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The propagation of public opinion in multilingual environments presents unique challenges due to 
the diversity of languages, cultures, and values. This study develops an SEIR-based model tailored 
for multilingual contexts, incorporating mechanisms such as social enhancement, forgetting, and 
cross-transmission. The model’s purpose is to improve transparency, inclusivity, and effectiveness in 
public opinion management, particularly in diverse linguistic settings. By emphasizing democratic 
engagement and avoiding social control, the model provides tools for managing public opinion 
that promote fairness and transparency. The model was validated using real Twitter data related to 
COVID-19 across multiple languages, including English, Spanish, and Catalan. Key results demonstrate 
that the model effectively captures the dynamics of opinion propagation, particularly in languages 
with fewer users, where opinion spread tends to be more predictable. By addressing cultural and 
linguistic differences, this study offers an inclusive approach to public opinion management. The 
inclusivity ensures that different cultural groups, regardless of language, are fairly represented in 
public discourse. This research contributes to the ethical management of public opinion, providing 
valuable insights for policymakers and analysts in multilingual societies.

Keywords  Multilingual public opinion, SEIR model, Social enhancement effect, Cross-transmission 
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Public opinion encompasses the collective views, attitudes, and sentiments of a society regarding events or 
issues. As a social psychological phenomenon, public opinion both reflects a society’s needs, contradictions, 
and trends, and significantly influences its decisions, behaviors, and development. The propagation of public 
opinion involves the formation, diffusion, and evolution of societal viewpoints, engaging multiple stakeholders 
and media channels, as well as various influencing factors. Characterized by its breadth, speed, diversity, and 
unpredictability, the propagation of public opinion facilitates communication, coordination, and progress, while 
also potentially triggering social conflicts, turmoil, and crises.

Owing to their similarities to information transmission processes, epidemiological mathematical models 
are widely applied in the study of online public opinion propagation.1 The study of information propagation 
dynamics originated from the analysis of rumor spreading. Allport,2 a pioneer in rumor propagation research, 
analyzed the process primarily from a psychological perspective. In 1964, Goffman and Newill observed that 
the spread of rumors and infectious diseases shares similarities.3 Following the DK model,4 research into 
information propagation dynamics expanded to include Maki and Thomson’s MT model,5 and its subsequent 
modifications by Sudbury6 and Belen.7 Recent advances in complex network research have opened new 
avenues for studies in communication dynamics. Pastor-Satorras and Vespignani8 conducted effective analyses 
of infectious disease propagation across regular, random, and small-world networks. Zanette,9,10 a pioneer in 
the study of rumor propagation within complex networks, highlighted a propagation threshold in small-world 
networks and the significant influence of network structures on this process. The diverse topologies of complex 
networks have spurred significant interest and yielded substantial findings in rumor propagation dynamics. This 
includes models for information propagation across various complex networks such as random, small-world, 
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homogeneous, heterogeneous, large-scale scale-free networks, those with adjustable clustering coefficients, 
time-varying, and multilayer networks.11–24

With the advent of globalization and informatization, multilingualism, defined as the coexistence and 
interaction of diverse language groups, has become prevalent in society. Public opinion propagation in 
multilingual environment becomes increasingly complex and uncertain, as varying cultures, values and 
cognitive styles among language groups contribute to the diversity, differentiation, and polarization of public 
opinions. Particularly since the onset of the big data era, the integration of artificial intelligence with big data 
technologies has given rise to the current AIGC technology. The impact of AIGC technology on public opinion 
propagation is multifaceted, involving: (1) enhanced content production efficiency and scale, reduced labor 
costs, met demands for vast information volumes, and boosted content quality and innovativeness, thereby 
strengthening communicative power and influence; (2) enabled multi-modal, multi-language, and multi-scene 
content generation, broadening communication reach and facilitating cross-cultural, cross-regional, and cross-
platform exchanges. Therefore, in the AIGC era effectively describing, analyzing, guiding, and regulating public 
opinion in multilingual environments represents significant challenges in public opinion management.

Public opinion is a complex and dynamic phenomenon that plays a critical role in shaping societal behavior, 
policies, and governance. In multilingual environments, the propagation of public opinion becomes more 
intricate due to the interplay of different languages, cultures, and values. This paper develops a public opinion 
management strategy aimed at optimizing transparency, inclusivity, and effectiveness in guiding public discourse, 
especially in multilingual contexts.

As noted in references,[25–34] existing studies often overlook the social enhancement effect. Neglecting 
this effect in the process of information dissemination in a multilingual environment can lead to significant 
miscalculations—either underestimating or overestimating the effectiveness, impact, and persistence of 
information. This oversight can distort public opinion analysis, resulting in either an overemphasis or an 
underestimation of the positive or negative consequences of information spread, and ultimately, a loss of control 
over the management of public opinion.

To address these issues, this article proposes a dynamic model of Public Opinion Propagation that incorporates 
social enhancement effects. By utilizing both the forgetting mechanism and the cross-propagation mechanism, 
the model evaluates how public opinion interacts with different language groups, assessing its stability and 
sensitivity. The proposed strategy, based on optimal management theory, is designed to effectively guide and 
regulate public opinion by adjusting network structures and parameters.

Numerical simulations confirm the feasibility and applicability of this model, offering an innovative approach 
for managing public opinion in multilingual environments. The model has practical applications, particularly 
in public service contexts where managing public opinion is crucial. During public crises—such as natural 
disasters or public health emergencies—this model can ensure accurate information dissemination and prevent 
panic. By emphasizing guidance over management, the model supports public service departments in mitigating 
misinformation and maintaining stability in multilingual societies.

This study also considers the challenges posed by linguistic and cultural diversity in public opinion dynamics. 
By accounting for these differences, the model promotes an inclusive approach to public opinion management, 
ensuring that various cultural groups, regardless of language, are fairly represented in public discourse. This 
approach not only adheres to ethical standards but also enhances the model’s relevance and applicability to real-
world multilingual societies. The main contributions and innovations of this paper include:

	(1)	� Social Enhancement Effect: This model introduces parameters describing social influence among speakers 
of different languages. This effect facilitates or inhibits the spread of public opinion across linguistic com-
munities.

	(2)	� Forgetting and cross-transmission Mechanisms: This model integrates a forgetting mechanism that reflects 
how information disappears over time and a cross-transfer mechanism that evaluates interactions between 
different language groups, significantly improving the applicability and predictive accuracy of the model.

	(3)	� Optimal management Theory: management strategies based on optimal management theory aim to adjust 
network structure and parameters, effectively induce and manage public opinion, while minimizing costs 
and risks.

The paper is organized as follows: Chapter 2 presents the SEIR-based public opinion propagation model, 
incorporating social enhancement, forgetting mechanisms, and cross-transmission effects in multilingual 
settings. Chapter 3 explores the model’s basic properties, focusing on the parameters influencing opinion 
transmission and the mathematical foundation of the model. Chapter 4 analyzes the model’s stability and global 
dynamics in a bilingual environment, examining equilibrium points. Chapter 5 proposes optimal strategies for 
managing public opinion, using control theory to mitigate crises in multilingual societies. Chapter 6 describes 
simulation experiments that validate the model’s accuracy and the effectiveness of the proposed management 
strategies. Chapter 7 applies the model to a real-world case study using multilingual Twitter data, validating 
the model’s performance in capturing opinion dynamics. Chapter 8 summarizes key findings, emphasizing the 
model’s applicability in multilingual settings and its practical implications for public opinion management.

Model building
This section introduces a new SEIR public opinion propagation model for multilingual environment, 
incorporating social enhancement effects, forgetting mechanisms, and cross-transmission mechanisms.

It is assumed that the total population is divided into groups based on language spoken. For instance, the 
first group comprises speakers of the first language, the second group speakers of the second language, and so 
forth. Additionally, public opinion is considered to be transmitted through n different languages, where n is 
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a finite positive integer. Each group is categorized into four types: (1) susceptible, individuals who have not 
yet encountered public opinion information but are at risk; (2) latent, individuals exposed to public opinion 
information without significant attitudes or behaviors; (3) infectious, individuals who display strong attitudes 
or behaviors after exposure to public opinion, influencing others; (4) recovered, individuals previously exposed 
to public opinion but now disengaged for various reasons. At time t, the susceptible, latent, infectious, and 
recovered individuals in group i are represented as Si (t), Ei (t), Ii (t), and Ri (t), respectively. In group i, 
the total population Ni (t) is given by the sum Si (t) + Ei (t) + Ii (t) + Ri (t). The dynamics of the model 
are illustrated in Fig. 1, given that some individuals are multilingual, communication across different groups 
is possible. Based on the preceding analysis, the SEIR public opinion propagation model in a multilingual 
environment is described as follows:

	





dSi (t)
dt

= bi −
n∑

j=1

βijIj (t) Si (t) − diSi (t) ,

dEi (t)
dt

=
n∑

j=1

βijIj (t) Si (t) − αiEi (t) − diEi (t) ,

dIi (t)
dt

= αiEi (t) −

(
γi +

n∑
j=1

µij +
n∑

j=1

ηji + di

)
Ii (t) +

n∑
j=1

ηijIj (t) ,

dRi (t)
dt

= γiIi (t) − diRi (t) .

� (1)

where, i = 1, 2, | · · · , n denotes the population of the i-th language and n is the number of language varieties. 
The initial conditions of system (1) can be set to Si (0) > 0, Ei (0) > 0, Ii (0) > 0, Ri (0) > 0. Incorporating 
the birth rate bi and removal rate di of populations speaking language i into the bilingual SEIR public opinion 
propagation model addresses the dynamic nature of user populations on social media platforms. On platforms 
like Twitter, user engagement is in constant flux, with new users joining discussions and others disengaging over 
time. This dynamic is particularly crucial in a bilingual environment, where the interaction between different 
linguistic groups can significantly impact the spread of public opinion. By modeling bi and di as time-dependent 
variables, the model captures these fluctuations, offering a more accurate reflection of the real-world propagation 
process. This approach allows for a deeper understanding of how public opinion evolves, especially in the long 
term, where the entry and exit of individuals within each linguistic group influence the sustainability and reach 
of information dissemination. This enhanced realism provides a nuanced perspective on how public opinion 
spreads across multilingual social networks, which is critical for developing effective opinion management 
strategies. The parameters in the model are summarized as shown below:

bi: Birth rate of the population speaking language i.
di: Removal rate of the population speaking language i.
βii: Transmission rate of language i, defined as the probability that a susceptible individual becomes a latent 

individuals carrier upon contact with an infectious individuals.
βij : Probability that the population speaking language i is influenced by the population speaking language j, 

resulting in the conversion of susceptible individuals into latent individuals, also known as the cross-transmission 
rate.

αi: Probability that a carrier within the population speaking language i becomes an infectious individual.
γi: Recovery rate of infectious individuals in the population speaking language i.
µij : Forgetting rate of infectious individuals in the population speaking language i, applicable when i = j

,uij = 0.
ηij : Social enhancement effect of the population speaking language j on the population speaking language 

i, defined as the effect on the change in numbers of latent individuals and infectious individuals between these 
populations, applicable when i = j, ηij = 0.

Fig. 1.  Schematic of the propagation dynamics of the model.
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For the birth rate bi and removal rate di in the model, these two parameters are a function of time t in terms 
of the relatively long propagation period of the public opinion propagation problem, and we discuss the laws of 
these two parameters over time in the following:

	
bi = αi · H (t) + χi · Ui (t) +

∑
j ̸=i

θij · Cij (t) ,

where:

αi: The weight of opinion trends influencing the growth of users speaking language i.
H (t): The function representing changes in opinion intensity over time.
χi: The weight of user engagement affecting the growth of users speaking language i.
Ui (t): The engagement level of users speaking language i as a function of time.
θij : The cross-linguistic influence coefficient, representing the impact of language j on the birth rate of 

language.
Cij (t): The cross-linguistic interaction function, quantifying how language j influences users of language 

i. This function can be influenced by factors such as linguistic similarity, cultural proximity, and interaction 
frequency between users of different languages.

	
di = γi · F (t) + υi · (1 − Ui (t)) +

∑
j ̸=i

ρij · Dij (t) ,

where:

γi: The weight of opinion trend declines with the removal of users speaking language i.
F (t): The decay function of opinion intensity over time.
υi: The weight of user interest decline on the removal of users speaking language i.
(1 − Ui (t)): The level of declining interest among users speaking language i.
ρij : The cross-linguistic disengagement coefficient, indicating the impact of language j on the removal rate 

of language i.
Dij (t): The cross-linguistic disengagement function, measuring how interactions with language j lead to the 

disengagement of users speaking language i. Influencing factors include linguistic differences, cultural conflicts, 
or conflicting viewpoints.

The following is a further detailed discussion of the functions of opinion fervor over time, language i user 
engagement over time, cross-language interaction functions, functions of opinion fervor decay over time, and 
cross-language disengagement functions involved in the birth rate time function and removal rate time function.

Public opinion heat as a function of time H (t).
Opinion heat usually reflects how much attention a topic receives on social media, which can be measured 

by the number of tweets, search index, etc. We can use exponential growth or decay models combined with a 
saturation function to represent it:

	
H (t) = H0 · er·t

1 + H0
K

(er·t − 1)
,

Among them:
H0: Initial public opinion heat.
r: Growth rate of public opinion heat.
K : The saturation value of public opinion heat.
t: Time.
The formula indicates that the heat of public opinion grows rapidly initially and then gradually becomes 

saturated.
language i user engagement over time Ui (t).
User engagement can be measured by the activity levels of users, such as the frequency of posts, comments, 

and retweets. Considering that engagement may gradually increase over time and then decrease as opinion 
intensity declines, we can use the following formula:

	 Ui (t) = Ui,0 ·
(
1 − e−λi·H(t)) ,

where:

Ui,0: Maximum engagement level of users speaking language i.
λi: The sensitivity of user engagement to changes in the heat of public opinion.
H (t): Opinion heat as a function of time.
This formula indicates that user participation increases when the public opinion is hot and gradually 

decreases when the public opinion is hot.
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Cross-Language Interactive Functions Cij (t).
Cross-language interaction can be expressed as the frequency and extent of communication between users 

of different languages, and can be constructed based on the speed at which public opinion spreads between two 
language groups:

	 Cij (t) = ςij · Hj (t) · ζij ,

where:

ςij :The influence coefficient of language j on the spread to language i.
Hj (t):Opinion intensity of language j.
ζij :Linguistic and cultural similarity between languages i and j(ranging from 0 to 1).
This function indicates that the heat of public opinion in the language j and the similarity between the two 

languages together determine the intensity of cross-linguistic interactions.
Decay of Public Opinion Heat as a Function of Time F (t).
The decay of public opinion fervor can usually be represented by an exponential decay function to reflect the 

gradual waning of interest in a topic:

	 F (t) = F0 · eµ·t,

Among them:
F0: The initial public opinion heat.
µ: The public opinion heat decay rate, which reflects the speed of public opinion heat decline.
t:Time.
Cross-language detachment functions Dij (t)

	 Dij (t) = δij · (1 − ζij) · Hj (t) ,

Among them:
δij : Influence coefficient of language j on the removal of users speaking language i.
(1 − ζij): Linguistic and cultural variability (opposite of ζij) .
Hj (t): Opinion intensity of language j.
This formula indicates that when the linguistic and cultural differences between two languages are large, 

and the opinion intensity of language j is high, users speaking language i are more likely to disengage from the 
discussion.

In the model, if ηij > 0, the population speaking language j facilitates public opinion propagation in the 
population speaking language i. If ηij < 0, it suppresses public opinion propagation in the population speaking 
language i. If ηij = 0, it has no effect on the public opinion propagation in the population speaking language i.
The parameter ηij , which defines the social enhancement effect, is detailed as follows:

	
ηij = kij .Cij

(
Ij

Nj
− θ

)
� (2)

Among them:
kij : This parameter represents the base influence ability of language group j on the public opinion 

propagation of language group i, in the absence of other factors such as cultural differences and social networks.
when kij > 0, a higher value signifies stronger base influence, with key factors including language similarity, 
communication frequency, and interaction history.

Cij : This parameter quantifies the cultural proximity between two language groups, affecting opinion 
propagation. Values range from 0 to 1, where a value closer to 1 indicates greater cultural similarity and more 
efficient opinion propagation. Influential factors include shared values, beliefs, customs, and art forms.

Ij

Nj
: This represents the proportion of infectious individuals in language group j.

θ: This threshold parameter, denoted as θ, regulates the social enhancement effect—whether it promotes, 
inhibits, or has no effect on public opinion propagation—based on the proportion of infectious individuals. If 
this proportion exceeds θ, the effect is facilitating; below θ, it is suppressing; at θ, it has no effect.θ is established 
using historical data, expert judgement, or predefined psychosocial thresholds.

This formula accounts for the complexity and dynamics of communication effects across different language 
groups. By adjusting parameters kij ,Cij  and θ, it allows for precise management over the direction and 
magnitude of the social enhancement effect on opinion communication between these groups.

The forgetting mechanism used in this model is inspired by research in cognitive psychology, which shows 
that memory decay is a natural part of information retention. Baddeley’s35model of working memory and 
subsequent studies have demonstrated that individuals are more likely to forget information when cognitive 
load increases or when the information is no longer relevant. This mechanism is particularly important in 
multilingual environments where different linguistic groups may have varying levels of exposure to the same 
information, influencing how quickly it is forgotten. In multilingual environment, the forgetting mechanism 
is influenced not only by time but also by interactions among different language groups. Consequently, the 
forgetting mechanism parameter µij  includes the following key components:
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µi: represents the base forgetting rate for the language group i, which is the natural rate at which individuals 
forget information absent external influences. Influencing factors include cognitive ability, information 
complexity, and exposure frequency. This ratio is usually between 0 and 1, where 0 indicates no forgetting and 
1 indicates immediate forgetting. Previous studies have extensively investigated the impact of basic forgetting 
mechanisms on information spreading, but have not discussed this in more detail.36–41

ϖij : Indicating the adjustment of forgetting rate through cross linguistic social enhancement effect, that is, 
the forgetting rate of language group i is influenced by the social enhancement effect of language group j. The 
factors that affect this parameter include frequency of communication, mutual understanding, and resonance of 
opinions. Due to significant cultural differences, positive factors may promote forgetting, while negative factors 
may delay forgetting due to profound empathy or understanding.

Cij : We quantify the cultural proximity between two language groups by evaluating how cultural similarity 
affects the dissemination of public opinion. Values range from 0 to 1, where values nearing 1 indicate closer 
cultural alignment and more efficient opinion spread. Influential factors include shared values, beliefs, customs, 
and artistic expressions, among others.

Q: represents the information quality factor, denoting how the quality of opinion information—specifically 
its credibility and relevance—affects the forgetting rate.

Considering the above elements, the equation defining the forgetting mechanism parameter µij  is as follows:

	 µij = µi + λ (ϖij · Cij − Q)� (3)

where λ represents a scaling factor that adjusts the influence of cross-language social enhancement and cultural 
similarity on the base forgetting rate.ϖij  can assume positive values to facilitate forgetting or negative values to 
slow forgetting, depending on the nature of the interaction between the two languages.Cij  measures the effect 
of cultural similarity, typically ranging from 0 to 1.Q represents the effect of information quality, where higher 
quality information is likely to be remembered longer, thereby slowing the forgetting rate.

The cross-propagation mechanism in this model draws from communication theory, particularly the two-step 
flow of communication model by Katz and Lazarsfeld42. This theory suggests that opinion leaders play a key role 
in spreading information across different social groups. In multilingual environments, linguistic and cultural 
differences add another layer of complexity to this process. As noted by Triandis43, cultural proximity between 
groups can either facilitate or inhibit the spread of public opinion. This model incorporates these factors to 
simulate how opinions propagate between different language groups, taking into account the linguistic and 
cultural barriers that may exist.

In the study of multilingual Public Opinion Propagation, traditional models have focused on factors such 
as rumor spreading and network dynamics. However, these models often overlook critical aspects of human 
behavior, including how individuals forget information over time (memory decay) and how opinions spread 
across different language groups (cross-propagation). Research in cognitive psychology, such as Baddeley’s work 
on memory, demonstrates that forgetting is influenced by several factors including cognitive load and emotional 
salience. For example, Anderson and Schooler44showed how frequency and relevance of information affect 
how long individuals retain it. These findings are particularly important when modeling how public opinion 
evolves over time in multilingual environments. Additionally, communication theory, such as the two-step 
flow of communication model proposed by Katz and Lazarsfeld, highlights the importance of opinion leaders 
in spreading information across diverse social groups. In multilingual environments, this cross-propagation 
mechanism is influenced by linguistic proximity and cultural differences, as noted in Triandis’ work on cross-
cultural psychology. By integrating these social, psychological, and communication factors into a mathematical 
model, we aim to provide a more accurate representation of public opinion dynamics in multilingual contexts.

Remark 2.1  Many previous studies have overlooked the social enhancement effect on public opinion propaga-
tion in multilingual environment. Given the differences in values, beliefs, customs, and art forms across various 
languages and ethnic groups, it is crucial to consider how these differences, via social enhancement effects, 
influence public opinion propagation.

Remark 2.2  Few studies have examined the impact of the forgetting mechanism in multilingual contexts. Previ-
ous research focused on monolingual environments, neglecting factors like communication frequency and mu-
tual understanding between language groups. This study redefines the forgetting mechanism by incorporating 
cultural differences, such as values and beliefs, offering a perspective that captures the complexities of opinion 
propagation in multilingual societies.

Remark 2.3  Cross-propagation plays a crucial role in multilingual public opinion dissemination, influenced by 
linguistic and cultural proximity. This mechanism facilitates or inhibits opinion spread depending on the degree 
of interaction between different language groups. By incorporating these factors, the model more accurately 
simulates how opinions propagate across multilingual societies.

To facilitate our research, we will use a bilingual environment as a model to investigate the mechanism of public 
opinion propagation in multilingual settings, setting i = 1, 2. The model of public opinion propagation in a 
bilingual environment is
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


dS1 (t)
dt

= b1 − β11S1 (t) I1 (t) − β12S1 (t) I2 (t) − d1S1 (t) ,

dE1 (t)
dt

= β11S1 (t) I1 (t) + β12S1 (t) I2 (t) − α1E1 (t) − d1E1 (t) ,

dI1 (t)
dt

= α1E1 (t) − (γ1 + µ12 + η21 + d1) I1 (t) + η12I2 (t) ,

dR1 (t)
dt

= γ1I1 (t) − d1R1 (t) ,

dS2 (t)
dt

= b2 − β22S2 (t) I2 (t) − β21S2 (t) I1 (t) − d2S2 (t) ,

dE2 (t)
dt

= β22S2 (t) I2 (t) + β21S2 (t) I1 (t) − α2E2 (t) − d2E2 (t) ,

dI2 (t)
dt

= α2E2 (t) − (γ2 + µ21 + η12 + d2) I2 (t) + η21I1 (t) ,

dR2 (t)
dt

= γ2I2 (t) − d2R2 (t) .

� (4)

Model analysis
Properties of solutions
Lemma 1  The positive invariant set of the system (4) with positive invariant set is as follows.

	

Ω =
{

(S1 (t) , E1 (t) , I1 (t) , R1 (t) , S2 (t) , E2 (t) , I2 (t) , R2 (t)) ∈ R8
+ |Si (t)

+Ei (t) + Ii (t) + Ri (t) <
bi

δi
, i = 1, 2

}

Proof Based on the four equations of the system (4) and let εi = min [d1, (µ12 + d1 + η21)], so we have that

	

dSi (t)
dt

+ dEi (t)
dt

+ dIi (t)
dt

+ dRi (t)
dt

= bi + ηijIi (t) − di (Si (t) + Ei (t) + Ri (t)) − (µij + di + ηji) Ii (t)
≤ bi − di (Si (t) + Ei (t) + Ri (t)) − (µij + di + ηji) Ii (t)
≤ bi − εi (Si (t) + Ei (t) + Ii (t) + Ri (t)) , i = 1, 2.

� (5)

There by obtaining

	
lim

t→+∞
sup Si (t) + Ei (t) + Ii (t) + Ri (t) ≤ bi

εi
, i = 1, 2.

This implies that the feasible region Ω is orthogonally invariant for system (4).

Lemma 2  For all t > 0 and i = 1, 2 , the solutions Si (t), Ei (t), Ii (t), Ri (t) of system (4) with initial condi-
tions Si (0) > 0, Ei (0) > 0, Ii (0) > 0, Ri (0) > 0 are positive.

Proof  From the initial conditions of system (1), we know that Si (0) > 0, Ei (0) > 0, Ii (0) > 0, Ri (0) > 0
, i = 1, 2.

indicate

	
h (t) = min

t
{Si (0) , Ei (0) , Ii (0) , Ri (0) , i = 1, 2} .

All we need to do to prove that Si (t), Ei (t), Ii (t), and Ri (t) are positive at any t > 0 moment is to prove that 
h (t) > 0 is positive at any t > 0 moment. Based on reductio ad absurdum, assume that there exists a positive 
number t1 such that.

h (t1) = 0, and when t ∈ (0, t1),h (t) > 0.
Below we discuss the function h (t) in four cases.
Suppose there exists a positive integer i1 ∈ {1, 2} such that h (t1) = Si1 (t1) = 0. From system (4) we know 

that:

	
dSi1 (t)

dt
= bi1 − βi1Si1 (t) Ii1 (t) − β′

i1Si1 (t) I ′
i1 (t) − di1Si1 (t) ,

when t = t1, and by substituting the assumption Si1 (t1) = 0 into the above formula, we obtain the following:

	
dSi1 (t)

dt
|t=t1 = bi1

> 0
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This is consistent with the assumption Si1 (t1) = 0 and the premise that Si1 (t) begins to decrease at t = t1. 
Therefore,Si1 (t) is always positive when t > 0.

Suppose there exists a positive integer i1 ∈ {1, 2} such that h (t1) = Ei1 (t1). From system (4) we know 
that:

	
dEi1 (t)

dt
= βi1Si1 (t) Ii1 (t) + β′

i1Si1 (t) I ′
i1 (t) − α1Ei1 (t) − d1Ei1 (t) ,

when t = t1, and by substituting the assumption Ei1 (t1) = 0 into the above formula, we obtain the following:

	
dEi1 (t)

dt
|t = t1 = βi1Si1 (t) Ii1 (t) + β′

i1Si1 (t) I ′
i1 (t) ,

therefore Si1 (t) ≥ 0, Ii1 (t) ≥ 0 and Ii′
1

(t) ≥ 0, βi1 > 0, β′
i1 > 0,so.

dEi1 (t)
dt

|t=t1 > 0.
This is consistent with the assumption Ei1 (t1) = 0 and the premise that Ei1 (t) begins to decrease at t = t1

. Therefore,Ei1 (t) is always positive when t > 0.
Suppose there exists a positive integer i1 ∈ {1, 2} such that h (t1) = Ii1 (t1). From system (4) we know that:

	
dIi (t)

dt
= αi1Ei1 (t) −

(
γi1 + µi1i′

1
+ ηi′

1i1 + di1

)
Ii1 (t) + ηi′

1i1I ′
i1 (t) ,

when t = t1, and by substituting the assumption Ii1 (t1) = 0 into the above formula, we obtain the following:

	
dIi1 (t)

dt
|t=t1 = αi1 Ei1 (t) ,

therefore Ei1 (t) ≥ 0 and αi1 > 0,so.

dIi1 (t)
dt

|t = t1 > 0.
This is consistent with the assumption Ii1 (t1) = 0 and the premise that Ii1 (t) begins to decrease at t = t1. 

Therefore,Ii1 (t) is always positive when t > 0.
Suppose there exists a positive integer i1 ∈ {1, 2} such that h (t1) = Ri1 (t1). From system (4) we know 

that:

	
dRi1 (t)

dt
= γi1Ii1 (t) − di1Ri1 (t) ,

when t = t1, and by substituting the assumption Ri1 (t1) = 0 into the above formula, we obtain the following:

	
dRi1 (t)

dt
= γi1Ii1 (t) ,

therefore, Ii1 (t) ≥ 0 and,γi1 > 0, so.

dRi1(t)
dt

|t = t1 > 0.
This is consistent with the assumption Ri1 (t1) = 0 and the premise that Ri1 (t) begins to decrease at t = t1

. Therefore,Ri1 (t) is always positive when t > 0.
Thus we have that the solution Si (t), Ei (t), Ii (t), Ri (t) of system (4) with initial conditions Si (0) > 0, 

Ei (0) > 0, Ii (0) > 0, Ri (0) > 0 is positive for all t > 0 and i = 1, 2.

Basic regeneration number
It is easy to see that model (4) has a disease-free equilibrium point as shown below:

	
E0 =

(
S0

1 , 0, 0, 0, S0
2 , 0, 0, 0

)
, S0

i = bi

di
, i = 1, 2

Define the endemic disease equilibrium points within Ω as E∗ = (S∗
1 , E∗

1 , I∗
1 , R∗

1, S∗
2 , E∗

2 , I∗
2 , R∗

2).
Next, the familiar next-generation matrix method is utilized to find the fundamental regeneration number of 

system (4). We define the vector χ = (S1, S2, E1, E2, I1, I2, R1, R2)T . From this we obtain the 8 × 8 matrices 
F , V , V

−1 of:

	

F =




0 0 F1 0
0 0 0 0
0 0 0 0
0 0 0 0


 , V =




V1 0 0 0
0 V2 V3 0
0 0 V4 0
0 0 V5 V6


 , V −1 =




M1 0 0 0
0 M2 M3 0
0 0 M4 0
0 0 M5 M6



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Among them F1 =
(

β11S1 β12S1
β21S2 β22S2

)
, V1 = diag {−d1, −d2}, V2 = diag {α1 + d1, α2 + d2}

, V3 = diag {− (γ1 + µ12 + η21) , − (γ2 + µ21 + η12)},V4 = diag {γ1 + µ12 + d1, γ2 + µ21 + d2}, 
V5 = diag {η21, η12}, V6 = diag {−d1, −d2}, M1 = diag

{
− 1

d1
, − 1

d2

}
 ,M2 = diag

{
− 1

d1+α1
, − 1

d2+α2

}

, M3 = diag
{

µ12+γ1+η21
(d1+α1)(d1+µ12+γ1) , µ21+γ2+η12

(d2+α2)(d2+µ21+γ2)

}
, M4 = diag

{
1

d1+µ12+γ1
, 1

d2+µ21+γ2

}
, 

M5 = diag
{

η21
d1(d1+µ12+γ1) , η12

d2(d2+µ21+γ2)

}
, M6 = diag

{
− 1

d1
, − 1

d2

}
.

For convenience, we define.

	
hi = µij + γi + ηji

(di + αi) (di + µij + γi)
, pi = 1

di + µij + γi
, qi = ηji

di (di + µij + γi)
, i = 1, 2, j = 1, 2

From this it follows that the basic regeneration number ℜ0 satisfies the following equation:

	 ℜ0 = ρ (F1M4) = ρ
(
βijS0

i pi

)
2×2� (6)

where ρ denotes the spectral radius[45] .

Remark 3.1  According to reference [46], the disease-free equilibrium point E0 of system (4) is locally asymptot-
ically stable when R0 < 1; the disease-free equilibrium point E0 of system (4) is locally unstable when R0 > 1.

Stability of equilibrium point
This section investigates the global stability of the SEIR public opinion propagation model in bilingual 
environment.

Disease-free equilibrium points
Lemma 3  when R0 < 1, the disease-free equilibrium points E0 of system (4) is globally asymptotically stable.

Proof  From the previous formulation we know that S = (S1, S2)T , we also define M (S) =
(

βij Si

di+µij +γi

)
2×2

, M
(
S0)

=
(

βij S0
i

di+µij +γi

)
2×2

, i = 1, 2, j = 1, 2.

Obviously, it is known that Si < S0
i , i = 1, 2. According to reference [47], it is known that 

0 < M (S) < M
(
S0)

= M0. Hence B = (βij)2×2 is irreducible and hence it can be concluded that M0, 
M (S), M0 + M (S), are irreducible. Thus if S ̸= S0, then there is ρ (M (S)) < ρ

(
M

(
S0))

.
If R0 < 1 as well as S ̸= S0, there is ρ (M (S)) < 1. and when M (S) I = I , there is a mundane solution 

I = 0 (refer to reference [48]). Thus R0 < 1, system (4) has only one disease-free equilibrium E0 in Ω.
The following defines the Lyapunov function.

	
V (t) =

2∑
i=1

piωiEi (t) +
2∑

i=1

piωiIi (t)

where Ei (t) = (E1 (t) , E2 (t))T ,Ii (t) = (I1 (t) , I2 (t))T  and ωT = (ω1, ω2) are the positive left eigenvectors 
of M (S) corresponding to ρ (M (S)). Therefore, we can get
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dV (t)
dt

=
2∑

i=1

piωi
dEi (t)

dt
+

2∑
i=1

piωi
dIi (t)

dt

2∑
i=1

piωi

{
Si (t)

2∑
j=1

βijIj (t) − αiEi (t) − diEi (t)

+αiEi (t) − γiIi (t) −
n∑

j=1

uijIi (t) −
n∑

j=1

ηjiIi (t) − diIi (t) +
n∑

j=1

ηijIj (t)

}

=
2∑

i=1

2∑
j=1

piωiβijSi (t) Ij (t) −
2∑

i=1

piωidiEi (t)

−
2∑

i=1

n∑
j=1

piωi (µij + ηji) Ii (t) −
2∑

i=1

piωi(di + γi)Ii (t)

+
2∑

i=1

2∑
j=1

piωiηijIj (t) ≤
2∑

i=1

2∑
j=1

piωiβijSi (t) Ij (t)

−
2∑

i=1

2∑
j=1

piωi(di + γi + µij)Ii (t) = ωT (ρ (M (S)) I − I)

= ωT I (ρ (M (S)) − 1) ≤ 0.

When V (t) = 0, can obtain Ii (t) = 0, i = 1, 2, j = 1, 2. Substituting Ii (t) = 0 into system (4) yields that 
when t → ∞, Si (t) → bi

di
, Ei (t) → 0, Ri (t) → 0. According to the Lasalle invariance principle49, the 

disease-free equilibrium points E0 of system (4) are globally asymptotically stable when R0 < 1.

Endemic disease equilibrium points
In this section, we assume R0 > 1, to discuss the stability of Endemic disease equilibrium points. 
According to the reference [50], it is known that when R0 > 1, the Endemic disease equilibrium points 
E∗ = (S∗

1 , E∗
1 , I∗

1 , R∗
1, S∗

2 , E∗
2 , I∗

2 , R∗
2) exists at Ω0 inside Ω. That is, the following condition is satisfied:

	




bi = −S∗
i

n∑
j=1

βijI∗
j − diS

∗
i ,

S∗
i

n∑
j=1

βijI∗
j = αiE

∗
i + diE

∗
i ,

0 = αiE
∗
i − γiI

∗
i −

n∑
j=1

uijI∗
i −

n∑
j=1

ηjiI
∗
i − diI

∗
i +

n∑
j=1

ηijI∗
j ,

0 = γiI
∗
i − diR

∗
i ,

� (7)

which is i = 1, 2.

Next, prove that the Endemic disease equilibrium points E∗ of system (4) is globally stable at Ω0.

Lemma 4  when R0 > 1 the Endemic disease equilibrium points E∗ of system (4) is globally asymptotically 
stable.

Proof  Consideration.

	





V (t) =
2∑

i=1

vi

{
S∗

i g

(
Si (t)

S∗
i

)
+ E∗

i g

(
Ei (t)

E∗
i

)
+ I∗

i g

(
Ii (t)

I∗
i

)
+ R∗

i g

(
Ri (t)

R∗
i

)}
,

g (χ) = χ − 1 − ln χ ≥ g (1) = 0, for anyχ > 0,

� (8)

where v1 and v2 are normal numbers.

Set wi = Si(t)
S∗

i
 ,xi = Ei(t)

E∗
i

 ,yi = Ii(t)
I∗

i
 ,zi = Ri(t)

R∗
i

 ,i = 1, 2.
From this
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dV (t)
dt

=
2∑

i=1

vi

{(
1 − 1

wi

)
Ṡi +

(
1 − 1

xi

)
Ėi +

(
1 − 1

yi

)
İi +

(
1 − 1

zi

)
Ṙi

}
.

According to Eqs. (4) and (7), it can be obtained that

	

Ṡi = −
2∑

j=1

βij (Si (t) Ij (t) − S∗
i I∗

i ) − di (Si (t) − S∗
i )

= −
2∑

j=1

βijS∗
i I∗

i (wiyj − 1) − diS
∗
i (wi − 1) ,

	

Ėi =
n∑

j=1

βij (Si (t) Ij (t) − S∗
i I∗

i ) − αi (Ei (t) − E∗
i ) − di (Ei (t) − E∗

i )

=
2∑

j=1

βijS∗
i I∗

i (wiyj − 1) − αiE
∗
i (xi − 1) − diE

∗
i (xi − 1) ,

	

İi = αi (Ei (t) − E∗
i ) − γi

(
Ij (t) − I∗

j

)
−

n∑
j=1

µij

(
Ij (t) − I∗

j

)

−
2∑

j=1

ηji (Ii (t) − I∗
i ) − diIi (t) +

2∑
j=1

ηij

(
Ij (t) − I∗

j

)

= αiE
∗
i (xi (t) − 1) − γiI

∗
i (yi − 1) −

2∑
j=1

µijI∗
i (yi − 1)

−
2∑

j=1

ηjiI
∗
i (yi − 1) − diI

∗
i (yi − 1) +

n∑
j=1

ηijI∗
j (yj − 1) ,

	

Ṙi = γi (Ii (t) − I∗
i ) − di (Ri (t) − R∗

i )
= γiI

∗
i (yi − 1) − diR

∗
i (zi − 1) .

Then, it can be further obtained that
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dV (t)
dt

=
2∑

i=1

vi

{[
n∑

j=1

βijS∗
i I∗

i (1 − wiyj)
(

1 − 1
wi

)
− diS

∗
i (wi − 1)

(
1 − 1

wi

)]

+

[
2∑

j=1

βijS∗
i I∗

i (wiyj − 1)
(

1 − 1
xi

)
− αiE

∗
i (xi − 1)

(
1 − 1

xi

)
− diE

∗
i (xi − 1)

(
1 − 1

xi

)]

+

[
αiE

∗
i (xi − 1)

(
1 − 1

yi

)
− γiI

∗
i (yi − 1)

(
1 − 1

yi

)
−

2∑
j=1

µijI∗
i (yi − 1)

(
1 − 1

yi

)

−
2∑

j=1

ηjiI
∗
i (yi − 1)

(
1 − 1

yi

)
− diI

∗
i (yi − 1)

(
1 − 1

yi

)
+

2∑
j=1

ηijI∗
j (yj − 1)

(
1 − 1

yi

)]

+
[
γiI

∗
i (yi − 1)

(
1 − 1

zi

)
− diR

∗
i (zi − 1)

(
1 − 1

zi

)]}

=
2∑

i=1

vi

{[
2∑

j=1

βijS∗
i I∗

i

[
−g

( 1
wi

)
− g (wiyj) + g (yj)

]
− diS

∗
i

[
g (wi) + g

( 1
wi

)]]

2∑
j=1

βijS∗
i I∗

i

[
g (wiyj) − g

(
wiyj

xi

)
+ g

( 1
xi

)]
− αiE

∗
i

[
g (xi) + g

( 1
xi

)]

−diE
∗
i

[
g (xi) + g

( 1
xi

)]
+ αiE

∗
i

[
g (xi) − g

(
xi

yi

)
+ g

(
1
yi

)]
− γiI

∗
i

[
g (yi) + g

(
1
yi

)]

−
2∑

j=1

µijI∗
i

[
g (yi) + g

(
1
yi

)]
−

2∑
j=1

ηjiI
∗
i

[
g (yi) + g

(
1
yi

)]
− diI

∗
i

[
g (yi) + g

(
1
yi

)]

+
2∑

j=1

ηijI∗
j

[
g (yj) − g

(
yj

yi

)
+ g

(
1
yi

)]
+ γiI

∗
i

[
g (yi) − g

(
yi

zi

)
+ g

( 1
zi

)]

−diR
∗
i

[
g (zi) + g

( 1
zi

)]}

= −
2∑

i=1

2∑
j=1

vi (βijS∗
i I∗

i + diS
∗
i )g

( 1
wi

)
−

2∑
i=1

2∑
j=1

viβijS∗
i I∗

i g
(

wiyj

xi

)
−

2∑
i=1

vidiE
∗
i g (xi)

−
2∑

i=1

viαiE
∗
i g

(
xi

yi

)
−

2∑
i=1

viηijI∗
j g

(
yj

yi

)
−

2∑
i=1

viγiI
∗
i g

(
yi

zi

)
− diR

∗
i g (zi) + γiI

∗
i g (yi)

+

[
2∑

j=1

vj

(
2∑

j=1

βijS∗
i I∗

i +
2∑

j=1

ηijI∗
j

)
g (yj) −

2∑
i=1

vi

(
γiI

∗
i +

2∑
j=1

µijI∗
i + diI

∗
i +

2∑
j=1

ηjiI
∗
i

)
g (yi)

]

According to reference [27] it is known as 
2∑

j=1
vj

(
2∑

j=1
βijS∗

i I∗
i +

2∑
j=1

ηijI∗
j

)
g (yj) =

2∑
i=1

vi

(
2∑

j=1
βijS∗

i I∗
i +

2∑
j=1

ηijI∗
i

)
g (yi)

, and according to the second and third equations of the system of Eqs.  (7) it is known as 
2∑

j=1
vj

(
2∑

j=1
βijS∗

i I∗
i +

2∑
j=1

ηijI∗
j

)
g (yj) =

2∑
i=1

vi

(
γiI

∗
i +

2∑
j=1

µijI∗
i + diI

∗
i +

2∑
j=1

ηjiI
∗
i

)
g (yi).

To summarize, dV (t)
dt

< 0. Note that if Si = S∗
i , Ei = E∗

i , Ii = I∗
i , Ri = R∗

i , i = 1, 2, then dV (t)
dt

= 0. 
Thus, with the above analysis as well as the Lasalle invariance principle, it is clear that the Endemic disease 
equilibrium points point E∗ of system (4) is globally asymptotically stable when R0 > 1.

Optimal management strategy
Managing internet-based public opinion effectively is vital and challenging in our interconnected world. The 
ubiquitous nature of the Internet and social media platforms accelerates the dissemination of news, impacting 
millions rapidly. Strategic management of online public opinion is crucial to maintain social stability, protect 
personal and corporate reputations, combat misinformation, and promote a constructive digital discourse. 
Optimal resource allocation is essential, considering the limited resources available. Strategic investments 
guided by optimal management theories ensure that resources are utilized efficiently, enhancing the impact of 
public opinion management efforts while minimizing waste.

This study introduces two proactive strategies to manage public opinion dynamically: the Instant Public 
Alert System(u1i) and Emergency Blocking Measures (u2i). The Instant Public Alert System engages the public 
directly through timely alerts via SMS, app notifications, or social media, effectively reducing the spread of 
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emergent public opinion trends. Emergency Blocking Measures curtail the dissemination of potentially harmful 
information by selectively disabling social media functionalities or restricting data flows, thus limiting public 
exposure and the escalation of public opinion crises. Both strategies are designed to swiftly mitigate the impact of 
volatile public opinion, ensuring rapid response and containment. The corresponding allowable management set 
is defined as U = {(u1 (t) , u2 (t)) |0 ≤ u1 (t) ≤ umax

1 , 0 ≤ u2 (t) ≤ umax
2 , t ∈ [0, T ]}, where umax

1 ∈ [0, 1] 
as well as umax

2 ∈ [0, 1] are the upper bounds of u1 (t) as well as u2 (t). From this, we can obtain the SEIR model 
with management measures in a bilingual environment:

	




dS1 (t)
dt

= b1 − β11 (1 − u11 (t)) S1 (t) I1 (t) − β12 (1 − u11 (t)) S1 (t) I2 (t) − d1S1 (t) ,

dE1 (t)
dt

= β11 (1 − u11 (t)) S1 (t) I1 (t) + β12 (1 − u11 (t)) S1 (t) I2 (t) − α1E1 (t) − d1E1 (t) ,

dI1 (t)
dt

= α1E1 (t) − [(γ1 + u21 (t)) + µ12 + η21 + d1] I1 (t) + η12I2 (t) ,

dR1 (t)
dt

= (γ1 + u21 (t)) I1 (t) − d1R1 (t) ,

dS2 (t)
dt

= b2 − β21 (1 − u12 (t)) S2 (t) I1 (t) − β22 (1 − u12 (t)) S2 (t) I2 (t) − d2S2 (t) ,

dE2 (t)
dt

= β22 (1 − u12 (t)) S2 (t) I2 (t) + β21 (1 − u12 (t)) S2 (t) I1 (t) − α2E2 (t) − d2E2 (t) ,

dI2 (t)
dt

= α2E2 (t) − [(γ2 + u22 (t)) + µ21 + η12 + d2] I2 (t) + η21I1 (t) ,

dR2 (t)
dt

= (γ2 + u22 (t)) I2 (t) − d2R2 (t) ,

� (9)

where u11 (t) and u12 (t) represent the degree of management over the rate of exposure of susceptible 
populations to public opinion in bilingual groups.u21 (t) and u22 (t) represent the management levels for the 
infectious populations within the bilingual groups.

To more effectively management the spread of public opinion, we have optimized two management measures. 
Our goal is to minimize the number of affected individuals and reduce economic losses incurred from 
management measures during the period of public opinion spread online. Assume the economic losses due 
to public opinion influence are proportional to their number, with scaling factors B1 and B2 for the bilingual 
groups. Additionally, economic losses from management measures correlate with the square of their intensity, 
with scaling factors B3, B4, B5, and B6. Consequently, we derive the following objective function:

	
J(u11, u12, u21, u22) =

∫ tf

t0

[
B1I1 (t) + B2I2 (t) + B3u2

11 + B4u2
12 + B5u2

21 + B6u2
22

]
dt,� (10)

where t0 and tf  are the initial moment and the ending moment, respectively. The main work in this section is to 
find the optimal management pair (u∗

11, u∗
12, u∗

21, u∗
22), such that:

	
J(u∗

11, u∗
12, u∗

21, u∗
22) = min

U
J(u11, u12, u21, u22).� (11)

The management condition is U =
{

(u11, u12, u21, u22) ∈ L1 (t0, tf ) |0 ≤ u11, u12, u21, u22 ≤ 1
}

. To find 
the optimal solution, the Lagrange function is made:

	 L(I1, I2, u11, u12, u21, u22) = B1I1 (t) + B2I2 (t) + B3u2
11 + B4u2

12 + B5u2
21 + B6u2

22.� (12)

The Hamiltonian function defining this management problem is:

	

H(S1, I1, E1, R1, S2, I2, E2, R2, u11, u12, u21, u22, λi)
= B1I1 (t) + B2I2 (t) + B3u2

11 + B4u2
12 + B5u2

21

+B6u2
22 +

8∑
i=1

λifi

� (13)

where λi (i = 1, 2, · · · , 8) are the concomitant variables of the system and fi is the right end function of the 
system (9), the necessary conditions for optimal management can be derived by applying Pontryagin’s principle 
of extreme values.

The system’s concomitant variables satisfy the following relationship with the Hamiltonian function.
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



dλ1 (t)
dt

= [β11 (1 − u11 (t)) I1 (t) + β12 (1 − u11 (t)) I2 (t)] (λ1 (t) − λ2 (t)) + d1λ1 (t) ,

dλ2 (t)
dt

= (α1 + d1) λ2 (t) − α1λ3 (t) ,

dλ3 (t)
dt

= −B1 + [β11 (1 − u11 (t)) S1 (t)] (λ1 (t) − λ2 (t)) + [γ1 + u21 (t) + µ12 + η21 + d1] λ3 (t)

− (γ1 + u21 (t)) λ4 (t) − η21λ7 (t) ,

dλ4 (t)
dt

= d1λ4 (t) ,

dλ5 (t)
dt

= [β21 (1 − u12 (t)) I1 (t) + β22 (1 − u12 (t)) I2 (t)] (λ5 (t) − λ6 (t)) + d2λ5 (t) ,

dλ6 (t)
dt

= (α2 + d2) λ6 (t) − α2λ7 (t) ,

dλ7 (t)
dt

= −B2 + [β22 (1 − u12 (t)) S2 (t)] (λ5 (t) − λ6 (t)) + [γ2 + u22 (t) + µ21 + η12 + d2] λ7 (t)

− (γ2 + u22 (t)) λ8 (t) − η12λ3 (t) ,

dλ8 (t)
dt

= d2λ8 (t) .

It follows that at the ending moment tf , the transversality condition and the boundary condition satisfy 
λi (tf ) = 0.

Using the optimal management conditions can be obtained that:

	

∂H

∂u11

∣∣∣
u11=u∗

11

= 2B3u∗
11 − [β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t)) = 0 ⇒

u∗
11 (t) = [β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t))

2B3

	

∂H

∂u12

∣∣∣
u12=u∗

12

= 2B4u∗
12 − [β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t)) = 0 ⇒

u∗
12 (t) = [β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t))

2B4

	

∂H

∂u21

∣∣∣
u21=u∗

21

= 2B5u∗
21 + (λ4 (t) − λ3 (t)) I1 (t) = 0 ⇒

u∗
21 (t) = (λ3 (t) − λ4 (t)) I1 (t)

2B5

	

∂H

∂u22

∣∣∣
u22=u∗

22

= 2B6u∗
22 + (λ8 (t) − λ7 (t)) I2 (t) = 0 ⇒

u∗
22 (t) = (λ7 (t) − λ8 (t)) I2 (t)

2B6

Because 0 ≤ u11, u12, u21, u22 ≤ 1, utilizing the management space U  results in several scenarios:

	




u∗
11 (t) = 0; when

[β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t))
2B3

≤ 0;

u∗
11 (t) = [β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t))

2B3
;

when 0 <
[β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t))

2B3
< umax

11 (t) ;

u∗
11 (t) = umax

11 (t) ; when
[β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t))

2B3
≥ umax

11 (t) .

	




u∗
12 (t) = 0; when

[β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t))
2B4

≤ 0;

u∗
12 (t) = [β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t))

2B4
;

when 0 <
[β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t))

2B4
< umax

12 (t) ;

u∗
12 (t) = umax

12 (t) ; when
[β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t))

2B4
≥ umax

12 (t) .
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



u∗
21 (t) = 0; when

(λ3 (t) − λ4 (t)) I1 (t)
2B5

≤ 0;

u∗
21 (t) = (λ3 (t) − λ4 (t)) I1 (t)

2B5
; when 0 <

(λ3 (t) − λ4 (t)) I1 (t)
2B5

< umax
21 (t)

u∗
21 (t) = umax

21 (t) ; when
(λ3 (t) − λ4 (t)) I1 (t)

2B5
≥ umax

21 (t) .

	




u∗
22 (t) = 0; when

(λ7 (t) − λ8 (t)) I2 (t)
2B6

≤ 0;

u∗
22 (t) = (λ7 (t) − λ8 (t)) I2 (t)

2B6
; when 0 <

(λ7 (t) − λ8 (t)) I2 (t)
2B6

< umax
22 (t)

u∗
22 (t) = umax

22 (t) ; when
(λ7 (t) − λ8 (t)) I2 (t)

2B6
≥ umax

22 (t) .

Therefore, the optimal management is:

	
u∗

11 (t) = max
(

min
(

[β11S1 (t) I1 (t) + β12S1 (t) I2 (t)] (λ2 (t) − λ1 (t))
2B3

, umax
11 (t)

)
, 0

)
,� (14)

	
u∗

12 (t) = max
(

min
(

[β22S2 (t) I2 (t) + β21S2 (t) I1 (t)] (λ6 (t) − λ5 (t))
2B4

, umax
12 (t)

)
, 0

)
,� (15)

	
u∗

21 (t) = max
(

min
(

(λ3 (t) − λ4 (t)) I1 (t)
2B5

, umax
21 (t)

)
, 0

)
,� (16)

	
u∗

22 (t) = max
(

min
(

(λ7 (t) − λ8 (t)) I2 (t)
2B6

, umax
22 (t)

)
, 0

)
.� (17)

Numerical simulation
In this section, numerical simulations will be conducted to illustrate the accuracy of the SEIR model, which takes 
into account the social enhancement effect, the forgetting mechanism, and the cross-transmission mechanism, 
in analyzing the trend of online public opinion propagation in a multilingual environment, as well as the 
effectiveness of the instantaneous public warning system and the emergency blocking measures in suppressing 
the dissemination of online public opinion.We determined the parameters in the model by minimizing the 
difference between the actual observed data and the predicted values, using the least squares method to set the 
parameter values.

In this model, we have selected specific inter language and intra language propagation parameters to describe 
the dynamic process ofPublic Opinion Propagation. The selection of these parameters is based on theoretical 
analysis and numerical simulation requirements, ensuring that the model can effectively reflect the complexity 
of Public Opinion Propagation in multilingual environments.

Language internal propagation parameters (β11 and β22): These parameters describe the rate of information 
propagation within each language group. We have preliminary set these propagation parameters by analyzing 
the research results on information propagation rate in existing literature and referring to the relevant parameter 
ranges in the classical SEIR model. In numerical simulation, a reasonable combination of parameters was 
selected to achieve a stable state of the system. To ensure the rationality of the model, we further optimized the 
parameters using the least squares method. By minimizing the sum of squared errors between the simulation 
results and theoretical predictions, we accurately determined the final parameter values.

Inter language propagation parameters (β12 and β21): These parameters reflect the rate of information 
propagation between different language groups. We have reasonably set initial parameters based on literature 
research on language similarity, cultural commonality, and frequency of interaction between groups. In 
numerical simulations, these parameters are adjusted for different cross linguistic communication scenarios 
to ensure that the model can reflect the complex interactions of public opinion communication in multilingual 
environments. Further optimize these parameters through the least squares method to ensure that the cross 
linguistic propagation process in the model can accurately capture the transmission and evolution of information 
between groups.

Other parameters (such as social reinforcement effect parameters and forgetting mechanism parameters): The 
social reinforcement effect parameter (ηij) is set as the degree of mutual influence between different language 
groups, reflecting the interactive effects between groups. In the simulation, we choose parameter values that can 
demonstrate reasonable interactions between different language groups. The forgetting mechanism parameter 
(µij) is set by referring to relevant research results in existing information forgetting models, ensuring that the 
attenuation characteristics of public opinion in different language groups can be accurately captured.

The reason for choosing the least squares method: The least squares method is a classic parameter 
optimization method that is particularly suitable for reducing the sum of squared errors between numerical 
simulation results and theoretical expected values. By minimizing the sum of squared errors, we can obtain an 
optimal set of parameters that enable the model to exhibit a stable and reasonable process of public opinion 
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propagation in numerical simulations. This method helps us balance the influence of various parameters in 
complex multilingual propagation models, ensuring the stability and accuracy of simulation results.

It should be noted that in numerical simulations, birth rates and removal rates are treated as constant values 
rather than time functions. The main reason for simplifying these parameters to constants during the simulation 
process is to reduce the complexity and computational burden of the model. In practice, introducing time-
dependent functions for all parameters will make the system more difficult to simulate and may not significantly 
affect the overall model behavior during certain analysis periods.

Stability of disease-free equilibrium points
In the studied model of SEIR public opinion propagation in a bilingual environment, by setting a specific set 
of parameters:β11 = 0.0225, β12 = 0.01125, β21 = 0.015,β22 = 0.0075,α1 = 0.2,α1 = 0.25,γ1 = 0.15
,γ2 = 0.17 ,d1 = 0.007 ,d2 = 0.009 ,b1 = 0.008 ,b2 = 0.01 ,µ12 = 0.01 ,η21 = 0.02 ,µ21 = 0.02η12 = 0.01
, S1 = 0.99, E1 = 0, I1 = 0.01, R1 = 0, S2 = 0.99,E2 = 0,I2 = 0.01,R2 = 0. We simulate the dynamic 
process of public opinion propagation, focusing on the local stability of the disease-free equilibrium points when 
R0 < 1. The basic reproduction number R0 represents the average number of secondary infections caused by an 
infectious individual, assuming no preventive measures are in place. When R0 < 1, it is expected that the public 
opinion will not trigger large-scale propagation among the population.

As shown in Fig.  2, with the initial condition of a few infectious individuals, the number of infectious 
individuals in both populations significantly decreases over time and eventually converges to zero. This suggests 
that public opinion propagation is not self-sustaining for a given parameter configuration and that the system 
gradually reverts to a state with no public opinion propagation. This process is depicted in the figure by the two 
curves, representing the proportion of infectious individuals, gradually approaching the horizontal axis without 
any rebounds or fluctuations, further supporting the local stability of the disease-free equilibrium points.

Additionally, the curve of I (t) monotonically decreasing nature indicates that the system does not deviate 
from the disease-free equilibrium but continues to converge towards it over time. This trend aligns with 

Fig. 2.  Trends of four types of nodes over time in bilingual environment at R0 < 1.
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theoretical analyses showing that any small deviations from the disease-free equilibrium will dissipate over time, 
and in cases where R0 < 1, the system will eventually return to a disease-free state.

In the studied model of SEIR public opinion propagation in a bilingual environment, by setting a specific 
set of parameters:β11 = 0.0028, β12 = 0.0022, β21 = 0.0025,β22 = 0.002,α1 = 0.12,α2 = 0.11,γ1 = 0.4
,γ2 = 0.45,d1 = 0.001,d2 = 0.009,b1 = 0.003, b2 = 0.003, µ12 = 0.011, η21 = 0.0015, µ21 = 0.009, 
η12 = 0.0017, and by setting six initial conditions. We simulate the dynamics of public opinion propagation and 
analyze the global stability of the disease-free equilibrium points when R0 < 1. Figure 3 depicts the dynamics of 
public opinion propagation under various scenarios, each characterized by distinct initial conditions. Specifically, 
it tracks the trajectory of the proportion of susceptible individuals S (t) against the combined proportion of 
infectious individuals I1 (t) + I2 (t) over time.

Figure 3 displays a series of curves originating from various starting points that converge over time towards 
common regions. This common region corresponds to the disease-free equilibrium points, where the proportion 
of infectious individuals approaches zero and the proportion of susceptible individuals remains constant. This 
trend indicates the global stability of the disease-free equilibrium points when the basic reproduction number 
(average new infections generated by an infectious individual during their infectious period) is less than 1. A 
basic reproduction number below 1 signifies that each infectious individual transmits the disease to fewer than 
one person on average, resulting in the epidemic’s decline.

In the SEIR public opinion propagation model in bilingual environment, this global stability implies that 
irrespective of initial conditions, the system converges to a disease-free equilibrium where no new public 
opinions propagated. This phenomenon is illustrated by graphical trajectories showing a decreasing proportion 
of infectious individuals converging to zero and a stable proportion of susceptible individuals over time.

Therefore, numerical simulations confirm that the system’s disease-free equilibrium is globally asymptotic 
stable when the basic reproduction number is below 1 in the SEIR public opinion propagation model in bilingual 
environment.

Stability of the endemic disease equilibrium points
In the studied model of SEIR public opinion propagation in bilingual environment, by setting a specific set 
of parameters:β11 = 0.14, β12 = 0.07, β21 = 0.12,β22 = 0.06,α1 = 0.1,α2 = 0.1,γ1 = 0.005,γ2 = 0.005
,d1 = 0.007,d2 = 0.007,b1 = 0.008,b2 = 0.008,µ12 = 0.01,η21 = 0.01,µ21 = 0.01,η12 = 0.01,S1 = 0.97, 
E1 = 0.01, I1 = 0.01, R1 = 0.01, S2 = 0.97, E2 = 0.01, I2 = 0.01, R2 = 0.01. We observed key features of 
public opinion dynamics. The basic reproduction number R0, a critical metric for public opinion propagation, 
exceeds 1 in this model, indicating that each infectious individual propagated the public opinion to more than 
one person. Figure  4 show that the proportion of susceptible individuals tends to decrease over time, while 
the proportion of infectious individuals decreases and then stabilize after an initial rise, and the proportion 
of recovered individuals increases and stabilize. This dynamic suggests that the public opinion persists in the 
population and reaches a state of endemic equilibrium under the parameter settings considered. The global 
asymptotic stability of this equilibrium is evidenced by stable, non-zero proportions of infectious individuals, 
suggesting that the public opinion will continue to propagated long-term without self-extinguishing. Our 
analysis indicates that the endemic disease equilibrium points achieves global asymptotic stability when R0 > 1
, ensuring that the public opinion propagation level remains stable without further interventions.

Optimal management
The SEIR public opinion propagation model with management measures in a bilingual environment is Eq. (9); 
the parameter values can be found in Table 1 below, and take B1 = 1, B2 = 1, B3 = 2, B4 = 2, B5 = 3, 
B6 = 3. Figures 5, 6, 7 gives the density change of each populations over time in the three scenario. It should 

Fig. 3.  Global asymptotic stability of the disease-free equilibrium points at R0 < 1.
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be noted that under optimal management , the density of susceptible Si (t) and recovered individuals Ri (t) 
increases, whereas the density of infectious Ii (t) and latent individuals Ei (t) rapidly decreases and stabilizes 
more quickly. Furthermore, the graph illustrates that management intensity gradually escalates from zero at the 
onset, reaches a peak, and subsequently declines to zero or to a minimal level.From the figure, it can be seen 
that the two optimal management strategies are effective in managing public opinion propagation in bilingual 
environments.

Parameter Value Parameter Value

β11 0.41 γ2 0.09

β12 0.36 d1 0.04

β21 0.34 d2 0.05

β22 0.39 b1 0.07

α1 0.20 b2 0.08

α2 0.21 µ12 0.04

γ1 0.08 µ21 0.05

η12 0.03 η21 0.04

Table 1.  Parameter settings.

 

Fig. 4.  Trends of four types of nodes over time in bilingual environment at R0 > 1.
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Model parameter analysis
The effect of propagation rate on the propagation of public opinion
To examine the effect of propagation rate β11 on public opinion, we use the data from Table 2 for numerical 
simulations. We hold all other parameter values constant and vary the propagation rate β11 at 0.1, 0.3, 0.5, 0.7, 
and 0.9. Figure 8a shows how the total infectious individuals I1 + I2 varies between bilingual groups at different 
β11 values. The figure illustrates that as β11 increases, the peak of public opinion contagion rises and occurs 

Fig. 5.  The dynamic of Si (t), Ri (t), Ii (t), Ei (t) and management trajectories for the first scenario(u11 > 0
, u12 > 0, u21 = 0, u22 = 0).
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more rapidly. Consequently, a higher contagion rate results in a quicker and broader dissemination of public 
opinion within the first linguistic group.

To assess the effect of the propagation rate β22 on public opinion, we utilized data from Table 2 for 
numerical simulations, keeping all other parameter values constant and setting β22 at 0.05, 0.15, 0.25, 0.35, and 
0.45. Figure 8b illustrates the effects of varying β22 values on public opinion propagation within the second 
linguistic group. As with β22, increasing its value not only raises the peak but also accelerates the rate of opinion 

Fig. 6.  The dynamic of Si (t), Ri (t), Ii (t), Ei (t) and management trajectories for the second 
scenario(u11 = 0, u12 = 0, u21 > 0, u22 > 0).
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propagation, suggesting that both the speed and extent of propagation in the second linguistic group intensify 
with higher propagation rates.

The effect of cross-transmission mechanisms on the propagation of public opinion
To analyze the effect of the cross-transmission rate β12 on public opinion, we conducted numerical simulations 
using data from Table 2. All other parameters remained constant while β12 varied at 0.1, 0.3, 0.5, 0.7, and 0.9. 

Fig. 7.  The dynamic of Si (t), Ri (t), Ii (t), Ei (t) and management trajectories for the third 
scenario(u11 > 0, u12 > 0, u21 > 0, u22 > 0).
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Figure  9a illustrates how the total infectious individuals I1 + I2 respond in bilingual groups at various β12 
values. The data indicate that higher β12 values accelerate the rate of public opinion propagation, particularly 
in the first language group, resulting in more rapid propagation and higher peak values. Increased propagation 
speeds result in infectious individuals propagate public opinions more rapidly, thereby shortening the duration 
of propagation. This acceleration is due to the enhanced β12 value facilitating faster transmission of opinions 
between the second and first language groups, thereby expediting public opinion propagation in the first 
language group.

To investigate the effect of cross-transmission rate β21 on public opinion, we used data from Table 2 for 
numerical simulations with all other parameters held constant. β21 was set at values of 0.05, 0.15, 0.25, 0.35, and 
0.45. Figure 9b illustrates the effect of various β21 values on public opinion propagation in bilingual groups. This 
Figure illustrates that increasing β21 values accelerate the propagation of public opinion in the second language 
group. Additionally, a faster propagation speed results in higher peak levels of opinion spread. The acceleration 

Figure 7.  (continued)

Fig. 8.  Effect of propagation rate on the propagation of public opinion.

 

Parameter Value Parameter Value

β11 0.40 γ2 0.09

β12 0.30 d1 0.015

β21 0.25 d2 0.015

β22 0.35 b1 0.01

α1 0.25 b2 0.01

α2 0.15 µ12 0.04

γ1 0.08 µ21 0.05

η12 0.03 η21 0.06

Table 2.  Parameter settings.
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of opinion propagation in this group is directly attributed to the increased β21 values, which enhance the speed 
of spread.

The effect of social enhancement effects on the propagation of public opinion
When examining the impact of the social enhancement effect η12 on public opinion propagation, we conduct 
numerical simulations using the data from Table 2, keeping other parameter values unchanged. The values of η12 
are selected as -0.04, -0.025, -0.015, 0, 0.15, 0.025, and 0.04. Equation (2) shows that η12 can be negative, zero, 
or positive, representing the following: ηij > 0 indicates that the j-th language population facilitates opinion 
propagation in the i-th language population;ηij < 0 indicates inhibition of public opinion propagation from 
the j-th language to the i-th language population; ηij = 0 indicates no effect on public opinion propagation 
between the different language groups. From Fig. 10a, we observe changes in the infectious individuals I1 within 
the first language group across different η12 values. Specifically, as η12 increases (from negative to positive), 
there is an advancement and increase in the peak number of infectious individuals I1 within the first language 
group. This indicates that a positive η12 value suggests a facilitating effect of the second language group on 
public opinion contagion agents within the first language group. Conversely, a decrease in η12(from positive to 
negative values) delays and reduces the peak of I1, demonstrating an inhibitory effect. In Fig. 10b, we observe the 
variation of the infectious individuals I2 within the second language group across different values of η12. When 
η12 = 0, it indicates negligible opinion contagion interaction between groups. Similarly to I1, the dynamics of 
infectious individuals in the second language group are affected by the change in η12, albeit opposite to the effect 
on I1; that is, with η12 (from negative to positive values), there is a delay and decrease in the peak number of 
infectious individuals I2 in the second language group.

Fig. 10.  Social Enhancement Effect η12 on the propagation of public opinion.

 

Fig. 9.  Effect of cross-transmission mechanisms on the propagation of public opinion.
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When analyzing the impact of the social enhancement effect η21 on public opinion propagation, we conducted 
numerical simulations using the data from Table 2. Other parameters in Table 2 remained constant, while η21 
was varied at values of -0.04, -0.025, -0.015, 0, 0.15, 0.025, and 0.04. From Fig. 11a, we observe the variation of I1 
in the first language group under different values of η21. Specifically, as η21 increases from negative to positive 
values, there is an advancement and increase in the peak number of infectious individuals I2 in the second 
language group. This indicates that when η21 > 0 the first language group facilitates opinion contagion in the 
second language group. Conversely, as η21 decreases from positive to negative values, the peak of I2 is delayed 
and decreases, indicating an inhibitory effect. Figure 11b illustrates the variation of infectious individuals I1 in 
the first language group across different η21 values. Similarly to I2, we observe a trend where changes in η21 
affect the dynamics of infectious individuals in the first language group. However, this effect is opposite to that 
observed for I2; specifically, there is a delay and decrease in the peak number of infectious individuals I1 within 
the first language group as η21 transitions from negative to positive values.

The impact of social enhancement effects on Public Opinion Propagation in multilingual environment involves 
multiple interacting factors, such as foundational influence capacity, cultural proximity, contagion proportion, 
and threshold parameters. Foundational influence capacity reflects the basic level of interaction among diverse 
linguistic groups without further social or cultural influences. Higher values correlate with linguistic similarities, 
frequent communication, and positive historical interactions, facilitating faster information dissemination. 
Cultural proximity evaluates whether cultural similarities facilitate or impede information flow. Closer cultural 
ties lead to more efficient information dissemination, enhancing the spread of public opinion.

The contagion proportion indicates the percentage of group members actively involved in public opinion 
propagation. A higher contagion proportion signifies increased activity in disseminating information, which 
can amplify the impact of public opinion. The threshold parameter determines whether the social enhancement 
effect fosters, inhibits, or has no impact on Public Opinion Propagation, highlighting crucial conditions for 
inter-group interaction. When the contagion proportion exceeds the threshold, it promotes faster dissemination 
of public opinion; conversely, falling below the threshold can impede dissemination due to disparities in 
information acceptance or cultural isolation.

Therefore, the direction and magnitude of social enhancement effects directly influence the speed and scope 
of Public Opinion Propagation among diverse linguistic groups. These factors collectively reveal the complex 
mechanisms of Public Opinion Propagation in multilingual societies and provide new insights and strategies for 
opinion management in multicultural settings.

The effect of forgetting mechanism on the propagation of public opinion
When examining the impact of the forgetting mechanism µ12 on public opinion propagation, we utilized the 
data from Table 2 for numerical simulation, maintaining the constant values of other parameters. The values 
of µ12 were chosen as follows: 0.05, 0.15, 0.25, 0.35, and 0.45. From Fig., we observe the variation of the total 
infectious individuals I1 + I2 across different values of µ12 in the bilingual groups. As depicted in Fig. 12a, 
I1 + I2 represents the temporal evolution of the total number of infectious individuals across bilingual groups. 
With an increase in µ12, we note a decrease in the peak value of I1 + I2 along with its rightward shift, signifying 
the attenuation of the speed and breadth of public opinion propagation due to the forgetting effect. The elevation 
of µ12 decelerates the pace and extent of public opinion propagation within the first language group.

When examining the impact of the forgetting mechanism µ21 on public opinion propagation, we utilize 
the data from Table 2 for numerical simulation, maintaining constant values for other parameters. The values 
of µ21 are as follows: 0.05, 0.15, 0.25, 0.35, and 0.45. Figure 12b illustrates the variations in the total infectious 
individuals I1 + I2 across the bilingual groups at different µ21 values. As depicted in Fig. 12b, an increase in 
µ21 results in a decrease in the peak value of I1 + I2, accompanied by a rightward shift, indicating once more 
that the speed of opinion propagation and its influence are curbed by the forgetting effect. The elevation of µ21 
decelerates the propagation speed and breadth of public opinion within the second language group.

Fig. 11.  Social Enhancement Effect η21 on the propagation of public opinion.
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These simulation results clearly show the impact of factors like base forgetting rate, adjustments in cross-
linguistic social enhancement effects, cultural proximity, and information quality on the forgetting mechanism 
in a multilingual setting. The base forgetting rate indicates the natural rate at which different linguistic groups 
forget information, unaffected by external factors. This ratio is influenced by cognitive ability, information 
complexity, and frequency of exposure. Meanwhile, the cross linguistic social enhancement effect indicates 
that communication frequency, understanding level, and information resonance between language groups 
can accelerate or slow down the rate of forgetting. Cultural similarity improves the efficiency of information 
dissemination, reduces forgetting rates, and enables culturally similar groups to more effectively retain 
information. The quality of information, especially its reliability and relevance, can effectively affect the retention 
of information over time, slowing down the rate of information forgetting.

Over time, with the continuous influx of new information and limited attention, old information is gradually 
forgotten. However, influenced by the factors mentioned earlier, this forgetting process varies greatly among 
different language groups. It not only affects the absorption capacity of information, but also affects the formation 
and dissemination process of public opinion. These findings highlight the necessity of considering these factors 
in global cross-cultural interaction.

The impact of asymmetric initial conditions on multilingual Public Opinion Propagation
In this simulation, we constructed a bilingual Public Opinion Propagation model with initial conditions set 
as asymmetric dissemination scenarios. Specifically, the susceptibility of the second language group is 100% 
(S2 = 1), with 0 initial infected individuals (I2 = 0), while the first language group has a certain proportion 
of initial infected individuals (I1 = 0.05). The values of other parameters are shown in Table 3. This setting 
aims to simulate certain language groups being unaffected by public opinion in the early stages due to cultural 
isolation, information barriers, or limitations in communication channels, while another language group has 
already begun to spread public opinion. The design of such asymmetric initial conditions helps us understand 
how cross linguistic communication and information lag affect the dynamic evolution of two language groups in 
the process of Public Opinion Propagation.

From Fig. 13a, it can be seen that there are significant differences in the dissemination patterns of public 
opinion between the two language groups: the first language group (S1, E1, R1): Initially, due to the presence 
of infected individuals (I1 = 0.05), public opinion spreads rapidly in the first language group. As the number 

Parameter Value Parameter Value

β11 0.50 γ2 0.09

β12 0.02 d1 0.004

β21 0.03 d2 0.005

β22 0.25 b1 0.007

α1 0.20 b2 0.008

α2 0.23 µ12 0.02

γ1 0.08 µ21 0.02

η12 0.02 η21 0.02

Table 3.  Parameter settings.

 

Fig. 12.  The effect of forgetting mechanism on the propagation of public opinion.

 

Scientific Reports |        (2024) 14:31081 25| https://doi.org/10.1038/s41598-024-82024-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of infected individuals increases, the number of susceptible individuals (S1) rapidly decreases, and the spread 
of public opinion enters the incubation period (E1), gradually reaching its peak. As time goes by, the number 
of infected individuals decreases and the number of recovered individuals (R1) gradually increases, indicating 
a gradual decline in public opinion. The restorer curve (R1) shows that over time, public opinion in this 
language group has been effectively controlled and eventually stabilized. Second language groups (S2, E2, R2
): In contrast, due to the initial lack of infected individuals, the dissemination of public opinion in the second 
language group is significantly lagging behind. Public opinion spreads across languages from the first language 
group to the second language group (through parameters such as β12 and β21). After a certain period of time, 
the susceptible individuals (S2) in the second language group are gradually affected, and the transmission curve 
begins to emerge, with E2 and R2 starting to change. Eventually, the spread of public opinion among the second 
language group gradually reached its peak and then entered a period of recovery.

This asymmetric dissemination pattern indicates that there is a significant cross linguistic communication lag 
phenomenon in the dissemination of public opinion. Due to the initial lack of infected individuals, the second 
language group was largely unaffected in the early stages of Public Opinion Propagation. However, with the 
passage of time and the strengthening of cross linguistic transmission effects, this group eventually entered the 
cycle of Public Opinion Propagation.

Figure 13b shows the changes in the number of infected individuals (I1, I2) in two language groups over 
time, further revealing the asymmetry of Public Opinion Propagation:I1 curve (infected individuals in the first 
language group): At the beginning, the number of infected individuals rapidly increases and reaches a peak in a 
short period of time, then gradually decreases and tends to stabilize. This trend reflects the rapid spread of public 
opinion within the first language community and the subsequent decrease in the number of infected individuals 
due to recovery or management measures. I2 curve (infected individuals in the second language group): In 
contrast, the infected individuals curve in the second language group lags significantly behind. The number 
of infected individuals only began to significantly increase after a certain period of time, indicating that public 
opinion gradually expanded to the second language group through cross linguistic transmission. In the end, 
the trend of I2 changes is consistent with I1, but the entire propagation process is significantly lagging behind.

This phenomenon reveals the delayed effect of information transmission across languages. The increase in 
the number of infected individuals in the second language group is limited by interaction with the first language 
group (through cross linguistic transmission parameters) due to being in a completely susceptible state in the 
initial stage. As the public opinion of the first language group gradually enters a stable period, the number of 
infected individuals in the second language group begins to increase significantly.

The simulation results reveal the complexity of cross linguistic communication from the perspective 
of dynamic propagation. In reality, certain language groups may exhibit significant lag in the early stages of 
Public Opinion Propagation due to cultural isolation or differences in information dissemination channels. 
For example, certain language groups may not have received sufficient public opinion information in the first 
instance during a specific event, resulting in them starting to be influenced by public opinion after a longer 
period of time. On the other hand, the cross linguistic dissemination rate is reflected in the model through the 
β12 and β21 parameters, which simulate the social interaction intensity and information transmission efficiency 
between different language groups.

This model is of great significance to policy makers, social media platforms and public crisis managers. By 
understanding the lag effect in multilingual public opinion communication, relevant departments can formulate 
targeted emergency measures in advance, and carry out phased public opinion management and guidance based 
on the communication characteristics of different language groups.

The impact of network structure on the process of public opinion
To verify the impact of complex network topology on the process of public opinion propagation, three typical 
network structures were selected for comparison. Using the NetLogo software, simulation experiments were 
conducted on the SEIR-based public opinion propagation model in a bilingual environment across three 

Fig.13.  The impact of asymmetric initial conditions on multilingual Public Opinion Propagation.
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networks: a regular network (4000 nodes, 16,000 edges), a WS small-world network (4000 nodes, 16,000 edges), 
and a BA scale-free network (4000 nodes, 8000 edges). As shown in Fig. 14, the visualization of these three 
classical complex networks is presented. The parameter settings are shown in Table 4.

Figure  15 simulates the temporal evolution of the densities of two different language propagators,I1 and 
I2, within three different network topologies. Figure  15a illustrates the propagation process of language 
1 propagators across the three networks. The black curve represents the scale-free network, the red curve 
represents the small-world network, and the blue curve represents the regular network. The overall trend shows 
that all three curves initially rise to a peak, then decline, and eventually stabilize. As depicted, the black curve 
reaches the highest peak, followed by the blue curve, and the red curve has the lowest peak, but the red curve 
stabilizes the earliest. Figure 15b depicts the propagation process of language 2 propagators across the three 

Fig. 15.  The Impact of network structure on the process of public opinion.

 

Parameter Value Parameter Value

β11 0.90 γ2 0.07

β12 0.80 d1 0.05

β21 0.85 d2 0.05

β22 0.80 b1 0.01

α1 0.40 b2 0.01

α2 0.30 µ12 0.04

γ1 0.09 µ21 0.05

η12 0.03 η21 0.04

Table 4.  Parameter settings.

 

Fig. 14.  Visualization of three types complex networks.
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networks. Similarly, the black curve represents the scale-free network, the red curve represents the small-world 
network, and the blue curve represents the regular network. In Fig. 14b, the differences in peak values among the 
three curves are even more pronounced, with the black curve having the highest peak, the blue curve the second 
highest, and the red curve the lowest. Again, the red curve stabilizes the earliest. The underlying reason is that 
the BA scale-free network is characterized by a power-law distribution of node connections, where the majority 
of nodes have few connections, while a few hub nodes have a large number of connections. These hub nodes 
play a critical role in the spread of public opinion, leading to the highest rise in propagator density. The small-
world network, which lies between a completely regular network and a completely random network, introduces 
a small probability of long-distance connections by rewiring the original nearest-neighbor nodes. This network 
structure is characterized by most nodes being locally connected, with occasional long-distance connections, 
which facilitates the rapid spread of public opinion information.

Validation of the model on the Twitter dataset
In this section, we utilize a real dataset from Twitter51 to evaluate the effectiveness of the proposed model. 
As of September 2021, this dataset contains over 2.2 billion tweets collected since January 22, 2020, covering 
discussions about COVID-19 and published in multiple languages. Among these multilingual tweets, English 
tweets have the highest proportion, followed by tweets in Spanish and Catalan. Consequently, we selected data 
from tweets related to COVID-19, published in English, Spanish, and Catalan during the first 100 days from 
January 22, 2020, as the dataset to validate the SEIR opinion propagation model proposed in this paper under a 
bilingual environment. Given the large volume of data, we define a user as an opinion spreader only if they post 
tweets related to COVID-19 in English, Spanish, or Catalan, without considering the number of likes received. 
As shown in Table 5, each column of the dataset contains specific information related to individual tweets and 
retweets. This information includes user ID, timestamp corresponding to the date and time of each tweet or 
retweet, the language used for the tweet, the status of the tweet, and other relevant details.

We employ the SEIR opinion propagation model under a bilingual environment, fitting I1 to represent 
the temporal dynamics of English opinion spreaders on Twitter and I2 to represent the temporal dynamics of 
Spanish and Catalan opinion spreaders. According to Twitter user data,52 the daily active user count on Twitter 
in 2020 was 192 million, an increase from 152 million in 2019. Therefore, we assume that each user posts only 
one tweet per day and use this assumption to calculate the proportion of English tweets relative to the total daily 
active users, thereby estimating the proportion of English opinion spreaders. A similar method is applied to 
estimate the proportion of Spanish and Catalan opinion spreaders. The parameter settings for the fitting process 
are detailed in Table 6, and the fitting results are illustrated in Fig. 16.

Figure 16 illustrates the model’s ability to capture the dynamics of public opinion propagation in a multilingual 
context, focusing on English and Spanish tweet activity related to COVID-19. The blue and green curves 
represent the actual tweet volumes in English and Spanish, respectively, while the red and orange dashed curves 
reflect the SEIR model’s fitted results. The model incorporates three critical mechanisms: social enhancement, 
forgetting, and cross-transmission.

As shown in the figure, the model effectively fits the Spanish tweet data throughout both the early and later 
stages of the propagation process, demonstrating the influence of social enhancement—where active opinion 
spreaders amplify their impact within smaller, more homogenous language groups. In contrast, the forgetting 
mechanism, which accounts for the decay of engagement over time, is more evident in the English data, where 
the higher volume of tweets leads to more complex and unpredictable behavior, particularly in the later stages.

In conclusion, the SEIR opinion propagation model, applied within a bilingual environment, has 
demonstrated its effectiveness in capturing the dynamics of public opinion across multiple languages. The model 
shows particularly strong performance in fitting the propagation trends of Spanish and Catalan tweets, where 
opinion dynamics are more consistent and predictable. This superior fitting underscores the model’s ability to 
adapt to smaller, more homogeneous linguistic groups, which exhibit less variability in opinion spread over time.

Compared to single-language models, the bilingual SEIR model offers a more comprehensive reflection of 
opinion propagation in multilingual and multicultural contexts. It captures the nuances of cross-transmission 
between languages, social enhancement within linguistic communities, and the decay of engagement through 
the forgetting mechanism. These features not only improve the model’s precision and reliability but also highlight 
its capability to account for the complexities inherent in multilingual environments.

Tweet_ID Language Date created ··· Likes Retweets

1,477,068,982,054,268,936 En [‘2020’, ‘Jan’, ‘22’, '00:07:42’] ··· 0 0

1,477,070,543,174,225,927 En [‘2020’, ‘Jan’, ‘22’, '00:13:54’] ··· 1 0

1,477,070,851,006,779,393 En [‘2020’, ‘Jan’, ‘22’, '00:15:08’] ··· 0 0

1,477,067,130,210,295,809 Fr [‘2020’, ‘Jan’, ‘22’, '00:00:21’] ··· 0 3

1,477,067,209,017,110,533 Fr [‘2020’, ‘Jan’, ‘22’, '00:00:39’] ··· 0 3

··· ··· ··· ··· ···

1,477,068,038,793,043,973 Pt [‘2020’, ‘Jan’, ‘22’, '00:03:57’] ··· 0 37

1,477,068,069,625,376,768 Pt [‘2020’, ‘Jan’, ‘22’, '00:04:05’] ··· 0 37

1,477,068,091,574,165,508 Fr [‘2020’, ‘Jan’, ‘22’, '00:04:10’] 0 368

Table 5.  Twitter real dataset.
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This multilingual modeling approach broadens the model’s applicability, enhancing its practicality for global 
opinion analysis. By incorporating diverse linguistic and cultural dynamics, the model becomes a valuable tool 
for more accurate and inclusive public opinion management in increasingly interconnected and multicultural 
societies.

Conclusion
This study focuses on understanding the dynamics of public opinion in multilingual environments where cultural 
and linguistic diversity introduces significant complexity to the spread of information. Traditional models often 
fail to capture these intricacies, leading to less accurate predictions of public opinion trends.

To address these limitations, this paper develops a comprehensive SEIR-based model tailored specifically for 
multilingual contexts. The model incorporates several advanced mechanisms, including social enhancement 
(reflecting the influence of opinions within and across language groups), forgetting mechanisms (showing 
how opinions diminish over time), and cross-transmission mechanisms (demonstrating how opinions spread 
between different linguistic communities).

A key aspect of this research is the acknowledgment and incorporation of the challenges posed by language 
and cultural diversity. By considering these differences, the model promotes an inclusive approach to public 
opinion management, ensuring that all cultural groups, regardless of their language, are fairly represented in 
public discourse. This inclusivity not only adheres to ethical standards but also significantly enhances the model’s 
applicability to real-world multilingual societies.

The model was validated using real Twitter data related to COVID-19, which included multilingual tweets 
in English, Spanish, and Catalan. The results demonstrate that the model effectively captures the dynamics of 
opinion propagation across different languages, particularly in languages with fewer users, where opinion spread 
tends to be more predictable.

Key findings from the study include:
The model accurately reflects the temporal dynamics of opinion spread across different linguistic groups.
Social enhancement and cross-transmission mechanisms play crucial roles in shaping the spread and 

persistence of opinions in multilingual environments.
The model’s predictive power is especially strong in languages with lower tweet volumes, such as Spanish and 

Catalan, where opinion trends are less complex.

Fig.16.  Fitting effect of Twitter real dataset.

 

Parameter Value Parameter Value

β11 0.85 γ2 0.0004

β12 0.65 d1 0.00028

β21 0.57 d2 0.00045

β22 0.37 b1 0.007

α1 0.0250 b2 0.008

α2 0.0028 µ12 0.002

γ1 0.0005 µ21 0.003

η12 0.002 η21 0.003

S1 (0) 0.9995 S2 (0) 0.9994

I1 (0) 0.0005 I2 (0) 0.0006

Table 6.  Parameter values of public opinion communication system in bilingual environments.
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In summary, this research contributes a robust and innovative framework for managing public opinion 
in multilingual societies. The integration of mechanisms to account for cultural and linguistic influences 
significantly improves the model’s predictive power and applicability. As a result, the model offers valuable 
insights for policymakers and social media analysts looking to manage public opinion in increasingly globalized 
and multilingual contexts.

Data availability
The datasets generated and/or analyzed during the current study are available in the [GitHub] repository, 
[https://github.com/suyalatu1984/SuyalatuDong.git]. The datasets are also available from the corresponding ​a​
u​t​h​o​r upon reasonable request.
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