Table 3 Impact of augmented prediction and incorporation of clinical features on vertebral collapse (VC) prediction performance of ViT-PMC-LoRA.
 | AUC mean (SD) | Specificity mean (SD) | Sensitivity mean (SD) | p-value |
---|---|---|---|---|
Internal validation using the development dataset | ||||
 ViT-PMC-LoRA + CF | 0.8307 (0.0372) | 0.8016 (0.1033) | 0.7418 (0.1229) | 0.179 |
 ViT-PMC-LoRA | 0.8404 (0.0312) | 0.8557 (0.0953) | 0.7012 (0.1154) | 0.442 |
 ViT-PMC-LoRA + AP + CF | 0.8502 (0.0297) | 0.8234 (0.0720) | 0.7773 (0.0594) | 0.775 |
 ViT-PMC-LoRA + AP | 0.8539 (0.0445) | 0.8230 (0.0893) | 0.7739 (0.0796) | - |
External validation using the test dataset | ||||
 ViT-PMC-LoRA + CF | 0.8103 (0.0169) | 0.6741 (0.0969) | 0.8611 (0.0878) | < 0.001* |
 ViT-PMC-LoRA | 0.8113 (0.0519) | 0.6963 (0.1155) | 0.8111 (0.0915) | 0.011* |
 ViT-PMC-LoRA + AP + CF | 0.8566 (0.0246) | 0.7630 (0.0804) | 0.8167 (0.0695) | 0.172 |
 ViT-PMC-LoRA + AP | 0.8656 (0.0137) | 0.8111 (0.1010) | 0.7611 (0.1173) | - |