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Ovaries are of paramount importance in reproduction as they produce female gametes through a 
complex developmental process known as folliculogenesis. In the prospect of better understanding the 
mechanisms of folliculogenesis and of developing novel pharmacological approaches to control it, it is 
important to accurately and quantitatively assess the later stages of ovarian folliculogenesis (i.e. the 
formation of antral follicles and corpus lutea). Manual counting from histological sections is commonly 
employed to determine the number of these follicular structures, however it is a laborious and error 
prone task. In this work, we show the benefits of deep learning models for counting antral follicles 
and corpus lutea in ovarian histology sections. Here, we use various backbone architectures to build 
two one-stage object detection models, i.e. YOLO and RetinaNet. We employ transfer learning, early 
stopping, and data augmentation approaches to improve the generalizability of the object detectors. 
Furthermore, we use sampling strategy to mitigate the foreground-foreground class imbalance and 
focal loss to reduce the imbalance between the foreground-background classes. Our models were 
trained and validated using a dataset containing only 1000 images. With RetinaNet, we achieved 
a mean average precision of 83% whereas with YOLO of 75% on the testing dataset. Our results 
demonstrate that deep learning methods are useful to speed up the follicle counting process and 
improve accuracy by correcting manual counting errors.
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Folliculogenesis is a highly complex and dynamic process which culminates with the ovulation of one or more 
oocyte(s) at each cycle. During each estrous cycle, the follicles develop from a dormant primordial pool. The 
oocytes start to grow and maturate while surrounded by an increasing number of granulosa cells. Various 
classifications have been used to describe the different stages of oocyte and follicle development1,2. Briefly, 
primordial follicles contain a partial or complete single layer of squamous granulosa cells. Primary follicles 
contain a single layer of cuboidal granulosa cells. Antral follicles are characterized by multiple layers of granulosa 
cells and a cavity named antrum. The remaining of the antral follicle following ovulation is called corpus luteum. 
It is composed of granulosa cells, thecal cells and blood vessels. The evaluation of follicle numbers across 
these different classes at various stages of development and/or upon exposure to hormonal/pharmacological 
treatments is crucial in many fields of biology. The number of follicles and corpus luteum can vary between 
estrus cycles in response to physiological and non-physiological factors. These factors include endocrine-
disrupting chemicals3,4, maternal aging, chemotherapy5, infection6, and inflammation7. All of them have been 
shown to affect ovarian reserve. As the antral follicles and corpus lutea represent the hallmark of late follicular 
development and ovulation, counting their number is necessary when studying infertilities, improving assisted 
reproduction technologies or evaluating the effects of drugs.

Research and pre-clinical phase of drug development extensively use rodents as experimental models to 
evaluate potential efficacy and/or repro-toxicity8,9. Consequently, the refinement of follicle quantification 
methods has gained heightened significance. It is imperative for researchers to understand the strengths and 
weaknesses of the available counting approaches to ensure the accurate interpretation of results. Histological 
counting have been widely accepted and used in reproductive biology research to estimate the number of 
follicles. It enables the distinction of various types of follicles including, primordial, primary, secondary, and 
antral follicles. It offers spatial distribution and organization of follicles within the ovary. Follicle detection by 
traditional methods, such as manual counting or semi-automated techniques10, often face limitations in terms 
of accuracy, efficiency, and consistency. More recent studies have used semi-automated techniques (e.g., region 
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growing, active contours, outer or inner follicle boundary) to assist in follicle detection, but these still suffer 
from issues related to false positives, poor generalization across different imaging conditions, and computational 
inefficiency. The semi-automated techniques still require human intervention in refining and validating the 
detection results. While this can be efficient in some cases, it can also be time-consuming and prone to human 
error, especially in larger datasets or more complicated cases.

With the rise of machine learning and deep learning technologies in many domains such as image 
recognition11, robotics12, speech recognition13, life sciences14–17, etc, there has been a shift towards automating 
the detection of ovarian follicles. This shift aims to improve the accuracy, efficiency, and consistency of diagnostic 
workflows, which are often hindered by the manual and time-consuming nature of traditional methods. AI 
models have shown great performance in image analysis due to the availability of large amount of labelled 
dataset, sometimes even surpassing the contributions of experts18. Most of the existing deep learning-based 
models in medical image analysis typically focus on image classification or segmentation or object detection. 
In image classification, the model would simply tell you whether follicles are present in the image, but it would 
not tell you how many follicles or where they are located in the image. This would be helpful in scenarios where 
the task is to quickly determine whether a follicle is visible in an ultrasound scan, but it is a major limitation 
for tasks that require precise localization and counting. Object detection, on the other hand, goes a step further 
than image classification by not only identifying what is in an image, but also localizing the objects of interest. In 
the case of follicle detection, the goal is to not only identify and count follicles, but also to locate their positions 
within the image.

Follicle detection from histology images using deep learning methods remains largely an uncharted territory. 
The high resolution of whole slide digital images (WSI) obtained from digital slide scanners, combined with 
advanced AI methods, can reduce the workload and inconsistencies of current approaches19,20. This paper 
highlights the benefits of AI techniques, particularly deep learning, for counting antral follicles and corpus lutea. 
Our work is based on object detection techniques to localize and count structures of interest. Object detection 
models can be trained on diverse datasets and are robust against various conditions such as differing image 
qualities, noise, or follicle shapes. We utilized object detection models, including YOLO (You Only Look Once) 
and RetinaNet, to localize objects and improve detection accuracy.

Regarding previous work on deep learning methods for counting follicles in mouse ovaries, Sonigo et al.21 
proposed a convolutional neural network (CNN) with a sliding window algorithm to count primordial follicles. 
They used a dataset comprising 9 million images of mouse ovaries for training and 3 million images for testing. 
The model achieved a precision of 65% and a recall of 91%. These values were obtained after applying hard negative 
mining and conducting manual checks to reduce the large number of false positives. Compared to21, which 
developed a  two-step approach for follicle detection, our method is based on an object detection approach 
that provides localization by generating bounding boxes around individual follicles and predicting their classes. 
While their work focused on a single follicle type, our approach detects and differentiates between two types 
of follicles. In a later study, Inik et al.22 performed the detection of five classes of follicles: primordial, primary, 
preantral, secondary, and tertiary. They began by generating sub-images from the input image, classifying these 
sub-images into edge, follicle, and background classes. Finally, they created a binary image representing the 
background and follicle classes, overlaying these binary sub-images onto the original input image. In the final 
classification phase, all follicles localized in the input image were classified into the five classes. Their dataset 
consisted of 1,750 images for training and 222 images for testing. On the testing dataset, they achieved a mean 
accuracy of 95%. In contrast to22, who used CNN-based segmentation, our method allows for the detection 
of individual follicles with localization information using object detection techniques. Additionally, the real-
time detection capability of YOLO makes our method more scalable and faster than traditional approaches, 
which is essential for clinical environments requiring high-throughput analysis. Unlike earlier studies, which 
detected all follicle types (primordial, primary, preantral, secondary, and tertiary), our study focuses on late-
stage follicles, specifically antral follicles and the corpus luteum. Furthermore, we report state-of-the-art mean 
average precision (MaP) metrics for evaluating the proposed object detection models, which were absent in 
the aforementioned studies. The proposed model represents a first step towards automating the quantitative 
assessment of late folliculogenesis.

The remainder of the paper is structured as follows. In Section 2, we introduce the background on late 
follicles, their annotation, and describe the proposed machine learning framework for follicles counting. In 
Section 3, we present and compare our results. In Section 4, we identify limitations, give concluding remarks 
and describe future work.

Methods
Animals
All experimental and care procedures were carried out in strict accordance with the relevant guidelines and 
regulations of the European and French Directives. Experiments were approved by the local Ethical Committee 
of Animal Experimentation CEEA Val de Loire N◦19 and the French ministry of teaching, research, and 
innovation (APAFIS #18035-2018120518194796). C57BL/6JOlaHsd mice were purchased from Inotiv.inc. The 
10 female mice of 12-20-week-old were conventionally housed in groups of 4 in type 2 cages in the rodent animal 
facility, experimental unit: UEPAO (PAO, INRAE: Animal Physiology Facility, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​5​4​5​4​/​1​.​5​5​7​3​8​
9​6​3​2​1​7​2​8​9​5​5​E​1​2​​​​​) in an environmentally controlled room maintained at 21◦C, humidity of 55% with a 12h light 
- 12h dark photoperiod, ad libitum access to food and water. Mice were allowed to acclimate within the UEPAO 
for at least one week prior to any procedures.

Scientific Reports |        (2024) 14:31856 2| https://doi.org/10.1038/s41598-024-82904-8

www.nature.com/scientificreports/

https://doi.org/10.15454/1.5573896321728955E12
https://doi.org/10.15454/1.5573896321728955E12
http://www.nature.com/scientificreports


Tissue collecting and processing
All experiments were performed on animal materials postmortem. Results are reported in accordance with the 
relevant points of the ARRIVE guidelines. The mice were euthanized by cervical dislocation. Ovaries collection 
was performed between 9:00 and 11:00. They were trimmed from the fat pad and fixed in Bouin’s solution (Sigma 
Aldrich, HT10132) at 4◦C overnight. The samples were dehydrated using ethanol-water sequential incubations 
and embedded in paraffin blocks (see 1). They were sequentially sectioned into 7 µm using a microtome (Leica 
HistoCore AUTOCUT). The whole sections were mounted on microscope Superfrost Plus slides. Between 7 
and 15 consecutive sections were placed onto a single slide. After 48h at room temperature, each slide was 
deparaffinized, rehydrated, and stained with hematoxylin-eosin (Sigma Aldrich, HHS32, HT110132). The 
sections were mounted in Depex (DPX new, Merck GaA, Darmstadt, Germany).

Manual follicle counting
The slides were digitized after 72h using a histology slide scanner Axio scan Z.1 Zeiss, running under Zen 
software (ZENblue 3.5 edition) with a magnifcation of 10x (numerical aperture 0.45) (see Fig.  1). Follicles 
containing multiple layers of granulosa cells and a follicular antrum were designed as antral follicles. To avoid 
counting the same follicle on serial sections, only those containing a clear visible oocyte were scored. The total 
number of antral follicles is the sum of the antral follicles from all sections of a complete ovary. The corpus 
luteum is more a solid structure, made of granulosa cells (rounded cells), theca cells (elongated cells), and blood 
vessels.

Deep learning framework for automatic counting ovarian follicles
CVAT annotation and data extraction
The sections on the slides were extracted in Joint Photographic Experts Group format (JPG) by using ZENblue 
3.5 edition to annotate with Computer Vision Annotation Tool (CVAT), a free open source, suitable for image 
and video labeling23. We decided to use bounding boxes for annotation purposes for two reasons: (1) Boxes 
require relatively less workload to annotate as compared to other formats such as polygon, etc. (2) It has been 
shown previously that other formats do not necessarily increase performance24 by large margin while causing 
more workload for the annotator. Three structures were annotated: (1) antral follicle (AF), (2) antral follicle 
without ovocyte (AFWO), and 3) corpus luteum (CL). In Fig. 1, we show the manual annotation workflow.

Data augmentation
Data augmentation entails creating the augmented or fake dataset to increase the size of the training dataset 
which helps to improve the performance of deep learning models and to tackle the issue of overfitting. For some 
kind of datasets it is fairly easy to perform augmentation, for example on imaging dataset, one can perform 
basic image transformations such as like rotation, resizing, and translation by few pixels25. We can divide the 
data augmentation into online and offline methods depending on when the augmentation is being performed. 

Fig. 1.  Data extraction process for annotation of whole slide images. (a) Sample processing - Ovaries were 
dissected out and trimmed from the fat pad, fixed in Bouin’s solution, dehydrated and embedded in paraffine 
blocks. (b) Image digitation - The stained slides were digitized by Axio scan Z.1 Zeiss with a magnification 
of 10x. (c) Follicle annotation - Follicles containing multiple layers of granulosa cells and a follicular antrum 
were designed as antral follicles (Pink box), The antral follicles lacking a visible nucleus were labelled as antral 
follicle without oocytes (Blue box) and the temporary endocrine structures formed from the remanants of the 
ovarian follicle after ovulation were identified as corpora luteum and annotated (Yellow box).
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Online augmentation is a real-time process in which images are enhanced on-the-fly during model training, 
whereas offline augmentation requires images to be modified ahead of time, subsequently added into the dataset, 
and then later loaded into the memory for training. In our work, we use on-the-fly data augmentation since it 
eliminates the need to save additional datasets. This approach not only conserves storage space but also enhances 
computational efficiency by dynamically generating augmented data during the training process, thereby 
improving model generalization and robustness.

Class imbalance
Classification algorithms are known to be very sensitive to unbalanced data when the aim is to derive classification 
and prediction tools for categorical classes. In general, the algorithms will correctly classify the most frequent 
classes and lead to higher misclassification rates for the minority classes, which are often the most interesting 
ones. In our case, we observe that the AFWO is an over-represented class. We can see from Table 1 that we have 
approximately 1.5x more samples of AFWO as compared to AF and approximately 2x more samples of AFWO 
as compared to CL. To deal with the data imbalance, we sampled the dataset as shown in the sampled dataset 
column. In object detection tasks, we have foreground-background class imbalance in addition to foreground-
foreground class imbalance. It is unavoidable because majority of the boxes are labeled as the background 
during the training process. In this paper, we employ sampling methods to deal with the foreground-foreground 
imblance. Refer to26 for a detailed review of various data imbalance strategies.

Object detection models
Object detection includes both locating and classifying objects of interest in images (in our case, full sections of 
ovaries). In general, two-stage and one-stage detector models are used in object detection. Two-stage detectors 
are slower but more accurate due to their sequential approach to objects detection and classification. A one-
stage detector locates and classifies objects in parallel, making it faster but slightly less accurate than two-stage 
detectors. In our work, we compare the performance of two one-stage detectors: RetinaNet27 and YOLO28. Since 
our objective is to choose an architecture with real-time detection capabilities, we have opted to utilize one-stage 
detectors. We adopt the transfer learning approach to improve performance of our models by utilizing pre-
trained models on other tasks29. Additionally, we utilize the early stopping criteria to halt the training of a model 
when its performance no longer improves.

In Fig. 2, we show high level overview of RetinaNet and YOLO (You Only Look Once). Detailed architectures 
can be found in supplementary files (S1 and S2). RetinaNet is a popular one-stage detector which combines 
feature pyramid network (FPN) for detecting multi scale objects and focal loss to handle imbalance between 
background and foreground class. RetinaNet has two separate output detection head, one for the classification 
and one for the bounidng box regression. These heads are shared among all the features of the FPN. We used 
different backbone (ResNet50, CSPDarkNet, MobileNetV3, EfficientNetV2) architecture trained previously on 
ImageNet 2012 to gauge difference in performance and to establish baseline performance. Our goal is to select a 
backbone model which can be used to build a tool used by biologists with real-time performance.

YOLO is extremely fast, real-time one-stage detector where a single neural network is used to simultaneously 
predict multiple boxes and their classification probabilities. YOLO is relatively less accurate but incredibly fast 
object detection architecture, it is commonly utilized in security cameras. YOLO divides an entire image into a 
S x S grid, and if the center of a certain object falls within the grid cell, then this grid is responsible for detecting 
that specific object. Each grid cell can predict several bounding boxes along with their confidence scores and 
classes. The confidence score indicates whether or not the object has been detected. YOLO multiplies the class 
probabilities for each grid cell with confidence scores of the bounding box to obtain final detections. In our 
work, we use the most latest variation of YOLO called YOLOv8 with a small backbone YOLOV8 pretrained on 
COCO dataset. This architecture comes with two major modification, i.e., anchor-free detection and mosaic data 
augmentation.

Evaluation metrics
In this paper, we use state-of-the-art metrics to evaluate the performance of our object detection models, i.e., 
average precision (AP). AP relies on precision, recall, and intersection over union (IoU) metrics.

Intersection over union
In object detection, we localize objects and predict their classes using boundary boxes. Object detection models 
take into account the quality of the predictions by calculating the intersection between the ground truth object 
box G and the predicted bounding box G. IoU represents the ratio of the intersection over union between the 

Full data Sampled data

AF AFWO CL AF AFWO CL

Training 981 1352 620 948 1100 650

Validation 199 297 102 232 233 92

Testing 193 292 147 193 216 127

Total 1373 1941 869 1373 1549 869

Table 1.  Training, testing, and validation sets. AF : Antral Follicle, WO : Antral Follicle without oocytes, CL : 
Corpus luteum.

 

Scientific Reports |        (2024) 14:31856 4| https://doi.org/10.1038/s41598-024-82904-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


ground truth and predicted boxes (see Eq. 1). We generally measure the performance of the object detection 
model using various IoU thresholds. In Fig.  3, we highlight different IoU thresholds, orange represents the 
predicted box while blue represents the ground truth box.

Fig. 3.  Intersection over Union (IoU) with different threshold showing the quality of prediction.

 

Fig. 2.  High level overview of one-stage detectors. RetinaNet employ feature pyramid network to extract 
multiple scales information. Detection heads takes information from multiple levels to perform prediction. 
YOLO takes the whole image, resize it, apply single convolutional network over it, and finally employs non-
max suppression based on model’s confidence scores.
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� (1)

where A represents the area of the bounding box.

Precision and recall
The term “precision” is used to describe how accurately our model identifies correct predictions, i.e., how many 
of the total detections for a given class actually belonged to that class. Recall refers to the proportion of instances 
of a particular class that our model correctly predicts out of the total ground truth instances for that class. There 
is typically a trade-off between precision and recall; increasing one often result in a decrease in the other. We 
aim to increase the precision and recall values as much as possible. The precision and recall values are calculated 
using Eqs. (2 and 3), respectively.

	
P = T P

all; detections
= T P

T P + F P
� (2)

	
R = T P

all; ground; truths
= T P

T P + F N
� (3)

A true positive (TP) represents the number of true predicted boxes where IoU is equal to or greater than a 
certain threshold. A false positive (FP) is a predicted bounding box that either does not match any ground truth 
box (IoU is below the threshold), incorrectly matches the class label, or is an extra detection when multiple boxes 
are predicted for the same object (only one is kept as TP). A false negative (FN) indicates the model’s inability to 
identify an object present within the image, i.e., no predicted box overlaps with the ground truth box above the 
IoU threshold or the predicted box overlaps but the class is not correctly identified.

Average precision
Average precision (AP) can be used to summarize the precision and recall values into a scaler. It represent the 
area under the precision-recall curve and is calculated using Eq. (4) for each class:

	
AP =

∫ 1

r=0
p(r)dr� (4)

where p is the precision and r is the recall.

We calculate mean average precision (MaP) using using Eq. (5):

	
MaP = 1

N

N∑
i=1

APi� (5)

where N is the total number of classes, in our case 3, APi is the average precision for class i, and MaP is the 
average precision of all class’s average precision.

Results
Image annotations
Since we are performing supervised object detection task, it is necessary to obtain labeling data of objects in 
different histology images. We use CVAT to annotate images to identify category of follicles and their boundary 
information. In Fig. 4, we show the annotation of one whole slide image in the CVAT software. Approximately 
60 hours were required to annotate the whole data set. A total of 1373 antral follicles with nucleus, 1941 antral 
follicle without nucleus and 869 corpus luteum.
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The input data in our model consists of four numeric values which represent where the object is located on 
the image and one more value that shows what kind of an object it is. Different formats can be used to represent 
boundary boxes. For example, one can define the boundary box by specifying a set of corner coordinates, 
width and height. Another way is to describe it using the coordinates of its top-left and bottom-right corners, 
i.e., [x1, y1, x2, y2]. To specify coordinates in our study, we use the [x, y, w, h] format. The top-left corner is 
represented by two values x and y, width and height are represented by the values w and h.

Data description
Our full dataset consists of 1209 ovarian sections. Within these sections, we counted 1373 antral follicles, 1941 
antral follicles without oocytes, and 869 corpus lutea. The sampled dataset consists of 999 images with 1373 
antral follicles, 1549 antral follicles without oocytes, and 869 corpus lutea objects. Both datasets were randomly 
divided into training (70%), validation (15%) and testing (15%) sets. In Table 1, we show characteristics of our 
dataset.

Preprocessing
We converted XML files obtained through the CVAT software to CSV files to perform object detection tasks. We 
use the OpenCV python library30 to remove the excessive white patches from histology images.

It is well established that image resolution has a direct impact on the classification and localization of objects. 
In particular, it is difficult to detect small objects in low-resolution images. In general, for CNN-based detectors, 
images are down-sampled to a resolution of 256 x 256. Our initial findings confirmed that resolution does 
impact the performance of object detectors. We observed that high resolution, although computationally more 
expensive, does not translate systematically into improved performance, which has also been shown previously 
in other studies31,32. In our case, we set the image resolution to 640 x 640 pixels. The quantitative analysis of 
resolution impact on computational time and accuracy of the model can be found in the supplementary files 
(S5 and S6).

To deal with the background-foreground class imbalance, we used focal loss27. This loss function modifies 
classic cross entropy function in a way that it down weights the loss contribution of well classified examples 
(background class) and quickly leading the model to focus on difficult examples. In order to deal with the object 
class imbalance, we used the data sampling technique. We kept only those images that had at least one of the 
antral follicle or corpus luteum objects, leading to the elimination of 210 images. Note that these images did not 
have any antral folllicle and corpus luteum objects. In this paper, we refer to this dataset as a sampled dataset.

Fig. 4.  Annotation of whole slide images (WSI) using the Computer Vision Annotation Tool (CVAT). This 
figure illustrates the CVAT interface used for the annotation of ovarian structures for image analysis. The 
interface displays an image of an ovary section with annotated regions highlited by colored boxes. The yellow 
box indicated the area corresponding to the corpus luteum. The blue box delineates an antral follicle lacking a 
visible nucleus. The pink box represented an antral follicle with a discernible nucleus.
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Data augmentation in object detection models is more challenging and complex as compared to 
simple classification models as we must take into account the underlying bounding boxes during various 
transformations. We performed on-the-fly data augmentation using Keras-CV library33, which propose native 
support for data augmentation with bounding boxes. We used random flip and jittered resize techniques for 
increasing the diversity of our dataset. In Fig. 5, we show two images from our training set before (see Fig. 5a) 
and after augmentation (see Fig. 5b).

Comparative models
The experiments were performed on a server with a NVIDIA A30 24GB PCIe NonCEC Accelerator GPU card. 
We build our dataset using tensor flow data API and models using keras-CV library33.

The dataset is divided into training, validation and testing sets. During the training phase, the model 
parameters (weights and biases) are updated. During model training, the validation of the model is carried 
out by calculating the MaP using the validation dataset. The model with the highest MaP is saved, and it is 
subsequently used to make predictions on the testing dataset. We employed a stochastic gradient descent (SDG) 
optimizer with a batch size of 16. Exploding gradient is a common problem that arises when developing object 
detection models. When we train neural networks, an error gradient captures the magnitude and direction of 
the updates we make to the weights in a particular direction by some amount. The huge update to the model 
parameters caused by the high gradient values results in an unstable network. Gradient clipping, which relies 
on a threshold value, is used to cope with the exploding gradient problem. When a gradient value exceeds a 
predetermined threshold, the value is set to the threshold’s value. After completion of the training phase, we use 
testing dataset to measure the model’s generalizability. In Fig. 6, we show loss function of the object detectors, 
orange represents the validation loss and blue represents the training loss. We observe that there is a sudden 
change in gradient in the beginning of the training which stabilizes with time.

In Table  2, we show comparison of full dataset and sampled dataset using RetinaNet detector. It takes 
≈ 22h to train on a full dataset without any performance gain as can be observed from Table 2, while it takes 
approximately ≈ 12h hours of training on sampled dataset. In addition to the computational overhead, model 
trained on the full dataset does not performed well on CL class as compared to the WO and AF class using 
validation and testing sets (IoU 0.50). Furthermore, our model built using sampled dataset is able to classify the 
remaining 200 images with a MaP of 0.83 (IoU 0.50) which were initially deleted from the dataset to create a more 
balanced dataset. Finally, it is important to note that we did not experience a loss in performance for the AFWO 
class (the overrepresented class); rather, performance improved in all cases, except for the IOU of 0.75 in the 6th 
row of Table 2. We include the results with two different IoU threshold, i.e., 0.50 and 0.75. The comparison based 
on different IoU threshold can be found in the supplementary file (S4). It is worth noting that different thresholds 
can lead to some side effects. For example in case of high threshold, we may filter or eliminate predicted boxes 
for overlapping objects, which is not a desirable behavior. There is no ideal IoU threshold value, it varies between 
0 and 1. In practice, the common IoU threshold is 0.5 and may need customization in a particular context to 
obtain meaningful outcomes. Note that our model obtained recall of 0.61, precision of 0.83, and F1 score of 0.71 
on the testing dataset. A detailed comparison of these metrics for each class on training, validation, and testing 
sets can be found in the supplementary file (S3).

As a sanity check, we also trained the model without any data augmentation to ensure the robustness of our 
model. The initial results of this experiment indicate an overfitting problem; as our model is able to achieve MaP 
of 0.99 (IoU 0.50) on the training dataset However, these impressive results raise concerns about generalizability 
of the model, i.e., predictions quality on the unseen dataset. Taking into account this concern, we applied on-the-
fly data augmentation techniques, which effectively improved the model’s generalizability on the unseen dataset. 
Furthermore, to optimize the computational resources, we converted images into grey-scale. Our results did not 
show any significant performance gains in the context of our dataset and model.

In Table 3, we show comparison of YOLO and RetinaNet detectors with different backbone architectures. 
When it comes to compution speed, YOLO outperforms RetinaNet by a wide margin. It requires roughly only 
one hour to complete the training. RetinaNet with MobileNet as backbone surpassed YOLO on the testing 
dataset with a MaP of 0.86. As compared to RetinaNet, the confidence threshold for predicted bounding boxes 

Fig. 5.  Images before and after data augmentation. We observe that the images were flipped and/or resized 
while preserving the bounding box coordinates during transformation.
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was quite low. Additionally, YOLO achieved a MaP of 0.71 (IoU 0.50) on the remaining dataset (absent from 
the training, testing and validation sets) while RetinaNet scored a MaP of 0.83 (IoU 0.50). We believe that the 
RetinaNet is a suitable choice where computational time is not an issue and the top priority is MaP. However, 
where we can tolerate slightly lower MaP for the sake of faster performing algorithm, a YOLO model is more 
suitable option.

In Fig. 7, we show the results on the testing dataset. In blue are the original annotations and in yellow are the 
predictions obtained through RetinaNet with MobileNetV3 as backbone. We are using the batch size of 8, IoU 
threshold and confidence score of 0.75. We observe that our model failed to predict two objects in Fig. 7b and 

Detector Backbone AF AFWO CL MaP

RetinaNet MobileNetV3 0.86 0.84 0.79 0.83

RetinaNet ResNetV1 0.81 0.77 0.76 0.78

RetinaNet EfficientNetV2 0.80 0.78 0.79 0.79

RetinaNet CSPDarkNet 0.79 0.77 0.76 0.77

YOLOv8 YOLOV8 0.79 0.73 0.73 0.75

Table 3.  MaP score on testing dataset of RetinaNet with different backbone networks and YOLO detector with 
YOLOV8 backbone architecture.

 

IoU

Full dataset  Sampled dataset

AF AFWO CL Avg AF AFWO CL Avg

Training
0.50 0.94 0.94 0.95 0.94 0.94 0.95 0.95 0.95

0.75 0.82 0.83 0.81 0.82 0.81 0.83 0.84 0.83

Validation
0.50 0.84 0.81 0.77 0.80 0.87 0.85 0.85 0.86

0.75 0.63 0.60 0.54 0.59 0.65 0.61 0.57 0.61

Testing
0.50 0.80 0.79 0.75 0.78 0.86 0.84 0.79 0.83

0.75 0.60 0.61 0.53 0.58 0.60 0.54 0.50 0.55

Table 2.  The MaP score with different IoUs on training, validation, and testing set.

 

Fig. 6.  Graphs of loss function. It illustrates the training and validation loss curves for YOLOv8 and RetinaNet 
models on the employed dataset. The x-axis represents the number of epochs during the training process. The 
y-axis represents the value of the loss function. The goal during training is to minimize this value, as a lower 
loss indicates better alignment between the model’s predictions and the actual data.
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one in Fig. 7c. Figure 7d displays an antral follicle lacking a nucleus, intentionally left unannotated by the expert 
but correctly labeled by the detector. Despite being located within a distorted region, the follicle was accurately 
detected. This distortion is attributed to artifacts arising from slide mounting. Although the artifact affects the 
region, it does not significantly alter the structure’s shape, allowing for the follicle’s identification through the 
predictions. Figure 7f shows an antral follicle that was forgotten by the annotator but detected correctly by the 
trained model. These were considered as FPs in our evaluation criteria, which means we penalized our model for 
detecting these follicles. These detections highlight the labeling errors. In future research, we plan to enrich the 
dataset by correcting these errors which will help to further optimize the training of our models and to create a 
more general model.

In Fig. 8, we show the counting by expert and predictions by our model on the testing dataset with IoU 
threshold of 0.75 and 0.50. The blue color represents the follicle counting performed by the expert, orange 
represents the predictions by the model, pink signifies the TPs, and green shows the FPs. We see that the TPs rate 
increases and FPs rate decreases with the most common IoU threshold of 0.50. This figure highlights the effects 
of IoU threshold which requires careful consideration for different applications.

Furthermore, we analyzed images manually to understand logic behind the predictions of our models, 
which is crucial for further studies to understand why errors occur and how to address them. This comparative 
analysis of expert and model identification helps to elucidate the strengths and limitations of AI-driven image 
classification in the context of ovarian tissue analysis. We examined 151 images manually from the testing set to 
identify where the model misclassified, confused, or failed to label follicles correctly. What we found particularly 
intriguing and promising was the agreement between the number of false positives predicted by the model and 
those by the operator, especially for the antral follicle and the corpus luteum, the two main important structures 
for us. Upon closer examination, we observed that not all discrepancies were genuine errors made by the model 
(see Fig. 9).

Some regions posed challenges for labeling due to staining inconsistencies, mounting issues, and scanning 
artifacts, making them difficult even for the operator to label accurately. We categorized these instances as 
allowable errors given the challenges in image acquisition and processing. Despite these challenges, the system 
demonstrated an ability to detect and correctly classify some follicles that were missed by the experimenter. 
Thereby, after reclassification of these errors into those corrected by the model, those allowable by the system, 
and genuine/real errors, we noted a reduction in the number of false positives (see Fig. 10). This is expected to 
significantly enhance precision and consequently improve the accuracy of the model.

Discussion
In this paper, we present a valuable technique to count ovarian follicle from whole slide images (WSI) using 
transfer learning, early stopping and data augmentation approaches. We annotated the WSI of 20 mice ovaries in 

Fig. 7.  The predictions on validation set of batch size of 8 with IoU of 0.75 and confidence threshold of 0.75. 
Here blue boxes represent original annotations and yellow are the predictions with a confidence score.
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CVAT. From these annotations, a model trained; validated and tested itself to distinguish between three different 
classes of follicles: the antral follicle, the antral follicle without nucleus, and the corpus luteum. We used state-of-
the-art one-stage object detection methods, i.e, YOLO and RetinaNet for follicles detection in histology images. 
We achieved a MaP of 0.83 on the testing dataset with RetinaNet. Furthermore, we identified cases where model 
was able to correct erros of the annotators.

Histological counting may be one of the most standardized approaches for assessing ovarian reserve and follicle 
status, it does come with certain limitations: (1) Subjectivity of the operator : even with the presence of skilled 
personnel, there is a potential inter-observer variability due to the manual nature of histological counting. This 
variability may lead to inconsistencies in follicle counts, (2) Time-consuming and tedious work: the histological 
process requires careful preparation, sectioning, staining and examination. Each step in the preparation may 
affect the accuracy and quality of follicle counting. Studies show that we should take in consideration the impacts 
of different fixatives (Bouin’s fixative versus formalin), embedding material and section thickness34. They do not 
have the same effects on tissue structure. Despite the common use of formalin, Bouin’s solution may preserve the 
cellular morphology better than formalin that may cause tissue shrinkage and consequently changes in follicle 
dimensions. Results may not be fully representative of the entire ovary if sections at a regular interval were 
analyzed. Correction factors were used in such cases19. In our case, we used Bouin’s solution to fix the collected 
ovaries, a standardized hematoxylin and eosin staining protocol that selectively highlight the different aspects of 
tissue. The entire ovary was cut and almost all the slides were digitized. There was not any specific selection of the 
slides which reduce the introduction of sample bias. The use of a scanner helped to digitize faster and with high 
resolution the Whole Slide Images. The contrast quality of the images improved the ability to analyze. Despite 
the efforts, staining inconsistency, mounting or scanning artefacts may continue to exist. Hence, some structures 
were intentionally unlabelled by the experiment especially on slides with mounting or scanning artefact. This was 
not a problem for the model, we noticed that the model was able to predict correctly the follicles in some poorly 
prepared sections with distorted aspect. Some experimenter labeling errors were found demonstrating that 
fatigue can contribute to errors and were discovered when comparing results obtained through the automated 
method with manual histological labeling. The scientists need to be always on a focused state for accurate results. 
One more reason to have at least two experimenters to assess follicle counting. Using AI and mainly this model 
can indeed reduce the need for multiple experimenters. The model labeled correctly almost all the structures but 
it only missed some blur structures (mounting or scanning artefacts) that the experimenter was able to annotate 
when checking the successive slide.

Taking in consideration these limitations is crucial for scientists when designing and interpreting results. 
Integrating histological counting with additional methodologies like hormone dosage and embracing new 
technologies, such as artificial intelligence and deep learning can help as we can see to overcome some of 
the challenges of ovarian follicle counting. Histological counting is often used as a benchmark for validating 
automated techniques, including those involving artificial intelligence. Comparing results obtained through 
automated methods with manual histological counting helps ensure the accuracy and reliability of the automated 
approach. Understanding the nature of errors and discrepancies is crucial for refinning AI algortithms and 
optimizing their performance in biomedical imaging applications. The model shown in this paper, offers 
solutions to enhance accuracy, efficiency, and reproducibility of follicle counting, when comparing the predicted 
labelling and the annotated one.

The approach used in the paper is applied to the mouse ovary but can be extrapolated to ovaries of other 
species, including humans by transfer learning. It is already planned to use proposed method on histological 
slides of sheep and rabbits. In fact, the mouse ovary is considered as a valuable model. It allows to perform 
various genetic modifications, such as gene knockouts and knock-ins. By selectively disabling or altering specific 

Fig. 8.  Follicles counting by the expert and the model on the testing dataset.
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genes, scientists can gain insights into the molecular pathways that regulate follicle growth and health. These 
modifications enable detailed studies of folliculogenesis. Number of follicles per ovary can be counted then in 
both healthy and diseased ovaries such as in PolyCystic Ovary syndrome (PCOs). Moreover, Deep learning is 
transforming how pathologists analyze histological slides, making their work both more efficient and precise. 
For instance, research by35 demonstrated that all slides featuring prostate cancer, along with micro- and 
macro-metastases from breast cancer, could be identified automatically. Remarkably, this process allowed for 
the exclusion of 30 − 40% of slides containing benign or normal tissue, all without the need for additional 
immunohistochemical markers or human intervention. Additionally,36 and37 applied deep learning to analyze 
WSIs in lung and brain cancers, revealing previously unidentified patterns and contributing to the development 
of highly accurate prognostic models. Similarly,38 and39 harnessed deep learning to analyze whole slide images 
(WSIs) for colorectal cancer prognosis, focusing on various aspects such as cancer cell structure and tissue 
morphology. Their efforts resulted in the creation of more precise predictive models for cancer prognosis and 
progression. For liver cancer40, utilized deep learning models to uncover intricate patterns in WSIs, enhancing 
our understanding of the disease’s progression. In another study41, employed deep learning to analyze WSIs and 
identify specific morphological patterns in breast cancer tissues. Their research has significantly contributed to 
developing highly accurate prognostic models, showcasing deep learning’s ability to manage complex and high-
dimensional WSIs effectively42. also explored the use of deep learning with WSIs in bladder cancer prognosis, 
highlighting the potential for tailoring more personalized treatment approaches. Our model can process vast 
amounts of imaging data quickly, allowing for rapid detection and the ability to check morphological changes 
that might be overlooked by the human eye. By leveraging advanced neural networks, deep learning algorithms 

Fig. 9.  Errors analysis of expert and model identification of ovarian structures. This figure presents section of 
ovarian tissue with structures identified by both human expert (Blue bounding boxes) and AI model (Yellow 
bounding boxes). The expert categorized discrepancies into three types of errors: (1) The geniune or real errors 
(Red boxes) : structures identified by experts but missed by the model. These are clear structures that the 
model should have recognized but failed to do so, (2) Allowable erros (Light red boxes) : structures recognized 
by the expert but not labeled by the model due to staining inconsistencies, mounting issues, scanning artefacts, 
or other technical factors, and (3) Errors corrected by the model (Green Boxes) : structures overlooked by 
the expert due to factors such as eye fatigue or intentionally unlabelled (tears in the sections) but correctly 
identified by the AI model. These instances higlight the model’s ability to detect structures that may have been 
missed or intentially omitted by the human expert.
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can automatically identify and classify complex patterns within tissue samples, often catching subtle changes that 
might go unnoticed by the human eye. This technology helps pathologists by highlighting areas of interest and 
prioritizing cases, which can be especially valuable in busy clinical settings. With deep learning, pathologists can 
focus more on interpreting results and making informed decisions, rather than getting bogged down in routine 
analyses. Ultimately, this collaboration between technology and human expertise not only streamlines the 
diagnostic process but also enhances the quality of patient care, paving the way for more personalized treatment 
options.

There are some limitations of this study: (1) the experimental dataset is collected from the same laboratory 
which means we may not have enough diverse images in our training dataset, (2) optimal threshold to count 
the true or false positives remains dependent on the application, and (3) black-box nature of the deep learning 
models which means the thought process behind a particular decision or prediction of DL models is humanly 
non-interpretable due to complex non-linear internal structure and over parametrization.

In the near future, we want to create a larger and more diverse dataset by collaborating with other labs to 
create a more general detection models and to futher improve the MaP score. By inspecting the results manually, 
as discussed above, our model was able to produce predictions where annotator failed to label. In the current 
model, we penalize it for detecting these structure. In future, we will correct these errors and based on these 
intuitions, we will perform experiments to define the optimal threshold for each class separately to count the 
true number of true or false positives.

In biological contexts, understanding the internal workings of deep learning models is crucial, especially 
when trying to identify the most essential features or reasons behind classification or regression tasks. Over 
the past decade, numerous methods have been developed to tackle the problem of the explainability of deep 
learning models, such as feature relevance, local or global explanations, and visualizations [for a review, 
see 43,44]. However, these approaches are not always directly translatable to object detection tasks, which involve 
multiple outputs, such as bounding boxes, object categories, and their locations within the image. In the case of 
classification tasks, our output is normally scalar; however, in the case of object detection, the output is multiple 
bounding boxes per image, i.e., the bounding box coordinates of the detected objects and their category. The 
task is further complicated because of non-max suppression which is applied to eliminate overlapping boxes 
and retain only one box per detected object. It implies that we cannot translate the input to the output via the 
usual gradient, which hinders our ability to technically apply methods such as DeepLift, ShAP, etc. Moreover, 
explanations in object detection models not just needed for the category but also for the location of the objects. 
Generally, there has been a limited effort to tailor explanation methods for object detection models 45–48. These 
approaches cannot systematically be applied to our models because these methods often depend on the specific 
characteristics of the object detectors, such as one-stage or two-stage detectors, presence of anchor boxes 45 (our 
YOLO-based model is anchor-free), absence of individual explanations for the object category and bounding 
box 48. The method proposed in 46 is the model agnostic to generate heatmaps for highlighting the important 
parts of the image, however it is computationally slow and lacks evaluation of the explanation of bounding boxes. 

Fig. 10.  Comparative analysis of False positives (FP) detected by the model and manually by the operator 
before and after analysis of 151 images from the testing set. The light green bars represent the number of FP 
identified by the model with a precision of 0.75. The green bars with diagonal lines (OFP-Before analysis) 
depict the number of FP manually counted by the operator upon initial comparison of the images. The 
green bars with vertical lines show the number of FP (OFP- After analysis) counted by the operator after 
reclassification of errors between Geniune, allowable and corrected errors. The decrease in the number of 
FP observed after manual examination and eror correction by the operator demonstrates the potential of 
enhanced precision and accuracy of the model.
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While these methods contribute valuable insights, further development is necessary to bridge the gap in the 
development of robust explainability tools tailored to object detection. In future, we will work on explainability 
of our object detectors to identify the causes of its predictions for model validation and knowledge discovery. For 
example, in order to improve computational overhead, we can think of explaining the prediction at the layer level 
rather than at the image level. Another future direction could be to work on the quality of the explanation for 
particular locations by using or developing quantitative metrics. Furthermore, we can think of adding domain 
knowledge (such as shape or size) to emphasize the biologically meaningful part of the image. These techniques 
will not only improve model interpretability but also allow for a comparison between the expert annotations 
and model intuitions for model validation and discovery of knowledge. We believe that these steps will further 
improve the performance and usability of our models.

Data availability
The data that support the findings of this study are available from the corresponding author.

Code availability

The scripts are available at the following DOI: 10.5281/zenodo.14192196.
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