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White blood cells (WBCs), also known as leukocytes, are one of the most significant parts of the 
immune system. They generate antibodies, protect the body from illnesses, and heal wounds. 
Accurate estimation of WBCs is key for diagnosing cancer, infections, leukemia, lymphoma, and other 
diseases. However, the widely used Complete Blood Count (CBC) test presents challenges, including 
prick anxiety, discomfort, and logistical inconvenience to patients. This study introduces a ubiquous 
White Blood Cell counting system, UbiWhite, a novel smartphone-based, non-invasive system for 
real-time WBC counting from fingertip videos. Our system uses optical and magnetic techniques to 
provide accurate WBC counts without blood extraction. An initial experimentation was carried out on 
20 adult participants to verify the system’s effectiveness compared to standard CBC tests (IRB #4051). 
The developed algorithms exhibit 1.04 and 1.23 RMSE, respectively. Our innovation provides an easy, 
affordable, and instantaneous solution for monitoring WBCs in various healthcare settings, including 
homes and critical care units. Additionally, it serves as a beacon of hope for low- and middle-income 
nations, where access to and affordability of traditional lab tests are limited.
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White blood cell (WBC) detection and counting are crucial in early-detecting diseases such as leukemia and 
lymphoma1. Infections and swelling trigger the body’s immune response, causing an increase in WBC production 
to combat the invading pathogens. White blood cells are produced in the bone marrow, and cancer can infiltrate 
it or disrupt its regular physiological processes. This research article introduces a smartphone-based system for 
real-time WBC counting. The pilot study data collection protocol was approved by the Marquette University 
Institutional Review Board (IRB). All methods were carried out in accordance with relevant guidelines and 
regulations for human subject data collection. This system utilizes optical and magnetic techniques to accurately 
count WBCs from fingertip videos, eliminating the need for invasive blood collection. The OptoMagnetic 
computational method overcomes challenges posed by hemoglobin in red blood cells, enhancing the contrast 
between red blood cells and flow gaps2–4 by approximating WBCs as outliers in the flowing blood. Outlier 
detection is a well-established mathematical, model-based task that relies on computational methods to group 
similar data points while separating dissimilar data points. This study compares two algorithms, A-1 and A-2, 
revealing varying performance metrics. While A-2 achieved higher accuracy in average error, it displayed a 
larger mean absolute error (MAE) and root mean squared error (RMSE), indicating significant deviations from 
actual values. Statistical analysis confirmed no significant difference between the predictions of either algorithm 
and the actual values5. These findings underscore the efficacy of both algorithms in predicting the target variable. 
Moreover, this study emphasizes the potential of mHealth applications in providing convenient, cost-effective, 
and real-time solutions for WBC monitoring, especially beneficial for resource-constrained settings. Our system 
aims to alleviate the distress of a substantial segment of the population that suffers from needle anxiety6,7. This 
research introduces a novel approach to leveraging mobile computing and sensor technology for healthcare, 
focusing on a needle-free method for white blood cell counting. By integrating computational science and 
biomedical engineering, this study aims to develop innovative solutions for the aforementioned healthcare issues.

Related works
Firstly, we discuss the optical properties of WBCs by reviewing relevant literature.
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Red Blood Cells (RBCs) dominate the optical properties of flowing blood because they are highly concentrated, 
and their light absorption and scattering are significantly higher, by two to three orders of magnitude, compared 
to other blood components8. RBCs thus impose significant challenges for WBC detection and counting tasks. 
The effects of the optical properties of WBCs and Platelets (PLTs) on light scattering and absorption by whole 
blood are considered negligible9,10.

Light scattering-based systems designed to characterize the backscattering of leukemic and normal WBC 
and RBC were proposed by Yim et al.11. These systems provide the basis for designing in vitro microfluidic‐based 
and potentially in vivo light scattering flow cytometry devices.

Greiner et al. reported on the design and performance of a confocal laser-based system built to collect 
backscattered light over a range of 26° at 405, 488, and 633 nm to discriminate leukemic cells from normal RBC 
and WBC12. There are notable differences in leukemic cells’ intensity and wavelength dependence compared to 
RBC and WBC. Specifically, the unique light scattering properties of RBCs, attributed to hemoglobin absorption, 
enable their differentiation from leukemic cells, mononuclear, and polymorphonuclear WBCs, especially at 
specific wavelengths.

Secondly, we analyze the spectroscopic, light scattering, microscopic, and pulse oximetric techniques for 
non-invasive total WBC count that several researchers have employed.

Winkelman et al. used non-invasive UV spectroscopy to image nucleic acids and detect WBCs13. They 
conducted reflectance spectroscopy experiments utilizing a UV light source and a UV receiver. The WBC count 
was calculated by analyzing the ratio of WBCs to RBCs across a sufficient number of images and multiplying it 
by the calculated RBC count.

Huo et al. have performed non-invasive detection of the content of white blood cells in the blood of humans 
based on a dynamic spectrum14. Based on spectral technology, they have built a model on the transmittance 
spectroscopic data of 332 subjects to predict leukocyte concentration. For validation, they compared the 
experimental values against the blood component values obtained from venous blood samples.

MIT researchers developed a non-invasive device to detect severe neutropenia, a condition marked by low 
neutrophil levels, in chemotherapy patients2,15. They analyzed 22 microcirculatory video footage of nail fold 
capillaries collected from 11 patients using their device. Subsequently, they identified a correlation between 
moving optical absorption gaps and WBC movement.

The Leuko project combined pulse oximetry and flow cytometry to non-invasively count white blood cells16. 
By focusing LED light on capillaries, researchers created a snapshot where RBCs appeared as bright red spots 
and WBCs as negative space. This allowed for the counting of WBCs based on the image analysis.

Bourquard et al. developed a semi-automated method to count WBCs in nail fold capillaries using low-
cost microscopy17. By analyzing video data, their algorithm identifies visual gaps in blood flow as WBCs pass 
through, providing both WBC count and speed. The method’s accuracy was validated on data from a single 
healthy subject.

Bagramyan et al. presented a miniature microscope to image blood cells in the oral mucosa in real time 
without labels18. This device uses oblique back-illumination to visualize individual WBCs circulating in the 
bloodstream. The high-speed imaging capability suggests the potential for non-invasive WBC counting by 
identifying and categorizing individual cells using machine learning algorithms.

Thirdly, we explore the studies conducted focused on the interaction of magnets and magnetic fields with 
flowing blood. Mustafa et al. conducted experimental work to monitor the static magnetic field effect on 
WBCs19. Their study mentions that the external magnetic field affects the flowing blood by rotating the RBCs, 
aligning it in a specific direction, enhancing its aggregation, and changing the counts nonlinearly20. Abdallah 
et al. studied the effects of static magnetic field exposure on blood flow21. Mishra et al. developed a numerical 
model representing the effect of a magnetic field on blood flow through an artery22. Jo et al. simulated a simple 
capillary blood cell flow monitoring system using a magnetic micro-sensor23.

Innovation
We have curated a point-of-care White Blood Cell (WBC) system from fingertip videos captured with a 
smartphone. The hemoglobin in Red Blood Cells (RBC) poses a challenge as it contributes to blood being 
magnetic or magnetizable material8,10. Subsequently, hemoglobin directly influences blood absorption and 
scattering properties. To overcome this, we have mounted a blue light bandpass filter of 430  nm over the 
smartphone flashlight to maximize the contrast between the red blood cells and flow gaps as opposed to having 
external microscopy equipment as used by Bourquard et al.17. Furthermore, we have placed a magnetic field near 
the smartphone’s magnetometer to repulse the negative charge from hemoglobin and consequently regulate the 
flow of the dominant RBC in a specific direction19,20. The blue light bandpass filter and magnetic field placement 
were optimized through iterative testing to maximize the contrast between RBCs and flow gaps while ensuring 
consistent RBC directionality, as mentioned in the literature to overcome the need for external stabilizers as 
utilized by Bagramyan et al.18.

Finally, we employed the light scattering and absorption properties of leukocytes to count the number of 
WBC passing through the finger, contrary to detecting only severely low levels WBC counts as demonstrated by 
Bourquard et al.2. Specifically, we employed the rear camera of the phone as the light receptor and flash LED as a 
light emitter24,25 to eliminate the reliance on expensive spectrometers as operated by Huo et al.14.

Comparative analysis
An overview of different studies on WBC measurement techniques, highlighting their methodologies, such as 
using optical fibers, microscopy, and non-invasive methods, along with their performance metrics are given in 
Table 1.
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Method
Our methodology has been modularized into a series of discrete steps, as illustrated in Fig. 1, which outlines the 
precise sequence of critical actions for successful white blood cell count estimation.

Data collection
The Institutional Review Board (IRB) at Marquette University authorized the data collection protocol for this 
pilot study. We collected index fingertip videos from a cohort of 20 adult volunteers (13 males, 7 females) to 
measure white blood cell counts and levels. All experimental procedures adhered to applicable guidelines and 
regulations for human subject research. Since all the volunteers were adults, they provided informed consent 
before participating in data collection. We obtained the gold standard white blood cell count values for the 
volunteers who underwent CBC tests from four different pathological providers. In terms of eligibility, volunteers 
aged 18 and above were required to have fingertips without any nail polish. For each subject, we recorded a single 
60-second video of the fingertip. Consequently, each patient underwent only one trial. If the recorded video 
failed to meet acceptable criteria due to the motion of the fingertip, the data collection procedure was restarted.

Hardware system
The data collection kit includes a smartphone, USB-powered LED flashlight, a 430 nm 10 FFWH Blue light filter 
(4 cm × 10 cm), a 1100 micro-T magnet (30 cm × 5 cm), aesthetically organized in a light-weight box as shown 
in Fig. 2. The distance between the pair-wise items is given below where d (x, y) denotes distance of x from y:

•	 d (the magnet, the light) = 6 cm
•	 d (the finger, the camera) = 4 cm
•	 d (the light, the camera) = 2 cm

The blue light filter is placed on top of the LED flashlight to illuminate the fingertip with blue light, and the 
magnet maximizes the contrast between the RBC and the flow gap to regulate the flow of blood. The 1100 
micro-T magnet was strategically positioned near the smartphone’s magnetometer to consistently repulse the 
negative charge from hemoglobin, ensuring a uniform directionality of RBC flow. The light-weight enclosed box 
was included in the setup to securely stabilize the smartphone, minimizing movement and ensuring consistent 
positioning of the fingertip throughout the measurement.

Challenges and solution by UbiWhite
An android application, UbiWhite, was developed to facilitate WBC counting at the point of care. The users 
would register with their email addresses and set up a password to store their values across different devices. 
This benefits the user in data storage and retrieval by tracking their records and their healthcare providers in 
monitoring their critical patients. Furthermore, the application performs three essential tasks- noise detection, 
magnetic field strength measurement, and light intensity detection- to ensure the empirical values found in 
the literature are consistent throughout the video capture. RGB Motion Detector of Android is used to detect 
the presence of noise in data collection. Movements of the fingertip during video capture can introduce noise 
and distort the Photoplethysmograph (PPG) signals. In data collection, a slight sneeze could deteriorate the 
steady sitting position. Smartphone magnetometers are sensors integrated into smartphones that measure the 
strength and direction of magnetic fields. Subsequently, the Android phone’s magnetometer reading was taken 
to ensure the appropriate magnetic field strength was maintained before starting the data collection. A stronger 
magnetic field interferes with the device’s magnetometer, while a magnetic field that is too weak will be a hurdle 
in regulating the blood flow. Moreover, this level is well below the International Commission on Non-Ionizing 

Author Methodology Performance

Huo et al.14
Used optical fiber to transmit fingertip data to the spectrometers
used Finger-end transmission method for spectral measurement
used two scientific research-grade ultra-high-sensitivity spectrometers

Dataset Correlation 
coefficient RMSE

Training set 0.93 0.57 × 109

Prediction set 0.82 0.83 × 109

Bourquard 
et al.2

Introduced a semi-automatic method to acquire video data with low-cost portable microscopy 
equipment
Performed Spatiotemporal analysis of capillary profiles
Classified severe neutropenia versus baseline neutropenia

The classification performance 
improved with the number of capillaries 
used per patient, achieving AUCs of 
0.68, 0.84, 0.88, 0.95, and 1.00 for one 
to five capillaries, respectively

Bourquard 
et al.17

Used portable, commercially available capillaroscope to deduced to estimate the total sampled blood 
volume and identified all WBC events occurring in two capillaries of one subject and estimated their 
speed

The speed of WBC events was 
estimated from visual gap trajectories, 
falling within the known range for 
nailfold capillary blood flow. Based 
on the healthy WBC range and video 
duration, the predicted WBC counts 
were consistent with the observed 
median counts in both capillaries

Bagramyan 
et al.18

Performed non-invasive and label-free temporal recordings of circulating, rolling, and adherent 
leukocytes within the human buccal microvascular
Visualized fine morphological features of blood cells through phase contrast signal
Used an Oral tissue stabilization apparatus

Calculated average rolling velocity 
of 58 ± 28 µm/s in the healthy tissue, 
which reduced to 4 ± 6 µm/s in the 
inflamed tissue

Table 1.  Comparative Study of state-of-the art related works.
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Radiation Protection (ICNIRP) recommended exposure limit of 40,000 µT. Finally, without the exact wavelength 
of light, the proposed WBC calculation algorithm fails. Calculating the light incident’s luminous intensity on the 
back camera ensured that a light of specific intensity was captured. To facilitate accurate replication of conditions, 
the UbiWhite application provides real-time guidance on positioning and setup, including visual and audio 

Fig. 2.  Front view of the box: (a) showing the magnet, the LED flashlight covered with the blue light filter, (b) 
showing the fingertip aperture and the smartphone box from the user side.

 

Fig. 1.  UbiWhite methodology flow diagram.

 

Scientific Reports |         (2025) 15:1594 4| https://doi.org/10.1038/s41598-024-81459-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


cues to help users maintain the optimal fingertip position and avoid common disturbances such as unintended 
movement. By ensuring better signal quality with the three tasks, we can attain better results.

Algorithm development
An object model of white blood cells was developed to develop an algorithm for white blood cell count. The 
attributes of the model are as follows-

•	 MaxRed: the maximum pixel intensity of the red channel in a frame. This feature is used as an indicator of 
light absorption variations caused by white blood cells (WBCs) passing through the capillaries, as WBCs 
cause optical absorption gaps (OAGs).

•	 MaxBlue: the maximum pixel intensity of a blue channel in a frame. This variable would record the maximum 
absorption of the blue channel by the flowing blood. It can also exhibit the distinct patterns of blue channel 
intensity as blood flows through the finger.

•	 MaxDiffRed: the difference of max Histogram value with the previous frame of the red channel. This attrib-
ute measures the temporal variation in red intensity between consecutive frames. This difference highlights 
changes in blood flow over time, specifically fluctuations linked to the WBC movement.

•	 MaxDiffBlue: the difference of max Histogram value with the previous frame of the blue channel. This attrib-
ute captures the dynamic variations in blue channel intensity, allowing for a more nuanced understanding of 
blue channel absorption. Additionally, any rapid changes to this variable can refer to motion artifact during 
data collection.

Algorithm: getCountAndLevelWBC
Our algorithm consists of three major subroutines. We describe the pseudocode and description of each of 

the subroutines below:

Pseudocode

	1.	� For each frame in the fingertip video:

	 a.	� Split the frame into its Red (R), Green (G), and Blue (B) channels.
	 b.	� Calculate the pixel values for each channel.
	 c.	� Calculate the maximum histogram value for the R and B channels.
	 d.	� If it’s not the first frame:

	 i.	�  Compute the difference between the maximum histogram values and the previous frame.

	2.	� Apply the K-means algorithm with K = 4 to obtain the cluster-assignment threshold.
	3.	� Count the number of frames according to the cluster-assignment threshold for the lowest valued cluster.
	4.	� Obtain the Cardiac output value using either empirical values or real-time estimated values.
	5.	� Return the count and level of white blood cells.

Algorithm subroutines
Calculating pixel intensity value of the captured fingertip video  Separating the color channels allows for in-
dividual analysis of each channel’s pixel intensity, which is crucial for detecting variations specific to WBCs. 
Furthermore, quantifying pixel values for each channel provides the necessary data for subsequent histogram 
analysis. The maximum values in the histogram indicate the most intense pixel values, which are expected to 
highlight the presence of WBCs. Comparing the current frame’s maximum values with the previous frame helps 
identify dynamic changes and fluctuations attributable to WBC flow.

Performing K means clustering on the pixel intensity values  Clustering the data helps in categorizing the 
frames based on pixel intensity variations, and the K = 4 setting is empirically chosen to balance granularity 
and computational efficiency. The choice of K was determined through extensive experimentation involving a 
range of K values. We conducted clustering analysis on the first 10 participant’s data with known class labels and 
evaluated the performance of the values using the within-cluster sum of squares (WCSS) and silhouette score. 
The optimal number of clusters was identified as K = 4 based on the highest silhouette score and a significant 
reduction in WCSS, indicating well-separated and cohesive clusters.

Estimating WBC by counting OAGs based on K means clustering assignments  The presence of WBCs will be 
‘outliers’ in the flow of blood since they appear as optical absorption gaps (OAGs) in blood, as demonstrated 
by research2. So, counting flow gaps or flow drops can be approximated as the task of ‘outlier detection.’ Frames 
assigned to the lowest cluster correspond to moments of significant WBC presence, as they have lower pixel 
intensity variations. Since Cardiac Output (CO) can provide an accurate and contextually relevant measure of 
WBC levels in the bloodstream, incorporating CO ensures that the WBC count is contextualized within the 
overall blood flow, enhancing the accuracy of the final WBC level estimation. The final step consolidates the 
frame count and cardiac output data to provide an accurate WBC count and level.
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Data analysis
Fingertip video processing
We captured minute-long videos of light reflected by the fingertip at 30 frames per second. The Google Pixel 
2 smartphone was used to collect and process the videos for the fingertip video, which would later be used for 
white blood cell counting, as demonstrated in Fig. 3.

The initial step of the analysis involved storing the four values of the pixel intensity of the white blood cell 
object model, as discussed in "Algorithm development" section, for each frame in the video into a single file. This 
matrix-based data enables us to perform fast calculations on modern smartphones. A sample of the processed 
numeric dataset is shown in Fig. 4.

Afterward, by performing a visual analysis in the form of a histogram of the Fingertip video max & successive 
difference dataset, it was observed that the average value of light absorbed in blue and red channels was constant, 
while the peak values in blue changed due to the presence of flowing white blood cells as indicated by Fig. 5.

An ideal PPG signal has the following features—pulse amplitude, main peak, peak-to-peak interval, 
systolic peak, diastolic peak, and dichroitic notch. As exhibited in Fig. 6a, the raw signal has uneven edges and 
fluctuations and it has been widely researched that movement and signal drift can easily distort these sort of 
signals26. The noise reduction by the Butterworth filter is particularly noticeable in the amplitude of the peaks 
and troughs, which are smoother and more consistent in the denoised signal compared to the raw signal as 
illustrated in Fig. 6b.

Precisely selecting the block wise PPG signal from the minute-long continuous signals is part and parcel 
of the UbiWhite system. The quality of these block-wise signals directly influences the performance of the 
clustering algorithm and, consequently, the effectiveness of the Butterworth filters. We selected 5 best fit PPG 
signals as depicted in Fig. 7 by the red rectangles to select the best input signal.

White blood cell count formulation
The focus was on utilizing empirical parameter values to establish a baseline of WBC level. Volume Flow 
Rate (VFR) is calculated from the blood flow rate measured in the fingertip video by tracking changes in 
light absorption as blood cells move through capillaries27. In studies focused on fingertip blood flow, such as 
photoplethysmography (PPG) or video-based analyses, the VFR is typically much smaller and is estimated 
around 0.1 to 1 µl/s, depending on the subject and conditions28.

Fig. 4.  Fingertip video max & successive difference dataset.

 

Fig. 3.  Fingertip video recording.
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Fig. 7.  Detection of PPG cycles based on morphological properties from denoised signals.

 

Fig. 6.  Demonstration of PPG signal: (a) Raw PPG signal, (b) Denoised PPG signals.

 

Fig. 5.  Red and blue histogram of frames extracted from a recorded video.
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We describe the parameters used to calculate the WBC counts and levels below:

•	 The ratio of WBC to total blood, r

Calculated from the histogram-based matrix data, by dividing the number of frames in the lowest intensity 
cluster (β) by the sum of elements in all clusters. Here, f is the Number of frames in the fingertip video, which 
is equivalent to the sum of elements in all clusters.

	
r = β

f
� (1)

•	 Blood flow amount, α

Calculated by normalizing the Blood flow rate, Volume Flow Rate (VFR) to µl/s unit. After simplifying, we get

	
α = VFR ∗ t

60 ∗ 1000

	
α = VFR ∗ t

3 ∗ 50� (2)

•	 Count of WBC, C

Calculated from r and α values

	
C = r

α
� (3)

•	 Level of WBC, L

Calculated from C value

	 L = {low, normal, high} based on C value based on the age, gender� (4)

Feature generation from PPG signal
Following the creation of the PPG signal obtained through video capture using a smartphone held at the 
fingertip, we extracted features, including its diastolic peak, dicrotic notch height, ratio, and augmented ratio 
among systolic, diastolic, and dicrotic notch, systolic and diastolic rising slope, and inflection point area ratio29. 
Extensive filtering was done on the generated PPG signal to ensure good signal quality. Firstly, we grouped five 
adjacent sets of PPG cycles as one block of PPG wave. Secondly, filtering at individual PPG cycle levels inside 
a block was done, and we discarded the block that did not have a single PPG cycle satisfying the following 
condition—one systolic peak (sp) followed by one dicrotic notch (dn) with lower intensity value than the sp, one 
diastolic peak with higher intensity than the dn but lower than the sp.

One inherent challenge of using PPG signals is the differences in skin tone and texture among participants, 
which can affect the reflectance and absorption of light, which in turn impacts the accuracy of the PPG signal and 
subsequent WBC counts30. Calibration for individual variations might be necessary to minimize this variability.

Result
We have used two different algorithms on the same fingertip video. The two algorithms differ in the feature sets. 
We implemented the algorithm 1 by using the MaxRed features only. In contrast, we have considered MaxRed 
and maxDiffRed features in algorithm 2. By including MaxDiffRed, algorithm 2 adds a layer of temporal 
dynamics, improving the detection of WBC presence by capturing not just static intensity levels but also their 
rate of change. The combination of these two features allows algorithm 2 to be more sensitive to subtle changes 
in blood flow.

•	 MaxRed indicates the most intense red pixels, likely corresponding to moments when blood is passing 
through capillaries.

•	 MaxDiffRed tracks how these pixel intensities change between frames, signaling potential disruptions in 
blood flow caused by WBCs as shown in Fig. 8. This dynamic feature helps detect the occurrence of WBCs, 
as they typically cause these disruptions.

Cluster assignment and WBC counting
The lowest intensity cluster, which contains frames with the smallest pixel intensity variations, represents periods 
of significant WBC presence. These frames are identified as ‘outliers’ due to the optical absorption gaps (OAGs) 
created by WBCs, which lower the light intensity. Figure 9 illustrates the distribution of frames across the four 
clusters.

Figure 10 provides a visual representation of frame counts per cluster with distinct color coding for each 
cluster and the lowest intensity frames.
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Result generation
The following Table 2 illustrates the gold standard WBC value and the range of values (min, max) produced by 
the two algorithms, along with their average values. Since we are using empirical cardiac output values, with the 
min and max being 5 and 6 Liter per minute respectively, both algorithms predict WBC in a min and max range. 
These values are averaged to derive the A-1 avg and A-2 avg values. All the entries in the table have the unit as # 
WBC per Liter of blood.

Comparison of the algorithm performances
Table 3 shows the performance metric of the two algorithms where the A-1 avg and A-2 avg values were used to 
represent the model performances.

The MAE implies that the average difference between the prediction of A-2 and the actual values is higher 
than for A-1. The RMSE for A-2 was higher than the MAE, indicating there are a few predictions by the A-2 
algorithm that varied significantly from the actual values, pulling the RMSE value up. In conclusion, both 
algorithms show varying performance, with neither consistently outperforming the other across all metrics. 
While A-2 had a lower average error, indicating better accuracy, it scored poorer on MAE and RMSE, meaning 
that its predictions varied more from the actual values than A-1. Specifically, large errors are more prominent in 
A-2's predictions, as evidenced by the higher RMSE value.

Correlation analysis
We quantified the correlation between the average, maximum and minimum values predicted by both of the 
algorithms with the actual gold-standard value.

Fig. 8.  The variation in MaxRed and MaxDiffRed across frames of a sample signal.
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•	 Correlation between the maximum WBC values and the actual WBC count  Correlation coefficient for A-1 
max: R = 0.67, p-value = 0.001

•	 Correlation coefficient for A-2 max: R = 0.55, p-value = 0.012

Although both algorithms exhibit a moderate positive correlation, A-2 does not perform as strongly as A-1 
in terms of predicting maximum values as displayed in Fig. 11. Nonetheless, the significant p-value for both 
algorithms (p < 0.05) demonstrates that these correlations are statistically meaningful, further validating the 
algorithms’ performance for maximum measurements.

•	 Correlation between the minimum WBC values and the actual WBC count  Correlation coefficient for 
A-1 min: R = 0.61, p-value = 0.004

•	 Correlation coefficient for A-2 min: R = 0.53, p-value = 0.016

Figure 12 reveals that the minimum WBC readings produced by the algorithms also align reasonably well with 
the actual values, with A-1 again showing a slightly better performance.

Fig. 9..  Color coded cluster assignments of the sample signal.
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Metric A-1 A-2

Mean absolute error (MAE) 0.83 0.91

Root mean squared error (RMSE) 1.04 1.23

Table 3.  Algorithm performance comparison.

 

Actual A-1 min A-1 max A-1 avg A-2 min A-2 max A-2 avg

6.800 6.85 8.22 7.535 7.03 8.436 7.733

5.100 4.25 5.1 4.675 6.5 7.8 7.15

5.600 5.58 6.7 6.14 5.53 6.64 6.085

6.600 6.76 8.11 7.435 6.67 8 7.335

6.600 4.42 5.3 4.86 5.19 6.23 5.71

7.400 6.36 7.63 6.995 6.23 7.47 6.85

5.300 4.46 5.35 4.905 4.86 5.83 5.345

10.800 6.88 8.26 7.57 6.9 8.28 7.59

7.000 6.81 8.17 7.49 6.71 8.05 7.38

8.500 6.61 7.93 7.27 6.6 7.92 7.26

7.200 7.15 8.31 7.73 7.22 8.45 7.835

5.300 5.07 5.29 5.18 6.35 7.45 6.9

6.100 5.84 6.92 6.38 6.05 6.82 6.435

6.700 7.22 8.07 7.645 7 8.12 7.56

7.800 7.22 8.01 7.615 7.31 8.35 7.83

7.000 6.51 7.43 6.97 6.47 7.59 7.03

5.900 5.21 5.61 5.41 5.29 5.89 5.59

10.200 6.78 8.21 7.495 7.1 8.31 7.705

6.800 7.01 8.03 7.52 6.9 8.04 7.47

8.000 6.7 7.86 7.28 6.59 7.9 7.245

Table 2.  WBC count values. *All the entries have number of WBC/Liter of blood as their unit.

 

Fig. 10.  Count of frames per cluster, with colors representing different cluster assignments.
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•	 Correlation between the average WBC values and the actual WBC count  Correlation coefficient for A-1 avg: 
R = 0.65, p-value = 0.002

•	 Correlation coefficient for A-2 avg: R = 0.54, p-value = 0.01

Figure 13 suggests that both algorithms track the actual WBC count reasonably well when considering average 
values, with A-1 showing slightly better performance. Furthermore, the low p-values indicate that the observed 

Fig. 12.  Correlation between the minimum WBC measurements of both algorithms and the actual value.

 

Fig. 11.  Correlation between the maximum WBC values of both algorithms and the actual value.

 

Scientific Reports |         (2025) 15:1594 12| https://doi.org/10.1038/s41598-024-81459-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


correlations are statistically significant, meaning there is a minimal likelihood that these results occurred by 
random chance.

Statistical analysis
In this study, we undertook a statistical assessment to evaluate the performance of two algorithms, A-1 and A-2, 
in predicting the target variable of WBC count. For validating our novel smartphone-based WBC counting 
system, we determined a sample size 20 using G*Power 3.131. The analysis was conducted using the dataset of 20 
subjects. This sample size was calculated based on the moderate size of 0.5, with a power of 0.68 at a one-tailed 
test at an alpha level of 0.05. This sample size assures statistically reliable validation against gold-standard clinical 
data, allowing us to evaluate the new smartphone-based WBC counting system’s accuracy confidently.

The t-value measures the difference between the mean predictions of the algorithms and the actual WBC 
counts relative to the variability of the predictions. A higher t-value indicates a more significant difference 
between the algorithm’s predictions and the actual values.

The statistical tests used were paired t-tests to compare the mean predictions of the algorithms with the actual 
values. We applied a two-tailed test to assess the prediction difference without specifying a specific direction. For 
algorithm A-1 and A-2, the paired t-test yielded a t-value of 1.29 and 0.12, respectively.

The p-value assesses the probability that the observed differences between the algorithms’ predictions and 
the actual WBC counts are due to random chance. A p-value more significant than the alpha level (e.g., 0.05) 
suggests that the differences are not statistically significant.

Likewise, A-1 and A-2 exhibit p-values of 0.21 and 0.91, respectively. These findings suggest the absence of 
statistically significant differences between the outcomes of either algorithm or the observed empirical data. We 
performed the tests at a 95% confidence level. The absence of statistical significance suggests that both A-1 and 
A-2 algorithms perform similarly in predicting the target variable.

Discussion
Effect of blue light filter
With the blue light filter, the green channel was fully absorbed, while the red channel had lower absorption, as 
depicted in Fig. 14a. In contrast, the green and blue channels were fully absorbed without the blue light filter, 
as plotted in Fig.  14b. The blue channel absorption decreased more than the red channel with the presence 
of the blue light filters. Blue light, being of shorter wavelength, tends to scatter more, especially in biological 
tissues like blood vessels. Since the red channel has longer wavelengths, it experiences less scattering and is 
typically absorbed more by hemoglobin-rich blood cells, making its intensity less affected by the filtering. This 
differential response between the red and blue channels highlights the varying optical properties of different 
light wavelengths as they interact with biological tissues, and it may offer insights into the distribution and 
behavior of blood components under specific experimental conditions.

Fig. 13.  Correlation between the average WBC measurements of both algorithms and the actual value.
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Effect of magnetism
The influence of magnetism on hemoglobin-containing red blood cells was observed. A comparison of 
histograms generated from fingertip videos captured with and without the magnetic field corroborated these 
findings, providing visual support for the observed effects. The data presented in Fig.  15 here suggests that 
magnetism alters the distribution of red blood cells within the blood vessels.

When the magnet was applied, the mean of the MaxRed intensity decreased from 0.25344 (0.007) to 0.2158 
(0.019), suggesting a change in the distribution of red blood cells (RBCs) and their interaction with light. This 
decrease may indicate that magnetism affects the concentration or flow pattern of RBCs, leading to altered 
optical absorption gaps. In contrast, the mean MaxBlue intensity increased significantly from 0.29658 (0.022) to 
0.49797 (0.264), which could indicate a heightened reflection or scattering effect under magnetism. These results 
suggest that magnetism affects both red and blue channel intensities, possibly altering the arrangement of blood 
components within the vessels.

A confidence interval provides a plausible range for the true parameter value in the population, based on a 
representative sample32. To quantify the precision of estimate, width of the confidence interval is one of the most 
commonly used parameters33.

Fig. 15.  Average maxRed and maxBlue values with and without the magnetic field.

 

Fig. 14.  The histogram of a fingertip video: (a) taken with the blue light filter, (b) taken without the blue light 
filter.
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Table 4 shows very insignificant dispersion from mean for both the red channel and blue channel. Data shows 
positive impact of magnetism in increasing channel absorption. Since the confidence interval is very narrow, it 
indicates that the sample data for the white blood cell count, both with and without the magnet, is consistent 
and provides a precise estimate of the true mean34. This suggests that magnetism not only affects red blood cells 
but also enhances light scattering or absorption in the blue spectrum, potentially due to changes in blood flow 
dynamics.

Effect of noise in data collection
Any slight movement can introduce noise and affect the signal quality. We have attempted to generate a 
supervised learning model looking into the distribution of noisy and stable signal features. Experiments have 
been carried out to incorporate premeditated motion artifacts in two sets of fingertip videos.

For the maxDiffBlue feature, the stable signal exhibits lower dispersion, indicating less variability in the 
maxDiffBlue values compared to the noisy signal, as shown in Fig. 16. Furthermore, the absence of outliers in 
the stable signal further emphasizes the reduced noise and increased consistency in the data.

The maxBlue distribution for the noisy signal is skewed to the right, indicating a concentration of lower 
values with a tail extending towards higher values, as shown in Fig. 17. Additionally, the distribution’s spread is 
wider, implying a greater degree of variability in maxBlue values. In contrast, the maxBlue distribution for the 
stable signal is narrower, reflecting a lower degree of dispersion compared to the noisy signal.

Limitations
The current design of the UbiWhite system, including the optical attachment and blue light bandpass filter, was 
optimized specifically for the Google Pixel 2 to ensure minimal light scattering and consistent illumination of 

Fig. 16.  Distribution of maxDiffBlue feature: (a) of a noisy signal, (b) of a stable signal.

 

Attribute type

With magnetism Without magnetism

Mean
95% confidence interval 
lower bound

95% confidence interval 
upper bound Mean

95% confidence interval 
lower bound

95% 
confidence 
interval 
upper 
bound

maxRed 0.2158 0.21518 0.21642 0.25344 0.253 0.254

maxBlue 0.49797 0.48938 0.50656 0.29658 0.29537 0.29779

Table 4.  Effect of magnet in data collection.
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the fingertip. This design choice allows the system to achieve higher contrast between red blood cells and flow 
gaps, enhancing the accuracy of WBC counting. However, the system is not device agnostic, meaning that the 
performance may vary on other smartphone models due to differences in camera specifications and sensor 
configurations, potentially limiting its widespread applicability without further modifications.

The system may have difficulty with users who have physical conditions affecting their hands or fingers, such 
as injuries, deformities, or poor circulation. Such conditions could distort the blood flow patterns that the system 
relies on to detect WBCs, reducing the accuracy of the measurement. Additionally, factors like skin moisture, 
temperature, and pressure applied to the phone’s camera could also influence the results.

Moreover, the system’s current validation has been limited to participants with relatively normal WBC counts, 
which may not fully represent the clinical scenarios where extreme WBC variations are critical for diagnosis and 
treatment. Future studies must assess the system’s accuracy in detecting both abnormally high WBC counts, 
common in infections or leukemia, and low counts, often seen in immunocompromised individuals, to ensure 
its reliability in diverse medical conditions.

Feasible future scope
Developing a smartphone-based system for real-time WBC counting opens exciting future research and 
implementation opportunities. Further refinement of algorithms and technological enhancements can improve 
the accuracy and reliability of WBC counts, enhancing the system’s performance in various clinical scenarios35. 
Integration with telemedicine platforms and cloud-based solutions could facilitate remote monitoring and data 
sharing, extending the reach of this technology beyond traditional healthcare settings. One possible usage can 
be in children’s emergency. Collaborations with healthcare professionals and stakeholders will be crucial for 
successfully integrating this system into existing healthcare infrastructures. Overall, the future of this innovative 
approach lies in continuous refinement, collaboration, and exploration of its broader clinical utility.

Conclusion
Regular monitoring of white blood cell (WBC) counts plays a pivotal role in healthcare, profoundly impacting 
an individual’s well-being. It encompasses a spectrum of critical functions, including early infection detection, 
the continuous tracking of chronic ailments, the identification of bone marrow disorders, immune system 
assessment, medication effect management, allergy reaction detection, post-surgery recovery assurance, and 
holistic health evaluation. Our research introduces an innovative way to count WBCs using videos of fingertips 
without drawing blood. As smartphones and sensors advance, the significance of mobile health (mHealth) in 

Fig. 17.  Distribution of maxBlue feature: (a) of a noisy signal, (b) of a stable signal.
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our daily lives is steadily increasing. Consequently, our research is driven by a commitment to harness the full 
potential of Mobile Computing using sensors, networking capabilities, and computational capabilities.

Furthermore, we have designed an ergonomic optical attachment and developed a smartphone application 
to ensure user-friendliness. The initial test results of our systems are quite accurate, offering a needle-free 
alternative to traditional methods of counting WBCs. Studies will be conducted with larger and more diverse 
sample populations to assess the robustness of the system under different ambient settings. Furthermore, the 
large-scale study will enable the evaluation of our algorithms in diverse environmental settings to determine 
how external factors affect measurement accuracy.

Data availability
The datasets used in the study are available from the corresponding author upon reasonable request.
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