
Prediction of white matter 
hyperintensities evolution one-
year post-stroke from a single-
point brain MRI and stroke lesions 
information
Muhammad Febrian Rachmadi1,2, Maria del C. Valdés-Hernández3, Stephen Makin4, 
Joanna Wardlaw 3 & Henrik Skibbe1

Predicting the evolution of white matter hyperintensities (WMH), a common feature in brain magnetic 
resonance imaging (MRI) scans of older adults (i.e., whether WMH will grow, remain stable, or shrink 
with time) is important for personalised therapeutic interventions. However, this task is difficult mainly 
due to the myriad of vascular risk factors and comorbidities that influence it, and the low specificity 
and sensitivity of the image intensities and textures alone for predicting WMH evolution. Given the 
predominantly vascular nature of WMH, in this study, we evaluate the impact of incorporating stroke 
lesion information to a probabilistic deep learning model to predict the evolution of WMH 1-year after 
the baseline image acquisition, taken soon after a mild stroke event, using T2-FLAIR brain MRI. The 
Probabilistic U-Net was chosen for this study due to its capability of simulating and quantifying the 
uncertainties involved in the prediction of WMH evolution. We propose to use an additional loss called 
volume loss to train our model, and incorporate stroke lesions information, an influential factor in 
WMH evolution. Our experiments showed that jointly segmenting the disease evolution map (DEM) 
of WMH and stroke lesions, improved the accuracy of the DEM representing WMH evolution. The 
combination of introducing the volume loss and joint segmentation of DEM of WMH and stroke lesions 
outperformed other model configurations with mean volumetric absolute error of 0.0092 ml (down 
from 1.7739 ml) and 0.47% improvement on average Dice similarity coefficient in shrinking, growing 
and stable WMH.

White matter hyperintensities and their progression
White matter hyperintensities (WMH) are one of the main neuroradiological features of cerebral small vessel 
disease (SVD) and have been commonly associated with stroke, aging, and dementia progression1–3. They are 
often observed in T2-weighted and T2-fluid attenuated inversion recovery (T2-FLAIR) brain magnetic resonance 
images (MRI), appearing as bright regions. Small subcortical infarcts may be indistinguishable from WMH on 
structural MRI in absence of intravenous contrast due to sharing similar image intensity characteristics4, and if 
mistaken for WMH could negatively impact the design of clinical research trials5.

Clinical studies have indicated that some patients exhibit WMH progression over time (i.e., increasing 
in volume)6–8 while some show WMH regression over time (i.e., shrinking in volume)9,10, although these 
are fewer in proportion compared to those reporting an increase in volume10. Another study indicated that 
WMH dynamically change over time with clusters of WMH individually shrinking, staying unchanged (i.e., 
stable), or growing, these being observed at the same time point within the same individual11. These variations 
have been associated with patients’ comorbidities and clinical outcome3,12. A meta-analysis on rate and risk 
factors for WMH volume growth specifically, concluded that these vary with the characteristics of the sample, 
although hypertension, age, baseline WMH volume and smoking seemed to be the main contributors13. And a 
growing number of clinical studies have indicated that, in addition to age8, previous strokes14 and genetics15–18 
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also influence the rate and direction of WMH evolution. But, as one clinical study and another meta-analysis 
acknowledged, current knowledge about factors influencing WMH evolution is still incomplete and poorly 
understood3,10.

Interestingly, despite increasing evidence on WMH burden at baseline being the determinant factor on 
the rate and magnitude of WMH progression (and regression)13, increase in WMH volume has been found 
to be a better predictor of persistent cognitive impairment (i.e., a potential precursor to Alzheimer or vascular 
dementia) than baseline WMH burden19. However, evidence that overall reduction of WMH volume over time 
can prevent functional decline is scarce2. In terms of spatial WMH evolution, a study on patients that had a mild 
stroke of type lacunar found that post-stroke cognition at 1 and 3 years was affected by the location of WMH20. 
But despite evidence on the importance and benefit of studying WMH spatial distribution21, there are limited 
approaches to predict spatial WMH evolution.

Predicting the evolution of WMH is crucial for understanding the dynamics of small vessel disease and 
ultimately provide better care and prognosis for individual patients. It has been suggested that as WMH 
shrinkage may partially be due to interstitial fluid alterations, analysis of WMH evolution constitute a potential 
intervention target3. A review on associations and implications of WMH growth and shrinkage13 mentions 
that several of the studies reviewed assessed potentially treatable risk factors influencing WMH progression. It 
mentions that hypertension was reported to be significantly associated with WMH growth in 18 of the 52 studies 
reviewed, as well as current smoking status, and that modification of these risk factors could improve patient 
outcome. The same publication notes that early interventions may be more successful than when there may 
be a level of cognitive impairment which prevents any improvement in WMH evolution from translating into 
functional benefit13. Another study reports that adding WMH volume to statistical models predicting incident 
or recurrence of stroke or cognitive impairment in hypertensive patients improved the prognostic ability of such 
models to consistently give an excellent prediction, above predictions that used vascular risk and demographic 
factors22. However, prediction of WMH evolution remains a difficult task because of the different rate and 
direction of the evolution of individual WMH clusters and their interplay with other imaging features of vascular 
disease and brain parenchymal changes14. Specifically, 1 year after stroke, reported WMH changes are mild13, 
thus posing an additional challenge for their accurate identification.

Precedent work in estimating WMH evolution
Despite the high accuracy displayed by several fully-automatic deep learning schemes segmenting WMH23, most 
of the algorithms applied in longitudinal studies on WMH evolution have been so far semi-automatic13. Various 
deep learning models have been proposed to predict the spatial evolution of WMH24–26. These studies, have 
represented WMH spatial evolution by a map called disease evolution map (DEM) which indicates the WMH 
voxels that shrink, grow, or remain stable at a further time point. DEM can be generated by subtracting images 
of manually labeled WMH from different time points. Previous studies generated the DEM by subtracting a 
baseline image of semi- or fully-automatically labeled WMH of a patient (Visit 1, V1) from a follow-up image of 
semi- or fully-automatically labeled WMH from the same patient one year after (Visit 2, V2)25,26. An example of 
DEM is visualised in Fig. 1B.

A recently proposed model for predicting the DEM of WMH based on a Probabilistic U-Net27, generates 
multiple DEM predictions for a single brain MRI data26. This model was proposed to solve the challenge of 
representing spatial uncertainty25, given difficulties in distinguishing intensities and textures of shrinking and 
growing WMH in T2-FLAIR brain MRI. Models using Probabilistic U-Net performed significantly better than 
the classical U-Net models in predicting the evolution of WMH using DEM26.

All these previous approaches have focused, almost exclusively, on the image modality as input and the 
appearance of WMH themselves, ignoring other clinically relevant factors. A subsequent study incorporated 
volume of stroke lesions as auxiliary input to the prediction model, but it did not improve the prediction 

Fig. 1.  (A): Brain-extracted FLAIR axial slice of the baseline scan or V1. (B): Visualisation of disease evolution 
map (DEM) of white matter hyperintesities (WMH). Red represents shrinking WMH, green represents 
growing WMH, blue represents stable WMH, and yellow represents stroke lesions. (C): Volumetric progression 
of WMH (in ml) from V1 to V2 (1 year apart) for all subjects from our dataset. (D): shows the distribution of 
volumetric progression of WMH (in ml) based on WMH volume at V1 for all subjects.
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results25. Another study28 used radiomic signatures of the normal-appearing tissue as auxiliary variables to 
vascular risk factors in a logistic regression model to predict general “progression” vs. “no progression” of WMH, 
and reported that radiomics improved the accuracy of the model by approximately 10%, but did not analyse the 
spatial change of WMH. Thus, incorporating clinically associated factors into the predictive model remains a 
challenge for estimating the spatial evolution of WMH.

Related approaches
Studies that develop predictive models for disease progression from medical image modalities using machine/
deep learning can be categorised, generally, into the three different approaches listed below.

	1.	� Approaches predicting the outcomes of a disease. These approaches are commonly used for diseases with 
high rates of mortality and disability. Some examples are those predicting the outcomes of COVID-1929, 
multiple sclerosis30, and traumatic brain injury31,32.

	2.	� Approaches predicting the progression of a disease with regards to the pathological timeline and/or com-
monly associated disease markers. These approaches are commonly used for diseases with multiple stages of 
development and which take time to progress, such as dementia and Alzheimer’s Disease (AD), with mild 
cognitive impairment (MCI) being their transitional stage33. Some examples are predicting conversion of 
MCI patients to AD34, conversion of healthy individuals to MCI and AD35, and predicting the progression of 
multimodal AD markers (e.g., ventricular volume, cognitive scores, etc.)36.

	3.	� Approaches predicting dynamic changes (evolution) of specific disease features. These approaches model 
and predict spatial changes of specific disease features such as evolution of WMH, enlargement of ventricles, 
and brain atrophy. Other examples are predicting lung nodule progression of pulmonary tumour37, predict-
ing dynamic change of brain structures from healthy individuals to MCI and AD patients38, and studies for 
predicting the evolution of WMH in brain images of stroke patients24–26

This study belongs to the third category, in which a predictive model is used to spatially estimate the dynamic 
changes of WMH on an MRI scan at a certain time point. This third category is the most challenging because 
of the complexity and resolution of the data/image being predicted, especially when the time-point estimated 
is close to the baseline scan. While approaches in the first and second categories predict classes which are the 
disease outcomes (e.g., survive, death), classes of disease stages (e.g., MCI, AD), or associated disease markers 
(e.g., age, cognitive scores) from medical imaging data, approaches in the third category predict the evolution 
of disease’s imaging features (e.g., lesions and their volumes) spatially, i.e., throughout the entire image space.

Our contributions
The main contributions of this study are twofold, and show that they considerably improve the prediction of 
WMH volume and spatial change 1 year after a mild-to-moderate stroke event:

	1.	� incorporating stroke lesions’ information to the prediction model and
	2.	�  adding a volume loss to the cost function (formulated as the mean squared error between the predicted and 

the reference future WMH volumes) to improve prediction of WMH evolution voxel-wise.

As part of a comprehensive set of evaluations, We also evaluate the output from our schemes against the clinical 
visual scores for WMH evolution39, and analyse the degree of uncertainty in our predictions.

Proposed deep learning model
Uncertainties are unavoidable when predicting the progression of WMH. Previous studies showed that 
incorporating uncertainties into a deep learning model, either by incorporating Gaussian noise as auxiliary 
input25 or using a conditional variational autoencoder in the shape of a Probabilistic U-Net with adversarial 
training26, improved prediction results, thus justifying the use of a Probabilistic U-Net with adversarial training 
in the present study.

Probabilistic U-Net with adversarial training
The uncertainty associated with the randomness in the dynamism of the WMH clusters is commonly known 
as aleatoric uncertainty40. It constitutes the biggest challenge in predicting WMH evolution, due to differences 
between experts in WMH delineation (i.e., ground truth reliability issues), and difficulty in differentiating 
textures and intensities of shrinking and growing WMH in the T2-FLAIR MRI sequence25. This uncertainty 
cannot be reduced by simply adding more training data40. The use of a Bayesian deep learning model named 
Probabilistic U-Net27 was previously proposed to overcome this challenge, and generated better prediction 
results than non-probabilistic models26. In this study, we modify the previously proposed approach, as Fig. 2A 
schematically illustrates.

The probabilistic U-Net with adversarial training consists of a U-Net configuration43, two variational 
encoders called Prior Net and Posterior Net, and a discriminator network for adversarial training. This study 
used a U-Net as a base segmentation network, and a Probabilistic U-Net for predicting the DEM, as preliminary 
experiments showed that among U-Net configurations it performed best for generating the DEM26. Meanwhile, 
Prior Net and Posterior Net were used for variational inference so that uncertainty in predicting future WMH 
evolution is modeled probabilistically. Prior Net estimates a low-dimensional Gaussian distribution called prior 
latent space by producing its mean(s) and variance(s) from T2-FLAIR MRI at baseline (i.e., V1, denoted xV1). 
Whereas, Posterior Net estimates another low-dimensional Gaussian distribution called posterior latent space 
by producing its mean(s) and variance(s) from the follow-up T2-FLAIR MRI (i.e., V2, denoted xV2) and ground 
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truth DEM (yDEM). In reality, the posterior latent space is unknown because the follow-up T2-FLAIR MRI and 
the ground truth DEM are not present. Because of that, Kullback–Leibler divergence is used during training 
to estimate a posterior latent space from the prior latent space, obtained from the baseline T2-FLAIR MRI. In 
training, a sample zpost is taken from the posterior latent space (zpost ∼ N µpost, σpost) and then broadcasted and 
concatenated to the segmentation network. Multiple predictions of DEM (∧y1

DEM  , ŷ2
DEM , · · ·  y∧nDEM  ) 

can be generated by using multiple samples (Z1
prior, Z2

prior, · · · , zn
prior , ) from the prior latent space (zprior ∼ 

N µprior, σprior). In this study, 30 different DEM predictions were generated from 30 samples of zprior from Prior 
Net for each input data/patient in the inference, and then averaged to get the final DEM prediction. Lastly, a 
discriminator network is used for adversarial training to enforce anatomically realistic DEM from the T2-FLAIR 
MRI at V1 and V2, similar to previous work25. For all network architectures (i.e., the U-Net, Prior Net, Posterior 
Net, and discriminator) we implemented the configurations that performed best in preliminary experiments26. 
The U-Net, Prior Net, Posterior Net, and discriminator have approximately 31.5M, 18.9M, 18.9M, and 13.3M 
trainable parameters respectively.

Incorporation of stroke lesions information
Clinical studies have indicated strong correlations between stroke occurrence and progression of WMH over 
time14. In a previous study25, stroke lesion volume was used as an auxiliary input to a framework designed to 
estimate WMH evolution. However, it was outperformed by using Gaussian noises as auxiliary input representing 
uncertainty. Thus, in this study, we explore how information on stroke lesions can be incorporated into the 
Probabilistic U-Net to better predict the future volume of WMH and their evolution. We propose two different 
approaches: (1) jointly segmenting the WMH DEM and stroke lesions and (2) incorporating probabilistic maps 
of WMH change in relation to stroke lesions’ locations. The second proposed approach is more complex than the 
first proposed approach because it needs multiple preprocessing steps.

Joint segmentation of DEM and stroke lesions
Due to the similar tissue signal intensity of WMH and ischaemic stroke lesions in T2-FLAIR brain MRI, we 
hypothesised that performing a joint segmentation of the WMH DEM and stroke lesions will improve the 
accuracy in the prediction of the WMH DEM because the deep learning model will automatically learn the 
spatial correlation between both features. In this proposed approach, stroke lesions do not need to be excluded 
in the preprocessing steps like in preceding works25,26. This approach can be implemented by adding an output 
channel to the segmentation layer of the segmentation network, thus increasing the number of output channels 
from four channels (i.e., channels for background, shrinking WMH, growing WMH, and stable WMH), to five 
channels. Note in Fig. 1B that the label ‘stroke lesions’ has been added to the DEM of WMH. In this proposed 
approach, the generator (i.e., the U-Net) has 12,032 additional trainable parameters compared to the original 
U-Net.

Probabilistic maps of WMH change in relation to stroke lesions’ locations
Results from a clinical study indicate that there are strong correlations between stroke lesions’ location at baseline 
(V1) and WMH evolution after 1 year (V2)20 for patients with a stroke of type lacunar. Specifically, if stroke 
lesions are subcortical and located in either the centrum semiovale or the lentiform nucleus at V1, then there 
are significant changes to the WMH at V2 (both in volume and location) specific to the location of the stroke 
lesions at V1. This clinical study made available probability maps of WMH change indicating brain locations 

Fig. 2.  (A) Schematic representation of the Probabilistic U-Net27 with adversarial training41 used in this study, 
firstly introduced in a previous work26. (B) Segmentation network of Probabilistic U-Net used in this study, 
which is based on the original U-Net extended into Attention U-Net only when probability maps of WMH 
change are used as auxiliary input. The output channel of C is either 5 or 4 depending on whether stroke 
lesions are jointly segmented or not, respectively. (C) Schematic of additive attention gate (AG) used in this 
study, firstly introduced in42. Input features (xl) are from the U-Net’s skip connection while gating signals (gl) 
are from the gating signal encoder (GSE). Attention coefficients (α) are learned in the training process and 
used to scale input features xl to highlight important areas.
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where changes of WMH are significant at V2 depending on the infarcted region after accounting for vascular 
risk factors (VRF)44.

In this approach, probabilistic maps indicating specific areas of the brain where a previous study showed 
a statistically significantly faster (or larger) growth of WMH after a lacunar stroke, depending on where the 
stroke lesion is located (i.e, centrum semiovale or lentiform nucleus), are used as an auxiliary input to an 
attention U-Net42 within the Probabilistic U-Net’s segmentation network. This is illustrated in Fig. 2B, where 
these probabilistic maps are feed-forwarded through the auxiliary input highlighted in the yellow box. The 
information of the probability maps is encoded through the gating signal encoder (GSE), illustrated as the yellow 
box in Fig. 2B, with outputs used as the gating signals to the U-Net’s feature maps in multiple resolutions (see 
Fig. 2C). The general idea and rationale of this approach is to focus the attention of the segmentation network 
on the areas that have a high probability of WMH change according to the locations of the stroke lesions. This 
approach differs from the joint segmentation approach in the additional input provided to the deep learning 
model. For this approach, we performed brain parcellation and registration of the probability maps (in standard 
image space) to each patient’s space to identify the locations of stroke lesions for each specific patient. In this 
setting, the generator has 32.2M trainable parameters (i.e., 725,140 additional trainable parameters compared 
to the original U-Net).

Similar to the original Attention U-Net42, this study uses an additive attention gate (AG), but obtains the 
gating signals from the GSE instead of from the outputs of the next (coarser) convolutional block. The schematic 
of the additive AG can be seen in Fig. 2C. Input features (xl) are from the U-Net’s skip connections, gating signals 
(gl) are from the gating signal encoder (GSE), α are the attention coefficients learned in the training process 
used to scale input features xl to highlight important areas, L is an element-wise addition, N is an element-wise 
multiplication, and Wg, Wx, and ψ are 1 × 1 × 1 convolution operations.

Configurations of the proposed approach
In this study, we evaluate four configurations of the Probabilistic U-Net (PUNet) segmentation network. We 
compared three methods of incorporating probabilistic maps of WMH and/or stroke lesions with the vanilla 
U-Net as described above. These are: (1) joint segmentation of the DEM of WMH and stroke lesions (i.e., 
denoted as PUNet-wSL), (2) use of the probabilistic maps of WMH change in relation to stroke lesions’ locations 
(i.e., denoted as Att-PUNet), and (3) the combination of both methods (i.e., denoted as Att-PUNet-wSL). All of 
them took 5-8 minutes to train per epoch.

	1.	� UNet: The original U-Net43 is used for segmenting the DEM of WMH.
	2.	� UNet-wSL: The original U-Net43 is used for joint segmentation of the DEM of WMH and stroke lesions.
	3.	� PUNet: Probabilistic U-Net27 with adversarial training26 where the original U-Net43 is used for segmenting 

the DEM of WMH.
	4.	� PUNet-wSL: Joint segmentation of the DEM of WMH and stroke lesions is performed by a Probabilistic 

U-Net27 with adversarial training26 where the original U-Net43 is used for the segmentation network.
	5.	� Att-PUNet: The Probabilistic U-Net’s segmentation network uses the attention U-Net with probabilistic 

maps of WMH change instead of the original U-Net, for segmenting the DEM of WMH.
	6.	� Att-PUNet-wSL: The Probabilistic U-Net’s segmentation network uses the attention U-Net with probabilistic 

maps of WMH change instead of the original U-Net, for joint segmentation of the DEM of WMH and stroke 
lesions.

Experimental setting
This section describes the dataset, training scheme, cost function, and evaluation metrics this study uses. This 
study, and the study that provided the data were conducted in accordance with the Declaration of Helsinki.

Dataset
For comparability of our results with those previously published, we use the same dataset as25, which comprises 
MRI data from n = 152 patients that had a mild-to-moderate stroke and gave informed consent to participate 
in a study of stroke mechanisms3. The study protocols were approved by the Lothian Ethics of Medical Research 
Committee (REC 09/81101/54) and NHS Lothian R+D Office (2009/W/NEU/14), on the 29th of October 2009. 
All patients were imaged with the same acquisition protocol at two time points (i.e., baseline scan (V1), and a 
year after the baseline scan (V2)). In total, 304 MRI from 152 stroke patients (i.e., 152 V1 MRI and 152 V2 MRI) 
were used. Overall increase in WMH volume was identified in 98 of the 152 patients and reduction of WMH 
total volume in 54 patients. The magnitudes of WMH change (in ml) and their distribution for all patients can 
be seen in Fig. 1C and D.

All T2-FLAIR brain MRI were acquired with a GE 1.5T scanner, and a semi-automatic multi-spectral 
method was used to produce several brain masks including intracranial volume, cerebrospinal fluid, stroke 
lesions, and WMH, all which were visually checked and manually edited by an expert45. For the prediction of 
WMH evolution from V1 to V2, T2-FLAIR brain MRI at follow-up (V2) and T2-FLAIR brain MRI at baseline 
(V1) were linearly and rigidly aligned to a common space using FSL-FLIRT46 with the default parameters (i.e., 
trilinear interpolation, and unweighted correlation ratio as cost function. The space transformations were applied 
to all labels (i.e., binary/indexed masks) including manually-derived (i.e., after manually correcting results from 
a semi-automatic segmentation) labels of WMH. The spatial resolution of the images was 256×256×42 with 
slice thickness of 0.9375 × 0.9375 × 4 mm. We generated a DEM for each patient by subtracting the manually 
corrected segmentation of WMH at V1 from the manually corrected segmentation of WMH at V2.
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Data pre-processing for incorporation of probabilistic maps of WMH change
Given the influence of stroke lesion location in WMH change and evolution patterns when the stroke lesions 
are located at the centrum semiovale or the lentiform nucleus20, we only used probability maps of WMH change 
based on stroke lesions incident at centrum semiovale or lentiform nucleus, publicly available from ​h​t​t​p​s​:​/​/​d​a​t​a​s​
h​a​r​e​.​e​d​.​a​c​.​u​k​/​h​a​n​d​l​e​/​1​0​2​8​3​/​3​9​3​4​​​​​.​​

Probability maps in the standard space were obtained from a clinical study20 and then registered to each 
patient’s native space using niftyreg through TractoR47. To identify the location of stroke lesions within a human 
brain, an age-relevant brain template and its corresponding brain parcellation), also publicly available48, were 
registered to each patient’s native space. If there were no stroke lesions at centrum semiovale or lentiform nucleus 
in a patient, then zero matrices were used as probabilistic maps (i.e., there are no specific areas of the brain 
or feature maps that the neural networks should look for via attention). Both probabilistic maps for centrum 
semiovale or lentiform nucleus were concatenated before being used as auxiliary input in the segmentation 
network (see Fig. 2B for illustration).

Training scheme
To facilitate comparability between methods and results, we used the same preprocessing pipeline as previous 
studies25,26. To make sure all patients are used in both training and testing and to avoid overfitting, a fourfold 
cross-validation with 512 epochs was performed, with each fold consisting of 114 MRI for training and 38 for 
testing. In the training phase, we randomly chose 14 out of 114 MRI training data for validation and used that 
to select the best model that produced the lowest validation loss (i.e., error difference during training). Values of 
T2-FLAIR brain MRI were normalised into zero mean and unit variance for each patient. Data augmentations 
of shifting, scaling, horizontal and vertical flips, and elastic transformations were performed.

Cost function
We used three lost functions in training to optimize the different networks. These were: (1) segmentation loss 
(Lseg), (2) probabilistic loss using Kullback–Leibler Divergence (DKL), and 3) adversarial loss (Ladv). We used the 
segmentation loss to compare the output of the segmentation network (i.e., the predicted DEM segmentation) 
against the ground truth of the DEM. The probabilistic loss was used to compare the similarity between prior 
and posterior latent spaces, and the adversarial loss was used to compare the similarity between the ground truth 
DEM and the predicted DEM.

Segmentation loss
For the segmentation loss, we used the weighted focal loss with γ (i.e., focal loss’ hyperparameter) set to γ = 2 
following the recommendation of the original paper49. Equation 1 describes the weighted focal loss function for 
all pixels from an MRI slice where yi,c ∈ {0,1} indicates the class membership for pixel i to class c, pi the predicted 
probability that pixel i belongs to class c, and αc is the weight for class c. The larger the value of αc, the larger the 
contribution of class c to the loss value. P is the random variable for the predicted probability, Y is the random 
variable for the target classes, α are the weights for all classes, N is the number of pixels in an axial MRI slice 
(i.e., N = 256), and M is the number of classes in the DEM (i.e., N = 4 if stroke lesions are not automatically 
segmented and N = 5 if otherwise). Based on our preliminary experiments where we performed a grid search, 
the best weights were αc=0 = 0.25 for background, αc=1 = 0.75 for shrinking WMH, αc=2 = 0.75 for growing 
WMH, αc=3 = 0.5 for stable WMH, and αc=4 = 0.75 for stroke lesions.

	
FL(P, Y, α) =

N∑
i=1

M=4∑
c=0

αcyi,c(1 − pi,c)γ log(pi,c)� (1)

Note that the predicted segmentation of the DEM produced by the Probabilistic U-Net is conditioned to either the 
posterior or the prior latent space. In training, the predicted DEM segmentation is conditioned to the posterior 
latent space defined by zpost ∼ N µpost, σpost and modelled by the Posterior Net. On the other hand, the predicted 
DEM segmentation is conditioned by the prior latent space that is formulated as zprior ∼ N µprior, σprior  and 
modelled by the Prior Net in testing/inference. Thus, the probabilistic segmentation loss Lseg can be formulated 
as Eq. 2, where Y ∧

DEM  is the predicted DEM segmentation and vol (Y ∧
DEM , YDEM) is the newly proposed 

volume loss to avoid over- and under-segmentation in relation to the future volume of WMH (discussed in the 
next section), where each loss has the weight of 1 based on preliminary experiments where we conducted grid 
search.

	 Lseg = FL(P (Y ∧
DEM XV 1,zpost), Y, α) + vol(Y ∧

DEM , YDEM )� (2)

Volume loss
To avoid over- and under-segmentation in relation to the future volume of WMH, a volume-loss (that is 
formulated as Eq. 3) is added to Eq. 2 as regularization term. The term keeps the predicted future volume of 
WMH (i.e., calculated from the predicted DEM (Y ∧

DEM )) close to the reference future volume of the WMH 
(i.e., calculated from the ground truth DEM (YDEM)) by using mean squared error (MSE). Note that only class 
c = 2 (for growing WMH) and class c = 3 (for stable WMH) that matter in the calculation of future volume of 
WMH at V2. A denominator of 1000 was used to estimate the volume of WMH in ml (i.e., as voxel dimensions 
are in mm3). In preliminary experiments, we found that having the same weights for segmentation loss of 
FL(P(Y ∧

DEM |XV1,zpost),Y,α) and volume loss of vol(Y ∧
DEM ,YDEM) in Eq. 3 produced the best results for 

predicting both future volume and spatial dynamic changes of WMH.
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vol(Y ∧

DEM , YDEM ) = MSE

(∑M=3
c=2 ŷc

1000 ,

∑M=3
c=2 yc

1000

)
� (3)

Probabilistic loss
We used Kullback–Leibler Divergence score (DKL) in the training process for training the Prior Net and Posterior 
Net. In this setting, Prior Net and Posterior Net were trained together with the Segmentation Net for predicting 
the DEM. Let Q be the posterior distribution from the Posterior Net and P be the prior distribution from the 
Prior Net. The difference between the posterior distribution Q and the prior distribution P is described by DKL 
in Eq. 4 where XV2 is the T2-FLAIR at V2, YDEM is the true DEM, and XV1 is the T2-FLAIR at V1. Based on our 
preliminary experiments, the dimension for both zpost and zprior is 4 (smaller than the original paper27 which used 
6), and the weight for the probabilistic loss is 1.

	 DKL(Q||P ) = Ezpost ∼ Q, zprior ∼ P [logQ(XV 2, YDEM ) − logP (XV 1)]� (4)

Adversarial loss
Similar to a previous study26, the original adversarial loss proposed by41 was slightly modified by adding 
a segmentation loss (Lseg) so that the Segmentation Net was also optimised to produce better segmentation 
result. Similar to the original paper41, the Segmentation Net aims at minimising Eq. 5 while the discriminator 
network aims at maximising it. In Eq. 5, G is the Segmentation Net, D is the discriminator network, y ∼ 
(XV1,XV2,YDEM) is the joint distribution of T2-FLAIR MRI at V1 and V2 and ground truth DEM (i.e., XV1,XV2, 
and YDEM respectively), x ∼ (XV1,XV2,Y ∧

DEM ) is the joint distribution of T2-FLAIR MRI at V1 and V2 and 
predicted DEM (i.e., XV1,XV2, and Y ∧

DEM  respectively), Ey ∼ YGAN is the expected value over YGAN, and Ex is 
the expected value over XGAN.

	 Ladv = Ey ∼Y GAN [log(D(y))] + Ex ∼XGAN [log(1 − D(G(x))) + Lseg(G(x))]� (5)

Evaluation measurements
In this study, we used the following evaluation measurements to assess the performance of all configurations.

	1.	�  Volume error measures how close the predicted WMH volumes are with the real WMH volumes at the 
follow-up assessment (V2). This is the main performance measurement. Volume error can be calculated by 
using Eq. 6 where volV 2

true is the true volume of WMH at V2, volV 2
predicted is the predicted volume of WMH 

at V2, and volV 2
error  is the volume error.

	 volV 2
error = volV 2

predicted − volV 2
true� (6)

	2.	� Accuracy of prediction assesses how good our proposed models predict WMH evolution for all patients 
(i.e., growing or shrinking). Accuracy of prediction for growing and shrinking WMH (i.e., subjects with 
growing and shrinking WMH are correctly predicted to have growing and shrinking WMH respectively) is 
calculated by the Eqs. 7 and 8 respectively.

�NGRW and NSHR are the number of subjects in our dataset who have growing and shrinking WMH. Whereas, 
PGRW and PSHR are the number of subjects correctly predicted as having growing and shrinking WMH.

	
GRW = PGRW

NGRW
� (7)

	
SHR = PGRW

NSHR
� (8)

	3.	�  Estimated volume interval (EVI) measures the deviation of the predicted WMH volume at follow-up (V2) 
from the lowest and highest possible predicted volumes of WMH26. The lowest and highest possible predict-
ed volumes of WMH at V2 are estimated by ignoring the prediction channel for growing WMH and shrink-
ing WMH respectively. In other words, the lowest possible volume of WMH (dubbed as Minimum Volume 
Estimation or ‘MinVE’) is assumed to occur when there are no growing WMH in the patient’s brain. Where-
as, the highest possible volume of WMH (dubbed as Maximum Volume Estimation or ‘MaxVE’) is assumed 
to occur when there are no shrinking WMH in the patient’s brain. There are 3 metrics in this evaluation: 
“CP” which stands for “Correct Prediction” (calculated by using Eq. 9), “CPinEVI” which stands for “Correct 
Prediction in Estimated Volume Interval” (calculated by using Eq. 10), and “(CP + WP)inEVI” which stands 
for “Correct Prediction + Wrong Prediction but still in EVI” (calculated by using Eq. 11). In these equations, 
P in

GRW and P in
SHR are the number of subjects that are correctly predicted as having growing and shrinking 

WMH and have their estimated volumes of WMH at V2 are located between ‘MinVE’ and ‘MaxVE’. Where-
as, Pin is the number of subjects whose estimated volumes of WMH at V2 are located between ‘MinVE’ and 
‘MaxVE’.
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	4.	� Spearman correlation with Prins clinical scores: The clinical scoring system for progression of WMH, 
known as Prins visual scores39, gives a + 1 for each WMH cluster that increases or appears de nuovo in a 
subsequent scan compared with a previous scan in the periventricular or deep white matter of each lobe (i.e., 
frontal, parietal, temporal and occipital),

�-1 if a reduction in volume or disappearance of a WMH cluster is detected, and 0 if no change can be ap-
preciated. For our evaluation, we summed the overall scores in each region to obtain a total Prins score. We 
calculate the Spearman correlation between the total Prins scores and the spatial volume growth, shrinkage, 
and overall change that each scheme outputs.

	5.	� Spatial agreement between predicted and ground truth DEM is measured by the Dice similarity coefficient 
(DSC)50. Higher values of DSC mean better performance. DSC can be calculated by using Eq. 12, where TP 
is true positive, FP is false positive and FN is false negative. This is a secondary performance measurement as 
predicted future WMH volumes at V2 are calculated from segmentation masks.

	
DSC = 2 × T P

F P + 2 × T P + F N
� (12)

	6.	�  Uncertainty quantification and correlation analysis to measure correlation between uncertainty values in 
predicted DEM and DSC values, is calculated as the Cross-Entropy (CE) between the mean sample and all 
samples as per Eq. 13 where γ is the uncertainty map, s is a set of predictions from an input, sˆ is the mean 
sample of set s, CE is the cross-entropy function, and E is the expected value function.

	 γ(s) = E[CE(s∧, s)]� (13)

Results and discussion
This section shows and discusses the results based on five measurements: predicted future volume of WMH, 
correlation of future volume of WMH with clinical visual scores, spatial agreement based on DSC, qualitative/
visual evaluation, and uncertainty quantification based on CE.

Results on predicting future volumes of WMH
WMH volume change is an important clinical feature for clinical research and could be an important predictor 
of recovery after a stroke if available for clinical practice. Hence, we evaluated how well WMH volume at V2 
(1 year later) can be estimated using our proposed models. Table 1 shows the prediction accuracy of WMH 
volumetric progression (i.e., whether WMH volume will grow or shrink at V2 for each patient) calculated using 
Eqs. 7 and 8 for “GRW” and “SHR”, the estimated volume interval (EVI) calculated using Eqs. 9, 10, and 11 for 
“CP”, “CPinEVI”, and “(CP+WP)inEVI”, and the volumetric error calculated using Eq. 6 for “Volumetric Error”.

As Table 1 shows, PUNet-wSL-vol performed better than the rest of the models, producing either the best or 
second-best results for almost all evaluation metrics except predicting growing WMH (i.e., GRW). There were 
more patients with net growing WMH than with net shrinking WMH in the dataset, thus hinting at a possible 
bias by the other models towards growing WMH. Reduction in WMH volume was mainly observed in patients 
with high WMH volume (see Fig. 3C).

As Fig. 3B shows, the average progression of WMH volume from V1 to V2 (in ml) was well estimated 
by PUNet-wSL-vol (i.e., the yellow dashed line representing PUNet-wSL-vol is coincident with the red line 
representing the ground truth). In general, as expected, models trained using volume loss (Eq. 3), shown in Fig. 
3B, produced more accurate estimations of WMH volume from V1 to V2 than those that did not use volume 
loss during training, shown in Fig. 3A. Furthermore, based on the column “Volumetric Error” in Table 1, models 
jointly segmenting stroke lesions and WMH DEM (i.e., indicated by ‘wSL’ in the “Model’s Name”) improved the 
estimation of the future volume of WMH at V2.

To further analyse the accuracy of the winner scheme in estimating the WMH volume change, we grouped 
the patients in quintiles according to their WMH volume at baseline and, then, calculated the WMH change 
produced by the reference segmentation (i.e., the ground truth) and the PUNet models trained by using volume 
loss with and without jointly segmenting the DEM and the stroke lesions (Fig. 3C). Hence, the dataset is 
subdivided for this analysis into five different groups or quintiles (Q) based on the WMH volume at baseline 
(V1), where Q1 comprises patients with very small WMH load at V1, i.e., WMH at V1 ≤ 3.01  ml (i.e., 30 
subjects), Q2 includes patients with small WMH load at V1 in the interval 3.01 ml < WMH at V1 ≤ 7.56 ml (i.e., 
31 subjects), Q3 includes patients with medium WMH load at V1, i.e., 7.56 ml < WMH at V1 ≤ 19.07 ml (i.e., 
30 subjects), Q4 includes patients with large WMH load at V1, i.e., 19.07 ml < WMH at V1 ≤ 41.31 ml (i.e., 31 
subjects), and Q5 comprises patients with very large WMH load at V1, i.e., > 41.31 ml (i.e., 30 subjects). As can 
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be appreciated from Fig. 3C, the scheme that jointly segmented the stroke lesions and the DEM of WMH change 
produced mean, median, and distribution of WMH volume change values across the sample more similar to 
those from the reference segmentation, than the scheme that only segmented the DEM of WMH change for all 
but the highest quintile.

We also divided the reference WMH segmentations into intense and less intense WMH as per45, and considered 
an ‘extended’ WMH volume that included the WMH surrounding lacunes, thought to be reminiscences of old 
small subcortical infarcts (see Fig. 3C). It can be observed that the volume output from the scheme that jointly 
segmented the stroke lesions with the DEM of WMH change resulted strikingly similar to the one produced by 
this ‘extended’ WMH segmentation (see gray and yellow box plots in Fig. 3B and C, respectively), especially for 
patients in the highest quintile. Patients in this quintile exhibit a high burden of WMH surrounding lacunes 
and coalescing with previous strokes. Therefore, it is expected that not only AI schemes but also experts would 
consider all hyperintensities as part of the white matter disease in the absence of any other sequence or clinical 
information from this patient group. It can also be seen that the reference WMH change (i.e., blue box plot in 
the same figure) is mainly determined by the less intense WMH change (i.e., pale green box plot), therefore 
explaining the difficulty in obtaining accurate growth and shrinking spatial estimates and putting into question 
the accuracy in the spatial estimates of the ground truth segmentations given the degree of observer-dependent 
manual input they had.

Evaluation against clinical visual scores of WMH progression
Figure 4 shows the results from calculating the non-parametric correlations between Prins clinical visual 
scores and the spatial volume growth and shrinkage from each Probabilistic U-Net scheme. The spatial growth 
from all models correlated with Prins scores, with the output from PUNet-vol showing the highest correlation 
following the ground truth (Spearman’s ρ = 0.40 and 0.58, respectively). This correlation slightly improved (i.e., 
to Spearman’s ρ = 0.42) when attention was incorporated in the scheme. Prins showed net shrinkage for only 
six patients, as shrinkage in individual clusters were nullified by growth in others. The ground truth showed the 
worst correlation with Prins in terms of shrinkage (Spearman’s ρ = 0.45), followed by PUNet-wSL (Spearman’s 
ρ = 0.47 without attention and 0.50 with it). The highest correlation values in shrinkage were achieved with 
PUNet-vol without attention (Spearman’s ρ = 0.59), and PUNet with attention (Spearman’s ρ = 0.60). In general, 
in models without attention, WMH shrinkage and growth correlated better with Prins than when attention was 
used. In line with a previous study51, the spatial net change did not correlate with Prins, neither improving when 
attention was used.

Spatial agreement evaluation
We evaluated spatial agreement to see whether the predicted future volumes of WMH closer to the reference 
future WMH volumes are followed by higher spatial agreements between predicted DEM and ground truth 
DEM or not. Table 2 shows performances of all tested configurations using DSC (Eq. 12). The best and second-
best measurement values for each DEM label are written in bold and underlined, respectively. Note that the 
‘Changing’ refers to shrinking and growing WMH combined together as one label, ‘Average’ is calculated by 
averaging DSC values of ‘Shrinking’, ‘Growing’, and ‘Stable’, and ‘Stroke Lesions’ is only available when joint 
segmentation of WMH DEM and stroke lesions are performed.

Model’s name

Prediction↑ Estimated volume interval (n = 152) ↑ Volumetric error

GRW SHR CP CPinEVI (CP + WP)inEVI (std) → 0

UNet43 79.59% 66.67% 67.11% 48.03% 58.55% 1.267 (8.623)

UNet-vol 80.61% 68.52% 67.11% 46.05% 55.26% − 0.194 (8.107)

UNet-wSL 72.45% 64.81% 71.71% 38.16% 47.37% 1.038 (9.427)

UNet-wSL-vol 84.69% 59.26% 71.71% 48.68% 59.87% 0.027 (8.662)

PUNet26 78.57% 46.30% 67.11% 47.37% 61.18% − 1.774 (9.798)

PUNet-vol 83.67% 51.85% 71.71% 46.71% 60.53% − 0.834 (8.657)

PUNet-wSL 75.51% 64.81% 71.71% 48.68% 59.21% 0.227 (10.427)

PUNet-wSL-vol 74.49% 74.07% 74.34% 53.29% 62.50% − 0.009 (9.751)

Att-PUNet 70.41% 79.63% 73.68% 45.39% 55.26% 3.182 (8.447)

Att-PUNet-vol 81.63% 55.56% 72.37% 43.42% 54.61% − 0.555 (9.043)

Att-PUNet-wSL 86.73% 55.56% 75.66% 51.97% 59.87% − 0.598 (10.901)

Att-PUNet-wSL-vol 81.63% 64.81% 75.66% 43.42% 53.95% 0.270 (9.050)

Table 1.  Volume-based evaluation for all models evaluated. There are 98 patients with growing (GRW) and 54 
with shrinking (SHR) volume of WMH. “CP” stands for “Correct Prediction”, “CPinEVI” stands for “Correct 
Prediction in Estimated Volume Interval”, and “(CP+WP)inEVI” stands for “Correct Prediction + Wrong 
Prediction but still in EVI”. Symbol ↑ indicates higher values are better, while symbol → 0 indicates that values 
closer to 0 are better. Each evaluation measurement’s best and second-best values are written in bold and 
underlined, respectively. PUNet-wSL-vol model is highlighted as it emerged as the best-performing model to 
estimate the future volume of WMH.
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From Table 2, we can see that joint segmentation of DEM and stroke lesions with volume loss (PUNet-
wSL-vol) produced the best segmentation results based on DSC for ‘Shrinking’ (0.2290). Furthermore, we can 
see that joint segmentation of DEM and stroke lesions by PUNet-wSL (i.e., without volume loss) and PUNet-
wSL-vol (i.e., with volume loss) produced either the best or second-best DSC values for ‘Changing’ WMH 
(i.e., the combination of ‘Shrinking’ and ‘Growing’ WMH) than the original U-Net, which performed better 
on segmenting ‘Stable’ WMH. This leads to PUNet-wSL-vol’s better performance in estimating the future 
volume of WMH, as shown in Table 1. On the other hand, models with auxiliary input of probabilistic maps 
of WMH change (i.e., Att-PUNet, Att-PUNet-vol, Att-PUNet-wSL, and Att-PUNet-wSL-vol) failed to improve 
the performance of the DEM segmentation while improving the performance of ‘Stroke Lesions’ segmentation. 
Furthermore, models trained using volume loss (i.e., UNet-wSL-vol, PUNet-vol, Att-PUNet-vol, PUNet-wSL-
vol, and Att-PUNet-wSL-vol) produced better DSC values on ‘Average’, which indicates that the volume loss 
impacted positively in the task of estimating the DEM of WMH.

DSC is influenced by TP, FP, and FN counts between ground truth mask and predicted segmentation, but TP, 
FP, and FN counts are highly imbalance in the segmentation of brain lesions. To provide a better illustration of 
the relationship between

DSC and corresponding TP, FP, and FN counts, we present the confusion matrices and a table compiling these 
values from the ‘Shrinking’ WMH and ‘Growing’ WMH labels obtained from PUNet-vol and PUNet-wSL-vol 
configurations (Fig. 5 and Table 3 respectively). Fig. 5 contains the number of segmented voxels corresponding 
to each label (n) from all patients in the testing set, false negative rate (fnr), false positive rate (fpr), true positive 

Fig. 3.  (A, B) Average progression of WMH volume (ml) from V1 to V2 (1 year) for Ground truth and all 
tested models/configurations, where (A) shows models trained without volume loss and (B) shows models 
trained with volume loss. From panels (A) and (B), we can see the proposed volume loss’s effectiveness in 
accurately estimating the future volume of WMH. (C, D) Volumetric WMH change in ml (vertical axes) for 
patients grouped by quintiles (horizontal axes) depending on their WMH volume at baseline V1 (i.e., Q1 
comprises patients with very small WMH load at V1 (WMH at V1 ≤ 3.01 ml), Q2 includes patients with small 
WMH load at V1 (3.01 ml < WMH at V1 ≤ 7.56 ml), Q3 includes patients with medium WMH load at V1 
(7.56 ml < WMH at V1 ≤ 19.07 ml), Q4 includes patients with large WMH load at V1 (19.07 ml < WMH at 
V1 ≤ 41.31 ml), and Q5 comprises patients with very large WMH load at V1 (> 41.31 ml)).
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rate (TPR), and positive predictive value (PPV). Table 3 compiles values of DSC, PRE, REC, FN, and FP for the 
‘Shrinking’ WMH and ‘Growing’ WMH labels from both PUNet-vol and PUNet-wSL-vol configurations. From 
both, Fig. 5 and Table 3, we can see that PUNet-vol produced higher PRE value for ‘Shrinking’ WMH with lower 
FP counts than PUNet-wSL-vol. But PUNet-vol produced lower PRE value for ‘Growing’ WMH as it produced 
higher FP counts than PUNet-wSL-vol in this label/category.

Confusion matrices in Fig. 5, show a high level of uncertainty between ‘Growing’ WMH and ‘Normal’ brain 
tissues as more than 50% of the ‘Growing’ WMH identified in the ground truth DEM were wrongly predicted as 
‘Normal’ tissues (i.e., under-segmentation of ‘Growing’ WMH which leads to higher fnr in the confusion matrix) 
by PUNet-vol and PUNet-wSL-vol configurations with fnr = 0.5339 and fnr = 0.5254 respectively. In extended 
experiments, all proposed configurations were observed producing the same level of under-segmentation for 
‘Growing’ WMH. In general, areas of ‘Growing’ WMH are difficult to differentiate from ‘Normal’ brain tissues 
due to the high level of uncertainty between these two classes. Overall, for the model that jointly segmented the 
stroke lesions and the WMH, mean DSC values were slightly better in this sample.

Although the combined segmentation of WMH and stroke lesions is not the main focus of this study, it must 
be noted that the state-of-the-art joint segmentation method for WMH and stroke lesions (i.e., sub-acute and 
chronic as per in the present dataset)52, which used a UResNet configuration, reported a mean (SD) Dice equal 
to 0.4 (0.252) for stroke lesions segmentation, lower than any of our joint-segmentation schemes (see Table 2).

Fig. 4.  Spearman correlations between the spatial growth in ml (above) and shrinkage in ml (below) from 
each scheme and the Prins clinical visual overall (summed) scores, presented as blue scatter plots and red 
Spearman’s ρ values. In these panels, “GT” represents the ground truth, “PUNet” represents the PUNet, 
“PUNvo” represents the PUNet-vol, “PUNSL” represents the PUNet-wSL, “PUNSv” represents the PUNet-
wSL-vol, and “Prins” represents the total (summed) clinical scores of Prins. Panels on the right show results for 
models that use attention to incorporate stroke lesions information. The bar plots diagonally located in each 
panel are the histograms representing the distributions of “GT”, “PUNet”, “PUNvo”, “PUNSL”, “PUNSv”, and 
“Prins”.
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Qualitative/visual evaluation of spatial agreement between ground truth and predicted 
DEMs
Figure 6A and B show examples of the predicted DEM segmentation from PUNet-wSL-vol and PUNet-vol and 
their corresponding DEM ground truth forpatients with high and low DSC values on ‘Average’ respectively. 
PUNet-wSL-vol and PUNet-vol were chosen for qualitative/visual evaluation as they produced the best and 

Shrinking WMH Growing WMH

DSC ↑ PRE ↑ REC ↑ FN ↓ FP ↓ DSC ↑ PRE ↑ REC ↑ FN ↓ FP ↓
PUNet-vol 0.2107 0.2527 0.2408 220,342 215,635 0.2232 0.2391 0.2569 259,905 279,753

PUNet-wSL-vol 0.2290 0.2295 0.3066 211,424 266,436 0.2112 0.2479 0.2346 262,794 271,775

Table 3.  Comparison of DSC, PRE, and REC values to FN and FP counts for PUNet-vol and PUNet-wSL-vol 
configurations. Symbols ↑ and ↓ indicate that higher and lower values are better respectively.

 

Fig. 5.  Confusion matrices for all labels produced by PUNet-vol and PUNet-wSL-vol configurations from all 
subjects. Abbreviation n stands for number of segmented voxels which can be used to calculate false negative 
rate (fnr), false positive rate(fpr), true positive rate (TPR), and positive predictive value (PPV). Note that TPR 
and fnr are calculated horizontally for each row (true label of DEM). On the other hand, PPV and fpr are 
calculated vertically for each column (predicted label of DEM).

 

Model’s name Shrinking

Dice similarity coefficient (DSC) ↑
Stroke lesionsGrowing Stable Average Changing

UNet43 0.2228 0.2077 0.6609 0.3638 0.3644 –

UNet-vol 0.2239 0.2155 0.6485 0.3626 0.3649 –

UNet-wSL 0.2093 0.2026 0.6420 0.3513 0.3499 0.3588

UNet-wSL-vol 0.2125 0.2189 0.6452 0.3589 0.3579 0.3422

PUNet26 0.2132 0.2137 0.6385 0.3551 0.3633 –

PUNet-vol 0.2107 0.2232 0.6439 0.3593 0.3642 –

PUNet-wSL 0.2217 0.2130 0.6437 0.3595 0.3719 0.4499

PUNet-wSL-vol 0.2290 0.2112 0.6392 0.3598 0.3681 0.4281

Att-PUNet 0.2211 0.1796 0.6302 0.3437 0.3510 –

Att-PUNet-vol 0.2078 0.1981 0.6315 0.3458 0.3471 –

Att-PUNet-wSL 0.1968 0.2045 0.6240 0.3417 0.3543 0.5338

Att-PUNet-wSL-vol 0.1960 0.2077 0.6322 0.3453 0.3536 0.5430

Table 2.  Dice similarity coefficient (DSC) for all model configurations. Symbol ↑ indicates that higher 
values are better. The best values from each measurement are written in bold and and second-best values are 
underlined. As can be appreciated, in this evaluation, the PUNet-wSL models performed better in segmenting 
changing WMH (i.e., the combination of ‘Shrinking’ and ‘Growing’ WMH) than the original U-Net, which 
performed better on segmenting ‘Stable’ WMH. PUNet-wSL-vol had an overall better performance in 
estimating the future volume of WMH, as per Table 1.
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second best DSC values on ‘Average’ (See Table 2). Figure 6A shows that PUNet-wSL-vol, which jointly segments 
WMH DEM and stroke lesions, produced better segmentation results than PUNet-vol, which exhibits a high 
level of uncertainty in predicting shrinking and growing WMH. Confusion matrices in Fig. 5 show that PUNet-
wSL-vol lowered this uncertainty by producing lower rates of fnr (and their corresponding FN counts (n)) for 
shrinking and growing WMH) in most cases. Figure 6B illustrates cases where low DSC values of predicted 
WMH DEM were caused mostly by two reasons: low WMH volume at V1 (patient and MSSB172) and brain 
MRI artefacts (patient MSSB211). Based on our observations, these two problems were relevant throughout the 
sample in our evaluations.

Uncertainty quantification
As all configurations evaluated are based on the Probabilistic U-Net, uncertainty for each label in the DEM was 
quantified by predicting DEM for each subject multiple times. In this study, 30 different DEM predictions were 
generated from 30 samples of zprior from Prior Net for each input data/patient. From these 30 DEM predictions 
per patient data, uncertainty was calculated as the Cross-Entropy (CE) between probability values from all DEM 
predictions and its average as written in Eq. 13.

Figure 7 shows the uncertainty maps for all DEM labels produced by the model that generated the best 
DSC ‘Average’ value, PUNet-wSL-vol, for the whole brain and inside the predicted DEM for a patient. From 
the uncertainty maps for the whole brain, we can see that the uncertainties for shrinking and growing WMH 
encompass larger brain areas than for stable WMH. This finding supports results from evaluating the spatial 
agreement between ground truth and the models’ outputs, indicating lower accuracy in the predictions of 
‘Changing’ WMH (i.e., ‘Shrinking’ and ‘Growing’ WMH) than the predictions of ‘Stable’ WMH. The example 
shown in Fig. 7A has incorrect areas showing uncertainty in the ‘Shrinking’ label (e.g., in the frontal cortex and 
the septum), owed mainly to hyperintense flow artefacts.

Interestingly, in the uncertainty maps, the uncertainty values inside DEM labels of shrinking and growing 
WMH are higher than those inside stable WMH, a consistent finding from this evaluation. This is in-line with 
a previous analysis51 that showed WMH progression and disappearance being associated with the areas of ill-
defined subtle or “less intense” WMH, largely identified as indicative of pre- (and post-) lesional changes. As 
expected, Fig. 7B shows that the uncertainty values inside the predicted DEMs and the DSC values produced 
by PUNet-wSL-vol are negatively correlated for each DEM label (i.e., ‘Shrinking’, ‘Growing’, and ‘Stable’ WMH). 
However, only for the ‘Stable’ WMH (r = 0.75) can higher DSC values of DEM labels be predicted by having 
lower uncertainty values inside the predicted DEM and vice versa. Plots of the correspondence in shrinking and 
growing labels show a wide spread in DSC values especially among those with uncertainty values between 0.7 
and 0.98, that would make any inference of the predictive power of one magnitude over the other inaccurate.

Conclusion
This study proposed deep learning models that incorporate stroke lesions information based on the Probabilistic 
U-Net architecture27 with adversarial training26 trained by using additional volume loss for improving the quality 

Fig. 6.  (A) Examples of predicted DEM produced by PUNet-wSL-vol and PUNet-vol and their corresponding 
DEM ground truth from subjects with high DSC values on average. (B) Examples of predicted DEM produced 
by PUNet-wSL-vol and PUNet-vol and their corresponding DEM ground truth from subjects with low DSC 
values on average. (A, B) Red represents shrinking WMH, green represents growing WMH, blue represents 
stable WMH, and yellow represents stroke lesions. Obvious improvements are highlighted with white 
rectangles.

 

Scientific Reports |         (2025) 15:1208 13| https://doi.org/10.1038/s41598-024-83128-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of predicted future volume of WMH and disease evolution map (DEM) of WMH. Probabilistic U-Net was 
chosen as the baseline method because a preliminary study showed that it performed better than the U-Net26.

We proposed three different approaches for incorporating stroke lesions information into Probabilistic U-Net 
models. These are (1) joint segmentation of DEM and stroke lesions, (2) use of probabilistic maps of WMH 
change in relation to stroke lesions’ locations, and (3) combination of (1) and (2). We proposed to incorporate 
stroke lesions information into deep learning models to predict WMH evolution because stroke is commonly 
associated with the evolution of WMH3. Based on the results from the various experiments, joint segmentation 
of DEM and stroke lesions (approach (1)) was the most effective approach to improve the quality of predicted 
DEM of WMH in all evaluations while also being simpler and more straightforward than the other approaches 
evaluated in this study. The introduction of a volume loss as an additional loss to the scheme substantially 
improved the quality of predicting the DEM of WMH in terms of the future volume of WMH, correlation with 
clinical scores of WMH progression, and spatial agreement in DSC.

This study shows that (1) incorporating factors that have been commonly associated with WMH progression 
(i.e., stroke lesions information) is crucial to produce better prediction of DEM for WMH from brain MRI; (2) 
the best method for incorporating associated factors that can be extracted from the same data/image modality 
involves performing multi-task learning; and 3) in patients with vascular pathology, a multi-class segmentation of 
brain features resulting from symptomatic (i.e. stroke) and asymptomatic (i.e., WMH) vascular events generates 
better results consistent with clinical research. In this study, as stroke lesions appear on the same T2-FLAIR 
MRI sequence as WMH, we performed joint segmentation of DEM for WMH and stroke lesions. However, 
previous clinical studies have shown that there are other non-image risk factors and brain features that have been 
commonly associated with the progression and evolution of WMH, like age8, ventricular enlargement53,54, and 
brain atrophy55. Thus, more (image and non-image) factors could be incorporated in future studies to further 
improve the quality of predicted DEM of WMH, although the best way to incorporate non-image factors to the 
prediction model remains to be found.

This study also has limitations to overcome in future works. The dataset was small in size, impeding a 
quantitative in-depth analysis of the models’ performance in different patient subgroups, e.g., patients stratified 
by age and sex, patients grouped by stroke subtype, etc. Thus, subgroup analyses were carried out visually and 
volumetrically, not spatially. By using only data from patients presenting to a clinic with a mild-to-moderate 
stroke, the generalisability of the proposed approach can be questioned. Therefore, further evaluation in a wider 
and more heterogeneous sample will be needed. The use of DSC in the evaluation needed the binarisation of the 
probabilistic outputs from the models. Limitations in using DSC have been recently acknowledged56. However, 
it must be noted that ground truth segmentations are also binary and observer-dependent. By using different 
quality control metrics in a comprehensive analysis, we have overcome the limitations posed by analyzing 
the spatial agreement using DSC. A probabilistic metric allowing spatial analyses of segmentation results is 
needed. Also, we used probabilistic maps of WMH change for strokes in the lentiform nucleus and centrum 
semiovale based on findings from a clinical study. However, the same clinical study specified that it was not 
possible to ascertain WMH evolution and distribution for patients with strokes in other regions like the thalami 
and midbrain or brain stems due to the limited sample of patients with infarcts in those regions. Incorporating 
findings for more powered studies would be necessary to conclude the usefulness of incorporating attention 
maps into AI schemes. Finally, various schemes for estimating uncertainty in segmentation/classification tasks 
have recently emerged57,58, which would be worth exploring in the future for estimating WMH evolution.
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