
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important to note that charging and discharging activities can impact battery health, leading to a reduction in 
charging time.

Table 4 summarizes the experimental results for each type of cost. Specifically, GC represents the fixed cost, 
YC is the transportation cost, NC represents the energy consumption cost, CC is the charging cost, HC is the 
variable power cost, VC represents the slow charging and discharging cost, DC is the battery depletion cost, and 
TC is the total cost, all of which are measured in yuan.

From Table 4, it is evident that:

(1) The optimal solution for all four scenarios is the use of four electric vehicles for distribution. Among these 
scenarios, Scenario 1 exhibits a lower total delivery cost compared to Scenario 2. This difference is primarily 
attributed to the longer time spent on fast charging during transit and the need for multiple charging instanc-
es due to varying degrees of battery aging. In the model, transportation costs are primarily influenced by 
transportation time, resulting in higher overall transportation expenses. Additionally, more energy costs are 
incurred due to the necessity of making multiple trips to the charging station for recharging. Although the 
cost of a single charge change is higher than the average cost of a single charge, the difference in charge and 
exchange costs for completing the final distribution task is not significant, owing to variations in the number 

Charge time(h)

Scenario 2 1.21–0.49–1.14–1.05–0.32

Scenario 4 1.31–0.72–1.28–0.71–1.04–1.15

Table 3.  Charging time in two charging scenarios.

 

Fig. 8.  Distribution path diagrams for two scales in scenario 4.

 

Fig. 7.  Distribution path diagrams for two scales in scenario 3.
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of charges and exchange times. Therefore, it is considered more economical to opt for distribution in case 1, 
i.e., logistics distribution in the power exchange mode.
(2) Scenarios 3 and 4 involve utilizing V2G technology at the distribution center for charging and discharg-
ing management. Compared to scenarios 1 and 2, the cost is lower. The primary reason is the negative cost 
associated with slow charging and discharging in both cases, indicating that the benefits from discharging 
outweigh the charging cost. This reduction in overall logistics and distribution costs is significant. When 
examining Scenarios 3 and 4, it is clear that the cost of slow charging and discharging in Case 4 is reduced by 
43.2 yuan vs. 84.55 yuan for the two case sizes, respectively. The main reason for this difference is that scenario 
3 replenishes power during distribution, eliminating the need to consider battery loss resulting from charging 
and discharging. In contrast, scenario 4 necessitates accounting for battery loss costs, which are primarily in-
fluenced by the depth of discharge. Consequently, the advantages of employing slow charging and discharging 
at the distribution center, under the power exchange mode, become more apparent without concerns about 
battery depletion.
(3) For all four scenarios, calculation R-2–60 costs more than twice as much as R-2–30, and although the cus-
tomer locations are exactly twice as large, the number of charging stations remains unchanged, so the travel 
to the charging stations becomes more complicated. Compared to Scenario 1 and Scenario 3 in the switching 
mode, Scenario 2 and Scenario 4 in the fast charging mode have a larger percentage increase in total cost 
for the larger R-2–60 example. This is due to the fact that there are more customer points and the number 
of charging trips and charging time increases, leading to more transportation and energy costs. Therefore, 
the switching mode is more suitable for urban logistics and distribution of EVs with multiple scale customer 
points than the charging mode.

Battery loss sensitivity analysis and V2G impact on the grid
The efficiency of electric vehicle batteries in supplying power to the grid is mainly affected by the ambient 
temperature and the degree of discharge. Tables 5 and 6 demonstrate the relevant experimental results, while 
Figs.  9 and 10 depict the specific effects of ambient temperature and degree of discharge on battery losses, 
respectively.

From the graph above, it is evident that the depth of discharge remains constant. With the rise in ambient 
temperature, the battery loss cost also increases. The trend of the curve indicates that higher temperatures lead 
to a smaller magnitude of increased cost loss. This is mainly due to the fact that the higher the temperature, the 
lower the temperature correction factor ω = ek(T TN ) and the smaller the magnitude of the curve. Similarly, 
at a constant ambient temperature of 20 ℃. The deeper the discharge depth is, the lower the correction factor 
σ = D−0.795 is, and the magnitude of the reduction is not significant. Consequently, the greater the depth of 
discharge, the higher the cost of battery deterioration.

While slow charging and discharging may have an impact on battery life, it is possible to select appropriate 
charging and discharging strategies during different tariff periods to achieve specific revenue goals. This 
approach can help in reducing the base load during peak hours of electricity consumption and shifting the peak 

D 100% 70% 50% 30%

DC (20℃) 16 12.05 9.23 6.25

Table 6.  Discharge depth sensitivity analysis.

 

T 30℃ 20℃ 10℃ 1℃

DC (70%) 12.25 12.05 11.46 4.66

Table 5.  Ambient temperature sensitivity analysis.

 

COST

Scenario 1 Scenario 2 Scenario 3 Scenario 4

R-2–30 R-2–60 R-2–30 R-2–60 R-2–30 R-2–60 R-2–30 R-2–60

GC 400 800 400 800 400 800 400 800

YC 689.82 1322.14 817.80 1805.61 682.08 1255.63 792.91 1756.3

NC 86.53 210.54 122.31 355.02 85.57 196.07 129.17 327.22

CC 0 0 212.94 604.33 0 0 192.34 575.74

HC 200 500 0 0 200 500 0 0

VC 0 0 0 0  − 61.2  − 130.35  − 18  − 46

DC 0 0 0 0 0 0 12.05 33.11

TC 1376.35 2832.68 1553.05 3564.85 1306.46 2621.35 1508.47 3446.37

Table 4.  Distribution cost comparison.
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load, thereby significantly smoothing the grid load fluctuations. The simulation data presented in this paper 
focuses on a single logistics small-scale distribution study. However, the charge/discharge management model 
proposed here can be extended to large-scale logistics distribution services to optimize power efficiency and 
effectively reduce the peak-to-valley load difference.

Conclusions
The optimization model of electric vehicle logistics paths under power exchange and fast charging modes 
is centered on minimizing the total distribution cost. We also explore the slow charging and discharging 
management strategy when EVs return to the distribution site. The total cost of logistics and distribution in 
the switching mode covers fixed costs, transportation overhead, energy costs, switching cost, and slow charging 
and discharging costs. In contrast, in the fast charging mode, the logistics and distribution costs reflect more 
of the conversion of electricity costs to fast charging costs. In addition, slow charging and discharging entails 
additional battery depletion costs, the calculation of which has been optimized for ambient temperature and 
discharge depth. We have solved each model using an enhanced genetic algorithm. The main conclusions drawn 
from the experiments include: (1) compared with the fast charging mode, the power switching mode reduces 
the complexity of path intertwining in route planning, which cuts down the total distribution cost. (2) Effective 
management of slow charging and discharging when returning to the distribution site can generate certain 
discharge benefits, which in turn reduces the overall logistics and distribution cost. (3) In the power switching 
mode, the slow charging and discharging management is more advantageous than fast charging, as it not only 
reduces the total logistics and distribution costs, but also provides more benefits than fast charging, as it can 

Fig. 10.  Trend of depth of discharge on battery loss.

 

Fig. 9.  Trend of temperature on battery loss.

 

Scientific Reports |        (2024) 14:30843 13| https://doi.org/10.1038/s41598-024-81449-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


reduce the total distribution cost. Advantageous because it not only reduces the total cost but also enhances the 
load balancing capability within the distribution system. (4) The cost of battery depletion in EVs increases with 
decreasing ambient temperatures, while deepening the depth of discharge leads to a steady increase.

Data availability
The datasets generated and/or analyzed in this study are available in the [Figshare] repository ​[​​​h​t​t​p​​s​:​/​/​f​i​​g​s​h​a​r​e​​.​
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5​3​9​1​​​​​.​​
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