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Unraveling nonlinear effects of
environment features on green
view index using multiple data
sources and explainable machine
learning
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Bo Zhang®

Urban greening plays a crucial role in maintaining environmental sustainability and enhancing

people’s well-being. However, limited by the shortcomings of traditional methods, studying the
heterogeneity and nonlinearity between environmental factors and green view index (GVI) still faces
many challenges. To address the concerns of nonlinearity, spatial heterogeneity, and interpretability,
an interpretable spatial machine learning framework incorporating the Geographically Weighted
Random Forest (GWRF) model and the SHapley Additive exPlanation (Shap) model is proposed in this
paper. In this paper, we combine multi-source big data, such as Baidu Street View data and remote
sensing images, and utilize semantic segmentation models and geographic data processing techniques
to study the global and local interpretation of the Beijing region with GVI as the key indicator. Our
research results show that: (1) Within the Sixth Ring Road of Beijing, GVI shows significant spatial
clustering phenomenon and positive correlation linkage, and at the same time exhibits significant
spatial differences; (2) Among many environmental variables, the increase of green coverage rate

has the most significant positive effect on GVI, while the increase of building density shows a strong
negative correlation with GVI; (3) The performance of the GWRF model in predicting GVI is excellent
and far exceeds that of comparison models.; (4) Whether it is the green coverage rate, urban built
environment or socioeconomic factors, their influence on GVI shows non-linear characteristics and a
certain threshold effect. With the help of these non-linear influences and explicit threshold effects,
quantitative analyses of greening are provided, which can help to assist urban planners in making more
scientific and rational decisions when allocating greening resources.

Keywords Green view index, Street view image, Geographically weighted random forest, Explainable
machine learning, Nonlinear associations

As global urbanization intensifies and the severity of global environmental problems becomes more pronounced,
people’s daily lives are greatly affected, and there is an urgent need for government departments to take action
to address the problem. During this period, the global urban population is expected to approach 5 billion by
2030, accounting for 55% of the global population, according to United Nations statistics. The share of urban
population is expected to rise to 68% by 2050!. Against this background, the importance of urban green spaces
in improving urban livability, environmental quality and public health is increasingly recognized.

Urban green spaces refer to various green spaces, parks, gardens, woodlands and other natural and artificially
planted vegetation areas within cities?. These green spaces have irreplaceable importance in enhancing human
well-being. These green spaces provide valuable opportunities for citizens to get close to nature’, which helps
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to reduce stress and enhance psychological well-being?, as well as to improve inter-community connections
and interactions®. Rapid urbanization, constant changes in land use, and population growth have exerted
tremendous pressure on urban green spaces, causing their distribution to become uneven and even fragmented
and degraded®. Consequently, it is worthwhile to investigate ways to raise the standard of urban greening to
satisfy the demands of inhabitants in situations where the growth of green space is constrained. GVI is an
important physical indicator to assess the level of urban greening', which focuses on reflecting the percentage
of green vegetation from the human perspective. The main distinction between GVI and other methods is that
GVT1is based on street view imagery, which is more in line with human perspective than satellite remote sensing
imager. Additionally, GVI is special in that it can estimate the volume of green space in three dimensions and
take into account how people perceive it, expanding the assessment of green space from two-dimensional (2D)
to three-dimensional (3D) space’. GVI is unique in that it’s able to calculate the volume of three-dimensional
green space and reflect people’s actual perception of green space, thus expanding green space assessment from 2
to 3D space®. However, the traditional GVI calculation method has some limitations in terms of efficiency and
convenience, and relies on on-site photos and manually extracted data!.

Over the past few years, with rapid development of street view image methods and computer technology, they
have provided extensive facilities for GVI research. Scholars have begun to explore combining street view images
(e.g., provided by Google, Baidu, Tencent, etc.) with semantic segmentation techniques®!!, and comparing GV1
with green evaluation indicators, such as NDVI, Green coverage rate (GCR), and Vegetation Structural Diversity
(VSD), so as to analyze the correlation between them!>!3. Such studies have revealed the potential of different
indicators in reflecting different aspects of urban greening!*!®, and the application of streetscape imagery, in
particular, has greatly facilitated the quantitative study of GVI.

Quantification of GVI based on streetscape images provides more detailed and intuitive visual data
support for green space research, and the linear approach has been widely used in the study of the influence of
environmental factors on GVI. This approach assumes a linear relationship between the dependent variable (e.g.,
GVI) and one or more independent variables (e.g., green coverage rate, building density, etc.)!¢"8. In order to
show the linear impacts of natural exposures and environmental factors on GVI, this method commonly uses
linear regression models, logistic regression, and Ordinary Least Squares'*-2!. In addition, spatial models have
been used to explore the effects of spatial autocorrelation and heterogeneity. For example, related studies have
used spatial econometric models to examine the effects of the nature of land use and the enclosure of the street
on GVIin Hangzhou”. However, due to the nonlinear effects and threshold effects that certain environmental
variables may have on GVI, linear models might not adequately represent the link between environmental
variables and GVI.

Machine Learning (ML) has recently significantly revolutionized the methods for modeling and analyzing
complex relationships among variables in the scientific research field?2. In particular, ML techniques such as
Random Forest (RF) and Support Vector Machine have excelled in dealing with complex nonlinear relationships
in multivariate big data??!. These techniques are flexible enough to cope without predefined relationships
compared to traditional linear models. With the help of maximum likelihood method, these techniques are able
to recognize nonlinear relationships when the environmental factors change at specific thresholds. Scholars have
examined the nonlinear association between the urban environment and GVI using machine learning and big
data from multiple sources'®?>. For example, Li et al. used ML methods to explore the nonlinear relationships of
landscape permeability, green space layout, and road density on street GVI'3. The gating relationship between
environmental conditions and GVT has been the subject of only limited investigation. Zhang et al., for instance,
discovered that while park density initially increased GVI, beyond a certain point, GVI began to decline!.

Although a great deal of studies has been conducted, there are still some current shortcomings. First,
traditional machine learning methods such as random forest ignore spatial heterogeneity when modeling spatial
data, which affects prediction accuracy?. Since the relationship between dependent and explanatory variables
may vary at different spatial locations?’, ignoring such heterogeneity may lead to inaccurate prediction results?.
Although geographically weighted regression (GWR) models are effective in capturing spatial heterogeneity
and local variations?®, they are deficient in revealing nonlinear relationships. To address this issue, researchers
have proposed a new approach combining GWR and ML models, aiming to simultaneously capture spatial
heterogeneity and reveal nonlinear relationships?.

In addition, existing studies lack in explaining the localization of the model, which leads to the model
becoming a “black box” and makes it difficult to gain insights into its influencing factors. Therefore, recent
studies often use techniques such as relative importance (RI)* and partial dependency plot (PDP)?! in the SHAP
framework to locally analyze the relationships between variables. These methods have been widely used in areas
such as running behavior analysis*>*, urban vitality assessment®®, and criminal psychology research!’. The
construction of a spatial ML framework by combining prediction and interpretation tools is expected to make
progress in revealing nonlinear relationships.

In summary, at this stage, the following problems exist in the research on the interpretation of the nonlinear
influence of GVI: (1) the spatial correlation of GVI is easy to be ignored; (2) it is difficult to quantify the
nonlinear relationship that exists between the environmental factors and the GVI; and (3) there is a lack of
visual interpretation of the existing models in this direction. It can be seen that the research related to the visual
interpretation of the nonlinear influence of environmental factors on GVI is not deep enough, and the analysis
of the dominantly driven environmental factors needs to be further researched. In addition, (1) how do the main
environmental variables (e.g., green coverage rate, built environment, and socioeconomic factors) affecting GVI
rank on the RI? Which environmental factors are dominant? (2) How to quantify and rationalize the non-linear
association between environmental factors and GVI? (3) How to enhance the visibility of greenery in urban
development? In order to deeply explore and precisely respond to the above mentioned topics, the core purpose
of this study focuses on the following aspects:
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(1) Taking the Sixth Ring Road of Beijing as an example, the GVI of the study area is calculated using semantic
segmentation technology based on Baidu Street View images, and spatial correlation analysis is performed;
(2) This paper uses cross-validation to test the hyperparameter values in order to obtain the GWRF model
with optimal parameters. By comparing with the reference model, the GWRF model can fully consider the
spatial correlation of GVI to obtain higher prediction accuracy, and provide more accurate data support for
exploring the nonlinear relationship and threshold effect between environmental variables and GVI;

(3) This study adopts the Shap interpretable framework to measure the global RI of each environmental
variable through the global Shap value, to identify the dominant environmental factors and to quantify their
relative contributions. The Shap model is an innovative interpretable tool to elucidate the driving forces be-
hind the spatial differences in GVI;

(4) In addition, the Shap model uses local correlation diagrams (LDPs) to display the Shap values of environ-
mental variables in each GVI, visualizing the non-linear relationships and thresholds between environmental
variables and GVI.

Through a novel perspective, this study provides an in-depth analysis of the variability of GVI in spatial
distribution and its causes, which provides a more accurate and scientific reference basis for urban planners and
managers in promoting the urban greening process.

Study area and materials

Case study

With a geographic elevation pattern of high northwest and low southeast, Beijing is situated in the northern
portion of the North China Plain. This results in a circular landscape structure that includes remote suburban
ecological land, peri-urban plains farms, and urban greening land. This research selects the region inside Beijing’s
Sixth Ring Road as the study area because, as Fig. 1 illustrates, it encompasses the majority of the city’s built-up
areas and a tiny portion of its mixed urban and rural areas. The green space evaluation can provide important
data support for urban planners and decision makers to help them better consider the layout and optimization
of green space in urban development.

Data source
Multi-source data were used in this study, including: (1) Data on the urban road network were obtained from
the OpenStreetMap database (https://www.openstreetmap.org/); (2) The street view photos came from the Baidu
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Fig. 1. Study area.
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Street View Map and were collected in bulk using the Python software (https://map.baidu.com/); (3) Data on the
coverage of urban green space were sourced from the Global Land Cover Data 2022 report of the European Space
Agency (https://www.esa.int/); (4) Remote sensing images for calculating NDVI were obtained from Landsat8
multispectral remote sensing imagery (https://www.gscloud.cn/); (5) Chinese Academy of Sciences’ Resource
and Environment Data Center’s land use data (https://www.resdc.cn/); (6) park and settlement POI data, based
on Baidu Maps (https://map.baidu.com/), crawling POI data; (7) Data about the house’s age and price from
Lianjia’s real estate website (https://bj.lianjia.com/); (8) The WorldPop platform provides data on population
density (https://www.worldpop.org/); (9) The vector data used in this study was sourced from OpenStreetMap
(OSM), which is licensed under the Open Database License (ODbL) [https://opendatacommons.org/licenses/o
dbl/]; (10) All maps were produced using ArcGIS Pro (version 3.0, [URL of ArcGIS]) and the vector data were
processed and visualized accordingly, as shown in Figs. 1, 2, 5, 6b, 9.

Green view index

Data collection

GVI can quantify the perceptual experience of people in the city, and some studies have begun to look for the
relationship between GVI and urban greening. Therefore, in recent years, GVI has been gradually applied in the
field of urban greening research®. Greening ratio is the percentage of green vegetation in the Baidu street view
image (BSV) or other pictures of a specific location®. In this paper, we use Python to call the application editing
interface (API) of Baidu map to obtain street view images. Before that, the first step is to determine the sampling
points. The OpenStreetMap road data were topologically corrected in ArcGIS, and using the Construct Point
tool, one sampling point was generated every 50 m along the road, producing 82,100 sample points in total.
GVI sampling points are sampled at a resolution of 50 m because in dense urban environments, such as cities,
a sampling frequency of 50m allows for a detailed reflection of different built environments and green spaces,
whereas larger resolutions (e.g., 100 m or 200 m) may fail to capture important smaller green spaces, such as
parks, street trees, and vegetation between buildings?®.

In order to simulate the horizontal view angle of pedestrians, this paper sets the vertical angle to 0° and the
horizontal field of view angle to 60°, and acquires the street view image from six directions (direction angle=0°
,60°, 120°, 180°, 240°, 300°) for each sampling point®. The size of each street view image is 640 X 640 and its
main parameters are shown in Table 1.
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Fig. 2. Visual presentation of selected variables.
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Parameter Description Example

Size Image size in pixels An image that is 640 pixels wide and 640 pixels high
Field of View (FoV) | Horizontal view of the image 0°,60°,120°,180°, 240°,300°

Pitch Vertical view 0°

Key Developer key (obtained through online application) | API key

Table 1. API parameters for crawling BSV.

GVI calculation
GVI is used as an important indicator for evaluating urban greening efforts. GVI is derived from street view
photos and represents the ratio of green pixels to all pixels in the street view, as (1) illustrates.

AreagJ-

6
v = Sz Ares
21:1 Area; ;

In the formula, Areag ; is the total number of green vegetation pixels in direction i in the streetscape image,
and Area; ; represents the total number of pixels in the streetscape image. ¢ can take the value of 1 to 6. After
semantic segmentation of the streetscape image, according to this formula, we calculate the average GVI value
of each location.

x 100% (1)

Variables

Green coverage rate

NDVI is a common key indicator of green vegetation cover. The value of NDVI ranges from -1 to 1, and the
higher the value, the higher the vegetation cover. When the NDVT is positive, it means that the land is covered
by vegetation, and it increases with the increase of coverage. An region with thick, leafy vegetation has an NDVI
score of + 1; on the other hand, an area with no plant cover has a value of 0; and when the NDVT value is negative,
it means that there is a water body or bare soil in the area®. Therefore, NDVI can be used as a reliable indicator
to evaluate the green density of each land area. This formula is used to compute it.

NIR - R
= — 2
NDVI NIR+ R @

The reflectance in the red band is denoted by R, and the reflectance in the near-infrared band by NIR. NDVI data
is obtained from satellite remote sensing data and differentiates between vegetative, artificial and other covers
based on the difference in reflectance of plants and other surface covers in the infrared and visible light bands.
In this study, Landsat8 multispectral remote sensing images were used, with band B5 representing the NIR band
and band B4 representing the R band?®. These images were used to generate NDVI maps of the study area using
geodata software (e.g., ENVI).

Compared to NDVI, green coverage rate (or called green coverage rate, GCR) directly represents the
percentage of area covered by vegetation and is more suitable for assessing urban greening®. To determine the
GCR of a given city, we fully utilized the NDVI data and combined it with ArcGIS geographic data software for
comprehensive analysis. Through this systematic approach, we aim to ensure accurate calculation of GCR to
provide more comprehensive and reliable geographic information.

Based on Aryal et al. showed that the threshold for vegetation and non-vegetation in Victoria, Australia was
set at 0.19 in 2019%. Hu et al. in their comprehensive assessment of urban green space in Osaka, Japan, set the
threshold was set at 0.274%. However, in order to ensure that the threshold value was adapted to the specific
situation of this study, we systematically adjusted and validated to ensure the accuracy of the GCR.

First, we randomly selected 200 ground truth points in the study city for testing. These test points were
carefully visually inspected, analyzed in detail, and adjusted several times, and the most suitable thresholds for
vegetation and non-vegetation in the study city were finally determined. Subsequently, the NDVI data were
converted to GCR in ArcGIS using the raster calculation tool. Finally, using the spatial analysis tool of ArcGIS,
regional statistics and spatial distribution analysis can be performed to quantify the spatial characteristics of the
GCR in each subzone of the city in depth. The Visual presentation of the GCR is shown in Fig. 2.

Built environment data

Built environment (BE) refers to the human-designed, transformed and constructed external spatial environment
of a city for the needs of human activities, including the interactive spatial environment composed of land use,
transportation infrastructure, urban design and other factors!. Based on the widely used “5D” elements?, 11
BE variables affecting GVI are selected in this paper. As shown in Table 2, these variables include population
density (PopD), building density (BD)*, road density (RND), park density (ParkD), land use diversity (LUD),
functional use diversity (FUD), road node connectivity (PRC), plot ratio (PR), distance to nearest bus stop and
subway station (DBS)*!, distance to nearest water system (DW), and distance to nearest green space (DG)*.
Visual presentation of selected built environment variables is shown in Fig. 2.
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Variables ‘ Abbreviation ‘ Formula ‘ Descriptions
Green coverage rate
Green coverage rate ‘ GCR ‘ - ‘ Mean value of GCR in the grid
Built environment data
Population density PopD % Ny is the total number of people in the grid, S is the area of the grid
Building density BD %1 Sl is the total area of the building footprint in the grid
Road Network Density RND % Ly is the total mileage of the road network within the grid
Park density ParkD Sy Sh is the totgl area occupied by parks in the grid, S, is the total area
S of building sites in the grid
Land use diversity LUD _ Zn PixIn(P;) | P; is the share of land use type i in the area of the grid to which it
i=1 In(n) belongs, 72 is the number of total land use categories
m  Py«In(P;) Pj is the share of category j functional area types in the area of the
Functional utilization diversity FUD — Zi— 1 JIT’WL)J grid to which they belong, 1 is the number of total categories in the
- functional area
Point of road connectivity PRC % N is the number of road nodes in the grid
Plot ratio PR % S¢ is the gross floor area above ground of the buildings in the grid
u
Distance to the nearest bus stop and subway DBS B Distance from the grid midpoint to the nearest bus stop and subway
station station
Distance to nearest water system Dw - Distance from the grid midpoint to the nearest water system
Distance to nearest green space DG - Distance from the midpoint of the grid to the nearest park
Socioeconomic data
Business density DD % S is the total area occupied by financial facilities in the grid
Average house price AHP - Average house price in the grid
Average age of housing AHA - Average age of houses in the grid

Table 2. Description of independent variables.

Socioeconomic data
Based on previous work, socio-economic variables*® were selected and calculated, including commercial density,
house price and age of housing. Finally, following the methodology commonly used in previous studies?>*, all
spatial data were unified into 500 m x 500 m grid cells using the Partitioning Statistics and Spatial Connectivity
Toolbox in ArcGIS.

Methodology

Research framework

This study aims to carry out a systematic research on urban greening through in-depth analysis of greening levels
in urban areas. According to Fig. 3, it is divided into three primary sections:

(1): Data collection and variable calculation. In this study, we choose GVI as the main indicator to quantify
the urban greening level from the vertical scale. In this paper, we use the PSPNet model to segment Baidu
Street View images by speech and calculate GVL.

(2): Nonlinear correlation modeling and Shap model interpretation of GWRE In this paper, we determine the
optimal parameters of GWRF by grid search and K-fold cross-validation methods, and establish the inter-
pretable architecture of Shap model.

(3): Model testing and analyzing results. In this paper, the autocorrelation test is performed on GVI and the
accuracy of the GWRF model is evaluated, and finally the Shap framework is used to explain the nonlinear
relationship of environmental variables on GVI.

Semantic segmentation

In computer vision, semantic segmentation is a crucial activity that aims to classify each pixel in an image into
preset semantic categories'!. Unlike ordinary image classification tasks, semantic segmentation requires not only
recognizing objects in an image, but also accurately labeling the semantic categories to which each pixel belongs,
including plants, pedestrians, cars, bicycles, and the sky.

The most advanced semantic segmentation networks are SegNet!’, PSPNet® and DeepLabv3+%. These
methods use their own network characteristics to help planners better understand the spatial structure and
functional layout of the city, optimize the urban planning scheme, and realize the sustainable development of
the city and the construction of a livable environment by semantically segmenting the urban landscape images
or remote sensing images and conducting analysis. For example, SegNet can finely classify land in aerial images
or satellite images to identify different types of land use'®. This helps to provide data support for land use
planning and management. DeepLabv3 +has been applied in urban planning fields such as evaluating urban
transportation networks and building layouts, as well as quantitatively exploring the relationship between street
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Fig. 3. The proposed framework in this work.

space and vibrancy. PSPNet, as a state-of-the-art semantic segmentation model, also has potential applications
in urban greening efforts.

As shown in Fig. 4, PSPNet adopts a pyramid pooling structure that can capture image feature information
at different scales, thus improving the model’s ability to recognize green areas of different sizes. The green
areas in the city are of different sizes, so the network structure with multi-scale sensing field can better capture
and identify the green areas of different scales. The PSPNet network structure has rich semantic information,
boundary refinement ability, and powerful interpretability and visualization, so this paper selects PSPNet to
be used in the semantic segmentation task of Baidu street images. Figure 5 illustrates the effect after semantic
partitioning of an example sampling point. As shown in Fig. 5, the PSPNet model semantically segments the
Baidu street image into 19 categories, and the corresponding color of each category.

GWRF

The RF model is a global framework that improves accuracy and robustness by training each tree model
independently and pooling their predictions?. Nevertheless, RF fails to fully consider spatial heterogeneity
when dealing with spatial data, i.e., it ignores the possible correlations and differences between spatial data. To
remedy this deficiency, this paper proposes the GWRF model, an innovative model that integrates the GWR
model’s central concept into the RF framework, aiming to accurately capture the heterogeneity of spatial data
by constructing a local model?’. Therefore, the GWRF model can be regarded as a “spatial” extension of the RF
method, which is based on the concept of spatial coeflicient of variation model and consists of multiple local
RF sub-models without assuming that the data obeys a Gaussian distribution, and can be used as a tool for
interpretation and prediction to effectively cope with spatial heterogeneity and deal with non-linear relationships.
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Fig. 5. Street view images sampling and semantic segmentation.

GWRF model is realized by using the R language “Spatial ML package, and the simplified expression of the
traditional RF regression equation is:

Yi=axi+e (3)

The ith observation’s dependent variable is denoted by Yi, the error term is denoted by e, and axi is the RF
nonlinear prediction based on a set of x-term independent variables. The formula does not take into account the
characteristics of the geographical distribution of the variables.
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The GWRF model adds spatial location information of variables to the RF model, and by fitting it to variable
datasets that are at different spatial locations, local RF sub-models are obtained for each geospatial unit based on
variable observations?. The equations are.

Yi=a(ui,vi)zi +e (4)

(uq,v;) are the coordinates of spatial unit 4; a(u;, v;)x; is the prediction of the RF model calibrated at position .

The neighborhood (or kernel) of an RF sub model is the maximum distance between a data point and its
kernel; the bandwidth is the maximum distance between a data point and its kernel. The GWRF model generates
an RF sub model for each geographic location of a variable. Neighborhoods (kernels) are created based on
either a distance threshold (bandwidth-fixed kernels) or the number of nearest neighbors (adaptive kernels).
Adaptive kernels are preferred when there is a difference in the density of spatial sampling points*®. Therefore,
grid search and K-fold cross-validation methods may be used in this study to get the ideal parameters of the
GWRE, therefore reducing the danger of overfitting and the influence of imbalanced data*’. In addition, this
study used R-Square (R?), Mean Squared Error (MAE), and Root Mean Squared Error (RMSE) to assess the

GWREF model’s precision?.

Shapley additive explanations model

The GWRF model provides a good fit to complex nonlinear problems. However, the “black-box” nature of RF
models often lacks interpretability when making decisions®, which makes it difficult to clearly and accurately
determine the contribution of each influencing factor, so this paper overcomes this limitation through the SHAP
interpretability approach. The SHAP explanatory model is an additivity explanatory model inspired by the
Shapley value*’. In order to express how each factor contributes to a particular prediction, the SHAP explanatory
model assigns a SHAP value to each factor to express the role of each factor®2. The SHAP explanatory model
generates a prediction value for each sample of predictions, where the SHAP value is the numerical value
allocated to every feature in that sample. The ability of the SHAP value to accurately reflect the influence of each
sample’s features—that is, the significance of each feature and the extent to which each feature enhances the
overall model’s predictive power—is its most crucial characteristic. It also expresses the positivity or negativity
of that influence?. The SHAP value is calculated as shown in the following equation:

o, = Z w(v(su{i})—v(s)) (5)

n!
SCN{i}

where @; denotes the attribute value of each indicator 7, N is the vector of feature values, n! is the number of
features, S is the subset of features that the model uses, and |.S| indicates the number of elements in the subset .S
. The prediction of the feature values in the set S is shown by v(s). The following provides the predicted feature
values for the set S.

Y oscn ) W is the weight and (v (S U{i}) — v(s)) indicates the difference between the value

before and after feature ¢ was added. Each feature’s relevance may be rated by comparing its attribute values.
Based on the marginal contribution of a feature interacting with other features, the SHAP value is calculated to
quantify each feature’s contribution to the model output®*.

The extent to which a particular predictor contributes to the model’s predicted results, compared to other
predictors, is referred to as relative importance. The relative importance of feature 3, denoted by I}, is calculated
by the formula:

M
1 m
Ij:MZ’@g >‘ (6)
m=1
where the SHAP value of feature 4 in the m th sample is represented by @;m).

Meanwhile, the SHAP summary graph (swarm graph) is an advanced visualization tool for interpreting the
impact of individual features in a machine learning model on the prediction results. The graph is based on
Shapley values, which are derived from cooperative game theory, and is used to quantify the average degree of
contribution of individual features to the prediction results in a given prediction model. In the swarm plot, each
point represents a Shapley value for one sample in the model, and the horizontal axis indicates the magnitude
of these values, reflecting the strength of the influence of the feature values on the model’s predictions. Positive
and negative numbers, respectively, show how the characteristic has affected the model’s predictions in a good
or negative way. Plotting often involves organizing the points according to features, and color-coding them to
show the feature values’ magnitudes, making it easy to visually discern between high and low values. In short,
the dense distribution of points in a SHAP summary plot can reveal patterns and trends in the data and help
researchers identify relationships between data features and model behavior. As a result, SHAP summary graphs
are a crucial tool for comprehending how sophisticated machine learning models make decisions and for better

understanding how different characteristics affect model predictions®.
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Lagged GVI

Results

Spatial autocorrelation analysis of GVI

In previous studies, local Moran index is used to detect the spatial autocorrelation of data, P-value is used to
assess the significance of data, and Z-score is used to explain whether the data are spatially clustered or not,
and they have a wide range of applications in statistics, especially in the field of spatial analysis**. The Moran’s
index is calculated by ArcGIS/GeoDa software, and then the spatial autocorrelation test is conducted for the
green visibility within study area. As can be seen from the Fig. 6a, under the spatial weight matrix of geographic
distance, the Moran’s I value of green visibility is 0.725, with a p-value of 0.001 (less than 0.05), which passes the
test of significance at the level of 5%, and the Z score is 95.998, which is greater than the critical value of 1.96. This
indicates that there is a significant global spatial aggregation of green visibility within the Sixth Ring Road area of
Beijing. effect. Meanwhile, the Moran index is greater than 0, which indicates that there is a positive correlation
between the green visibility in the main urban area of Beijing, i.e., the areas with higher green visibility are
clustered with each other and the areas with lower green visibility are clustered with each other, as shown in
Fig. 6b. Therefore, it is necessary to carry out the research on the influence of different influencing factors on the
green visibility rate through GWRE

Model comparisons

Before building the GWRF model, the variables were tested for multicollinearity using stepwise regression
method to exclude variables with variance inflation factor (VIF) greater than 10*!. All factors passed the test
and were retained.

Randomized Grid Search Method is a randomized search method for hyperparameter tuning in the field
of machine learning. The Randomized Grid Search method evaluates a certain number of randomly selected
hyperparameter combinations from a pre-defined global parameter space and uses an iterative approach to
search for the best parameters®. This method does not traverse all possible hyperparameter combinations as
in Grid Search. Therefore, it has the advantage of significantly reducing the amount of computation when the
global parameter space is very large. The hyperparameters that need to be set in this model are, bandwidth,
ntree and mtry. ntree determines the number of decision trees in the model and has a significant impact on
the performance and degree of overfitting. In this paper, we follow the general rule of setting the range of the
ntree search to be from 100 to 1000 in steps of 100, depending on the complexity and size of the dataset®.
Similarly, smaller values for mtry can reduce the variance of the model. mtry value can reduce the variance of
the model, but may increase the bias; a larger mtry value can increase the diversity of the model, but may lead to
overfitting®®. Therefore, in this paper, we set the mtry search range from 2 to 20, with a step size of 2. Since the
size of bandwidth directly affects the smoothing degree and fitting effect of the model, in this paper, according to
the GVI sampling point discrimination, we set the bandwidth search range from 5 to 50, with a step size of 5. The
model was cross-validated five times to test various combinations of hyperparameter values®®, which were set
to adaptive kernel, bandwidth =10, ntree =500, mtry =12, the final goodness-of-fit R? of the model was 0.715,
indicating that the GWRF has a strong explanatory power for GVI.

Moran's 1:0.725

Not Significant High-Low Outlier Il Low-Low Cluster
I High-High Cluster Low-High Outlier

(a) (b)

Fig. 6. Autocorrelation analysis plot.
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In this paper, GWR and pass machine learning models RE, XGBoost and deep learning model Convolutional
Neural Networks (CNN) are selected as comparison models for GWRE. As shown in Fig. 7, which visualizes
the magnitude of RMSE, MSE and R? for the five models, it can be found that the GWRF model has the best
fit. The study used the RMSE, MAE, and R? assessment metrics to compare the GWRF model with the four
models, GWR, RE, XGBoost and CNN. The GWRF model has better R? values and lower RMSE and MAE
values. Compared to GWR, RE, and XGBoost, GWRF model is more superior to fit GVI by considering spatial
heterogeneity. In contrast, although CNN is good at processing spatial data such as images, its global feature
extraction approach may not adequately capture the local effects of GVI. Therefore, the flexible model structure
of GWREF is more suitable for processing GVI data.

Relative importance of variables

As seen in Fig. 8, the global Shap value of a variable is used to calculate its global RI. We utilize the Mean|Shap|
ratio for each variable and the total of the Mean|Shap| for all variables to compute the global RI after computing
the mean of the absolute Shap values (Mean|Shap|)*>. The global RI without units represents the relative
distribution of each variable. Figure 8 shows that GCR has the largest value and explains the most of the GVI,
indicating that of the 15 factors, GCR is the most dominant determinant of the spatial divergence of the GVL
BD, RND, DG, AHP, and AHA are also the main influences. In contrast, PR and DD were the least important.
The local interpretation plot visualizes the Shap value and direction of each variable in each GVI. The plot’s red
and blue dots, respectively, represent each variable’s high and low eigenvalue. Shap values that are less than zero
or larger than zero, respectively, show the variable’s negative and positive effects on the GVI. As shown in Fig. 8b,
the variables GCR, AHA, AHP, ParkD, and DBS have a positive effect on GVI, while the variables BD, DG, PRC,
and PopD have a significant negative effect on GVI.

Figure 9 shows the impact factors with the largest values of shap for each grid. Figure 9 shows that GCR and
BD and RND have high RIs and are highly influential in the overall impact factor. Interestingly, variables of lower
importance, such as DBS and DW, also show significant performance at the local scale in the Fig. 9. Additionally,
we provide the geographical distribution of each GVTI’s Shap values for a few key variables, such as GCR, BD,
and AHP. BD and GCR positively affect mainly the development zones outside the fifth ring road, which usually
have fewer buildings and higher green coverage. AHP positively affects the zones inside the third ring road,
suggesting that the greening of high-priced property markets is done better.
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Fig. 7. Model comparison.

Scientific Reports |

(2024) 14:30189 | https://doi.org/10.1038/s41598-024-81451-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

High

GCR GCR . . swe --—-——-——* .

BD 4 BD '-*———n- o« e

RND -+ RND * esmen _—_*-..

DG ~ DG . -—-+_-.. .

AHA - AHA H .

PRC A PRC ce ® .-+—-. -

AHP AHP .’.—. 3
| ©
> >

POpD ol PopD -—+ . 4]
' g

ParkD -{ ParkD +—- . 8
DW 4 DW _+_..... .

LUD 4 LUD .o

DBS A DBS --’—‘ cem o o .

FUD A RR

PR - Vegetation coverage rate PR
Built environment data
DD A Socioeconomic data bD
T T T T T T T T T T T T T Low
0 8 10 12 14 16 18 20 -0.15 -0.10 -0.05 0.00 0.05 0.10
SHAP value (impact on model output)
(a) (b)

Fig. 8. The RI of environmental factors from the SHAP model.

Nonlinear association analysis

There is a nonlinear relationship between each influence factor and GVI, and in order to clearly explain the
interpretation of the relationship, this section shows the Shap values of the variables in each GVT using local
correlation plots (LDPs)*. The study investigated threshold effects and nonlinear patterns based on the LDPs.
The relationship between each factor and GVI is shown in Fig. 10a-o to Fig. When GCR exceeded about 0.5, the
local effect went from negative to positive. This indicates that when the green coverage increases, it significantly
improves the GVI deficiency. When the BD exceeds approximately 0.7, the localized impact goes from positive
to negative. This phenomenon suggests that an increase in building density leads to insufficient planting of
green vegetation. This phenomenon is similar to PR, where the higher the PR, the lower the GVI. RND has
a positive effect on GVI when it is between 0.01 and 0.03, which suggests that an increase in the density of
roads can alleviate the problem of insufficient GVI to a certain extent, but higher densities of roads may have
a negative effect on GVI. This phenomenon is similar to PRC, which indicates that the higher the density of
road intersections, the lower the GVI. When DG is greater than 200 is, the localized effect goes from positive to
negative, meaning that GVI decreases as it increases with green space. This is similar to ParkD, where the density
of parks is positively correlated with GVI. The local impact goes from positive to negative when PopD increases
to 50. This suggests that denser populations may cause a mismatch in the supply and demand for vegetative
greenery, which would lower GVI. DW has little positive effect on GVI at 100 to hour 3000, but to some extent,
the closer to the water system, the GVI is relatively higher. The effect of LUD on GVI is relatively stable, and
LUD has always had a positive effect on GVI, but not a large one. DBS is greater than 500, it has a positive effect
on GVI, which indicates that GVI is not high near transportation sites. When FUD is greater than 0.5, the local
effect goes from negative to positive. The areas rich in functional diversity tend to be accompanied by higher
GVL As expected, areas with higher house prices exhibit higher GVI. This may be related to the fact that high-
profile communities are willing to offer homeowners a wide range of green projects. The age of the house shows
a positive correlation with GVI, which is related to the renovation of old neighborhoods in Beijing. When DD is
greater than 0.2, the localized effect goes from positive to negative. This indicates that the higher the commercial
density, the lower the GVI.

Discussion

Explainable spatial machine learning framework

With the use of an interpretable GWRF model, this study offers a novel framework for investigating the
nonlinear relationship between environmental variables and GVI. In contrast to earlier research that relied on
regression models and linear assumptions, our approach develops a local spatial model that takes geographic
weights into account in order to handle geographical variation. In addition, we employ a local explanatory model
to combine the nonlinear relationships between explanatory variables, therefore addressing the drawbacks of
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Fig. 9. Visualization of SHAP values of variables.

earlier regression models that lack interpretability. The GWRF model fits GVI better than GWR and RE, as
seen by its higher R? and lower RMSE and MAE. Furthermore, the Shap model offers both local and global
interpretations, facilitating a comprehensive comprehension of the GWRF findings. Our methodology provides
important insights into which regions may require greater attention by highlighting the non-smooth nature
of spatial relationships. It is possible to apply this new framework to various research and urban planning
techniques.

Influence of green coverage rate

In this paper, a study of the relationship between GVI and GCR in Beijing shows that there is a close correlation
between the two. Our study shows that GCR has a significant positive effect on the heterogeneity of green
visibility. This suggests that GVI quantifies the visible greenery from the pedestrians’ viewpoint, and that
pedestrians can capture more greenery in areas with better green coverage, such as parks and tree-lined streets,
where GVI is significantly higher. This is similar to results such as those of Li et al. study®*. This relationship
emphasizes the importance of urban greening in improving visual aesthetics and environmental quality in
cities such as Beijing. However, GCR can only explain 19.8% of the variance. Additionally, it implies that GVI
primarily concentrates on the vertical aspect of urban greening, with little regard for how pedestrians perceive
greenery from a horizontal vantage point®'. GVI may thus be used in conjunction with other 2D green space
indicators to improve and enhance the greening assessment method!2.

Influence of built environment factors

In the built environment evaluation index system constructed in this study, including 15 evaluations such as PD,
BD, RND, PRC, etc., building density has the largest and negative effect on GVI. This may be caused by a variety
of factors. An increase in building density often leads to a decrease in the available space for vegetation and green
space, which results in a lower GVI®2. In addition tall buildings can block sunlight and limit the growth of plants
and trees. The study of PopD and PR in this paper proves the same. The study in this paper demonstrates that
RND, PRC and DBS negatively impact GVI and that roads, intersections and transit stops take up a large amount
of land that could otherwise be used for green space53. In addition, the increased impervious surfaces of roads,
intersections, and transit stops exacerbate the urban heat island effect, making it more difficult for vegetation
to grow>*. Studies by ParkD, DG, and DW have demonstrated that parks, green spaces, and water systems play
a vital role in improving GVI. Parks, green spaces and water systems are usually surrounded by dense planting
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Fig. 10. SHAP dependence plots for variables.

of trees, shrubs and lawns, which greatly increase the amount of visible green in urban areas®. As shown in the
figure, there is a positive impact on GVI as the LUD continues to increase. This phenomenon indicates that forest,
farmland, shrubs, etc., and these areas support the growth of a wide variety of plants, which improves the overall
green coverage and diversity, and helps to improve the GVI®.The effect of FUD on the GVI is from negative to
positive, which suggests that diversified functional zones are often accompanied by integrated landscape design,
including walking paths, parks, green spaces , small green belts, etc., and these designs will enhance GVI°°. The
detrimental effects of variety in urban functional zones will progressively lessen or maybe vanish as urbanization
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rises, which is connected to the growing emphasis on the development of urban green spaces®”. Furthermore,
studies have shown that land use and urban functional areas have an impact on GVI***?, which highlights the
need of striking a balance between the demands for greening and urban growth.

Based on the results of the above research on the impact of the built environment on GVI, a few suggestions
can be provided to urban planners and policy makers to enhance the greening of cities.

(1): Incorporate green elements in architectural design, such as installing roof gardens and vertical green
walls, to improve the green visibility of buildings, and at the same time increase the area of urban green space
and improve the microclimate of buildings™.

(2): In urban renewal, street trees and green belts can be added on both sides of major roads to create green
corridors, thus improving the visual quality of green cities®.

(3): In areas with low GVI, priority will be given to increasing green areas, such as building urban parks, street
green areas and rooftop greening, to make maximum use of the continuity and permeability of the above
green areas®l.

(4): In undeveloped areas, encourage mixed-use development that integrates residential, commercial, and
recreational spaces; diversified land uses often feature green buffers and landscaped areas, which play a posi-
tive role in improving GVI®

Influence of socioeconomic factors

Socioeconomically speaking, those who earn more per capita typically reside in greener places®. This paper
used house prices to reflect residents’ incomes and showed that GVI increased with higher house prices, which
is consistent with previous research®®. Individuals with higher wealth are more likely to choose or upgrade their
living spaces, and they also have better access to more visible greenery®. This demonstrates that GVI has a
favorable effect on housing prices, suggesting that property lots with GVI tend to have higher market values.
In addition, we find that the higher the housing age, the higher the GVI is, because the housing age data are
mainly from the main urban areas within the fourth ring road, which are mostly old neighborhoods and have
a small sample size. In Beijing, the ‘Old Residential Area Renovation Program’ has become part of initiatives
such as urban planning, which aims to improve living conditions by increasing green space, including planting
more trees, creating parks, and increasing overall green coverage®. Studies have shown that the green landscape
index tends to be higher in areas with longer roads and more paths, which is usually characteristic of older
neighborhoods®”’. In addition, the findings obtained in this paper coincide with the results of studies conducted
in the past, indicating a general trend, which further supports the idea that urban greening policies targeting
older neighborhoods lead to an increase in the Green Landscape Index®, i.e., urban renewal projects focus on
enhancing the green spaces in the older parts of the city in order to improve the quality of the environment
and the quality of life of the inhabitants. As a result, better green environments have been created in older
neighborhoods in recent years compared to newer neighborhoods.

As shown in the Fig. 10, higher commercial densities tend to be associated with lower GVI due to the
prioritization of built infrastructure over green space. Higher density commercial areas typically allocate more
space for buildings, parking lots, and other urban infrastructure, thereby reducing the availability of green space.
This approach to urban design emphasizes maximizing available commercial space, often at the expense of green
space®. Studies have shown that greening in dense commercial areas can be improved by constructing green
roofs on commercial buildings and increasing the number of street trees in commercial areas, thereby increasing
GVI and promoting sustainable development in commercial neighborhoods.

Limitations

Despite the unique value of this work, there are certain limitations. First and foremost, as a case study focused on
Beijing, there is no clear answer to the question of whether its findings can be broadly applied to other cities. In
order to deepen the research or validate the hypotheses of this study, future scholars could expand the scope of
the study by applying this approach evaluates its validity and generalizability more thoroughly by employing data
from several cities or nations. Second, this study has analyzed the influence of GVI from three dimensions: green
cover rate, built environment, and socioeconomic factors, but there is also a lack of consideration of existing
factors or a lack of other influencing factors. For example, DW does not only consider the distance to the water
system, but can further refine variables such as the type of water system (e.g., rivers, lakes, wetlands, etc.), area,
water quality, and morphology of the water body. These variables may have different impacts on GVI. In order
to further enrich and enhance the current conceptual framework and more thoroughly uncover the underlying
processes behind GVI, future research may build on this foundation by adding more environmental factors and
merging multi-source urban data. Then, there are inconsistencies in the spatial resolution or sampling rate of
the data obtained in this paper. The generation and maintenance of Street View maps is an ongoing process that
requires regular updates, so Baidu Street View images will have some missing issues. The uncertainty of these
data sources can also lead to instability in the final results. Finally, the SHAP value assumes that the effects of
features are linearly additive, which may not adequately capture non-linear relationships and feature interaction
effects in complex models. Therefore, although we have provided a preliminary explanation of the nonlinear
results with the help of the Shap model, we have not yet explored in depth the potential interactions among
multiple variables. Therefore, for future research in this area, we will focus on and explore the interactions
among these variables to more comprehensively understand the influencing mechanisms.

Conclusion
In this study, a spatial machine learning (GWRF) framework is constructed by combining multi-source urban
big data, aiming to analyze complex relationship between environmental variables and GVI. To address the
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spatial heterogeneity, we use a geographically weighted regression (GWRF) model for parsing and a Shap model
to provide a comprehensive and detailed interpretation of the model results. Through this framework, we delved
into the nonlinear associations of multiple environmental factors with GVI. The following conclusions are drawn:

(1): There is a significant spatial aggregation effect and positive correlation of GVI within the Sixth Ring Road
of Beijing, with obvious spatial heterogeneity, and hotspots and coldspots have obvious aggregated distribu-
tions.

(2): Compared with other environmental variables, GCR has the greatest positive effect on GVI, and BD
shows the greatest negative correlation with GVI.

(3): Compared with the models of GWR, RF, XGBoost and CNN, the GWRF model demonstrated more su-
perior performance in simulating and predicting GVI.

(4): All environmental variables, including GCR, built environment and socioeconomics variables, showed
nonlinear and threshold effects on GVI. The nonlinear and threshold effects of GVI provide quantitative
analysis tools for urban planning, which helps to rationally allocate greening resources in urban planning,
improve the insufficient greening effect and avoid the waste of resources.

Data availability
All data generated or analyzed during this study are included in this article.
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