
Development and validation of a 
prognostic nomogram model for 
severe osteomyelitis patients
Yunlong Liu1, Yan Zheng2 & Sheng Ding1

After severe infection in osteomyelitis patients in the Intensive Care Unit (ICU), there’s a higher risk 
of mortality. However, limited research exists on predicting prognosis. Develop a predictive model 
for 1-year mortality risk in ICU-admitted osteomyelitis patients to inform clinical diagnosis and 
treatment. MIMIC IV database was used to retrieve ICU data for osteomyelitis patients. The data were 
randomly split into training and validation sets (7:3 ratio). Univariate and multiple logistic regression 
identified independent predictors of one-year mortality and constructed a risk prediction nomogram 
in the training set. Predictive value of the nomogram was assessed using C-indexes, ROC curves, 
DCA, CIC and calibration curves. This study included a total of 1153 osteomyelitis patients, with 137 
deaths within one year. These patients were randomly divided into training (N = 807) and validation 
(N = 346) sets. In the training set, multiple features were identified as key predictors of one-year 
mortality in osteomyelitis patients in the ICU. These factors were incorporated into the nomogram 
model, demonstrating good identification performance, with AUCs of 0.872 and 0.826 for the training 
and validation sets, respectively. The calibration curve and ROC curve indicate excellent predictive 
accuracy. DCA suggests strong clinical utility and robust predictive efficiency. Further analysis through 
CIC illustrates the clinical effectiveness of this predictive model. We have developed a nomogram 
model to predict the 1-year mortality rate for osteomyelitis patients admitted to the ICU, providing 
valuable predictive information for clinical decision-making.
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Osteomyelitis presents a significant challenge in the fields of orthopedics and trauma surgery1. It is an 
inflammatory response involving bone tissue destruction, initiated by infectious factors2. The classification of 
osteomyelitis includes implant-related osteomyelitis (encompassing prosthetic joint infections and infections 
around internal fixation in the spine), infection related to fractures, acute hematogenous osteomyelitis, infections 
in diabetic foot ulcers, septic arthritis, and primary osteomyelitis3.

Literature reports indicate that before the introduction of antibiotic therapy, the mortality rate for severe 
infections of osteomyelitis reached as high as 20%, with an incidence rate of 45–50%4. It wasn’t until the advent 
of systemic antibiotic treatment, coupled with surgical interventions, after 1945 that these figures rapidly 
declined. Systemic antibiotic therapy has reduced the occurrence of severe sepsis caused by osteomyelitis. In 
recent years, the incidence of osteomyelitis has continued to rise, attributed to the increasing prevalence of 
Methicillin-Resistant Staphylococcus aureus (MRSA) infections, surgical implants, and a surge in traumatic 
injuries5,6. Research indicates that over the past 20 years, the incidence of pediatric osteomyelitis has increased 
by 2.8 times7. In the United States, there are 22 cases per 100,000 people annually, and the incidence has been 
steadily rising over time. This trend is particularly notable among the elderly and diabetic patients, with the 
number of admissions to the Intensive Care Unit (ICU) also increasing year by year8. When severe infections 
in patients cannot be controlled, continuous necrosis of bones and tissues occurs, leading to further disruption 
of the internal environment with inflammation factors, electrolyte imbalances, and an exacerbation of systemic 
inflammatory response. This progression can result in sepsis accompanied by multiple organ failure, ultimately 
posing a life-threatening situation9. Therefore, early identification of high-risk factors for adverse outcomes in 
severely ill osteomyelitis patients in the Intensive Care Unit (ICU) is essential. Clinical prediction models can 
provide clinicians with effective information for identifying high-risk patients, making clinical decisions, and 
implementing strategies in a timely manner.
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However, there is currently limited research on predicting the one-year mortality rate of severely ill 
osteomyelitis patients in the Intensive Care Unit (ICU). Therefore, this study has established a model to predict 
the occurrence of one-year mortality in severely ill osteomyelitis patients in the ICU. The model exhibits good 
predictive performance and can provide effective predictive information.

Materials and methods
Sources of data
This study is a retrospective observational investigation that extracted medical records of osteomyelitis patients 
from the MIMIC-IV database. Clinical information of patients hospitalized in the ICU from 2008 to 2019 was 
retrieved from the MIMIC-IV database, which is a publicly available database of patients admitted to the Beth 
Israel Deaconess Medical Center (BIDMC) ICU and is freely accessible to researchers. After completing the 
online training course, the Collaborative Institutional Training Initiative, the authors received a certificate (No. 
38821147) and access to the clinical database. The MIMIC database is a publicly available anonymised database, 
and ethical committee approval was not required.

Data collection and definitions
This study extracted the following information: demographic details, vital signs, complications, laboratory 
parameters, treatment, and severity scores. Demographic information included demographic characteristics 
such as gender, age, BMI, height, weight, marital status, race, admission and discharge times, time of death, and 
duration of ICU stay. Vital signs encompassed systolic blood pressure, diastolic blood pressure, mean arterial 
pressure, oxygen saturation, heart rate, respiratory rate (RR), temperature, and blood glucose. Complications 
included hypertension, diabetes, chronic obstructive pulmonary disease (COPD), kidney injury, and sepsis. 
Laboratory parameters encompassed white blood cell count (WBC), neutrophil-to-lymphocyte ratio, 
hemoglobin, albumin, platelet count, lactate, creatinine, international normalized ratio (INR), PaO2, partial 
pressure of carbon dioxide (PCO2), C-reactive protein (CRP), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), alkaline phosphatase (ALP), calcium, chloride, potassium, sodium, magnesium, red 
cell distribution width, wound microbiota detection, and others. Severity scores included the Sequential Organ 
Failure Assessment (SOFA) score. Treatments included mechanical ventilation and antibiotic use. All data were 
collected within the first 24 h of the patient’s admission to the ICU.

Inclusion criteria: (1) Diagnosis of osteomyelitis; (2) First admission to the ICU. Exclusion criteria: (1) ICU 
stay less than 24 h. The primary outcome was the all-cause mortality rate within one year, determined by the 
admission time and recorded death time in the database. For patients with multiple admissions, we used data 
from the first hospitalization; for repeated examinations, data from the first examination within the first 24 h of 
admission were used.

Missing data handling
Due to the lack of consensus on a universally accepted percentage for missing values, previous studies have used 
thresholds of 60% and 70% to define missing data. In our investigation, however, we have chosen a threshold 
of 50%. Before fitting each model, we assumed that the missing data adhered to a Missing At Random (MAR) 
pattern. In this research, patients or variables with more than 50% missing values were excluded from the 
analysis. Subsequently, the missing values in the database were addressed using the "norm. predict" method in 
Multivariate Imputation by Chained Equation (MICE), wherein each variable is imputed conditionally on all 
other variables. This approach helped to mitigate the impact of missing data and ensured a more comprehensive 
and reliable analysis of the dataset.

Statistical analysis
Data extraction and processing were performed using the PostgreSQL database management system, and 
statistical analysis was conducted using R software (version 4.2.3). The extracted patients were randomly divided 
into two groups: a training set and a validation set, with a ratio of 7:3. All data extracted from the database were 
compared between the survival and death groups, as well as between the training and validation sets. Univariate 
logistic regression analysis was employed to identify predictors of one-year mortality. A multiple logistic 
regression model with a stepwise regression approach was established using these variables. The goodness of 
fit for the multiple logistic regression model was assessed using the Hosmer–Lemeshow (HL) test. Finally, a 
nomogram model with statistically significant parameters was constructed based on the results of the multiple 
logistic regression.

ROC curves were plotted for the training set to assess the discriminative ability of the nomogram model, 
and the area under the ROC curve (AUC) was used for evaluation. Calibration curves were generated to assess 
the consistency between the actual and predicted occurrence rates. Additionally, the calibration was further 
evaluated using 1000 bootstrap resamples to calculate the corrected concordance index (c-index). Furthermore, 
Decision Curve Analysis (DCA) was employed to assess the clinical utility of the nomogram model, and Clinical 
Impact Curve (CIC) analysis was performed to illustrate the clinical effectiveness of the predictive model. The 
effectiveness of the nomogram was further validated using the validation set.

The normality of continuous variables was assessed using the Shapiro–Wilk test. As the continuous variables 
did not follow a normal distribution, they were described using the median (interquartile range) [M(Q1, Q₃)]. 
Between-group comparisons for continuous variables were conducted using non-parametric tests (Mann–
Whitney U test or Kruskal–Wallis test). Categorical variables were presented as counts (percentages), and 
between-group comparisons were performed using the Pearson chi-square test.
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Results
Characteristics of the study cohort
The flow chart of the study is shown in Fig. 1. From the database, 4865 cases of osteomyelitis patients were 
selected. After excluding non-first-time admissions (N = 2238) and patients with ICU stays less than 24 h 
(N = 1474), the remaining 1153 patients were included in the study, with 137 deaths and 1016 survivors within 
one year. There were 712 male and 441 female patients, with a median age of 64.2 [54.9; 72.8] years in the 
survival group and 73.8 [65.1; 81.7] years in the death group. The characteristics of the death and survival groups 
are compared in Table 1. Following a 7:3 ratio, the study subjects were randomly divided into a training set 
(N = 807) and a validation set (N = 346), with both groups having similar characteristics (Supplementary Table 
1), supporting their use for development and validation. The median ages in the training and validation sets were 
66.1 [56.5; 74.7] years and 63.5 [55.2; 72.9] years, respectively, with one-year mortality rates of 12.6% (102 cases) 
and 10.1% (35 cases), respectively.

Results of feature selection
We performed univariate logistic regression analysis on the training set to identify factors associated with one-
year mortality. Subsequently, using a stepwise backward logistic regression method, we determined independent 
predictive variables. After excluding variables with poor predictive performance or significant multicollinearity, 
the following variables with prognostic significance were retained: age, heart rate, systolic blood pressure (SBP), 
mean blood pressure (MBP), albumin, red cell distribution width (RDW), platelet count (PLT), ICU duration 
(Los_icu), sepsis, and International Normalized Ratio (INR) (Table 2).

Fig. 1.  The flow chart of the study.
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Survival (N = 1016) Death (N = 137) p

Age (years) 64.2 [54.9;72.8] 73.8 [65.1;81.7]  < 0.001

Gender 0.866

 Female 390 (38.4%) 51 (37.2%)

 Male 626 (61.6%) 86 (62.8%)

BMI (kg/m2) 28.9 [24.3;34.1] 28.8 [24.3;34.7] 0.849

Weight (kg) 85.3 [69.8;103] 80.1 [64.2;97.0] 0.016

Race 0.910

 Other 332 (32.7%) 46 (33.6%)

 The white race 684 (67.3%) 91 (66.4%)

Marital status 0.023

 No 551 (54.2%) 89 (65.0%)

 Yes 465 (45.8%) 48 (35.0%)

Heart rate 84.0 [75.0;96.0] 87.0 [76.0;97.0] 0.057

SBP 117 [107;131] 110 [103;121]  < 0.001

DBP 61.0 [54.0;69.0] 56.0 [51.0;64.0]  < 0.001

MBP 76.0 [70.0;84.0] 71.0 [66.0;79.0]  < 0.001

RR 18.0 [16.0;21.0] 19.0 [17.0;22.0] 0.016

Temperature (℃) 36.8 [36.6;37.1] 36.7 [36.4;36.9]  < 0.001

Spo2 (%) 97.0 [96.0;99.0] 97.0 [96.0;99.0] 0.337

Hypertension  < 0.001

 No 409 (40.3%) 105 (76.6%)

 Yes 607 (59.7%) 32 (23.4%)

Diabetes 0.451

 No 341 (33.6%) 51 (37.2%)

 Yes 675 (66.4%) 86 (62.8%)

Aki-stage 0.140

 0 475 (46.8%) 50 (36.5%)

 1 277 (27.3%) 44 (32.1%)

 2 159 (15.6%) 24 (17.5%)

 3 105 (10.3%) 19 (13.9%)

Copd 0.532

 No 921 (90.6%) 127 (92.7%)

 Yes 95 (9.35%) 10 (7.30%)

Sepsis 0.002

 No 260 (25.6%) 18 (13.1%)

 Yes 756 (74.4%) 119 (86.9%)

Pathogenic bacteria 0.798

 No 33 (3.25%) 5 (3.65%)

 Yes 983 (96.8%) 132 (96.4%)

Antibiotic: 0.620

 Other 35 (3.44%) 6 (4.38%)

 Vancomycin 981 (96.6%) 131 (95.6%)

Lactate (mmol/L) 1.50 [1.10;2.10] 1.60 [1.30;2.30] 0.020

Hemoglobin (g/dL) 12.1 [10.7;13.4] 10.3 [8.70;11.9]  < 0.001

Creatinine (mg/dL) 1.10 [0.80;1.70] 1.50 [1.00;2.40]  < 0.001

WBC, 109/L 8.50 [6.60;11.9] 10.3 [6.90;13.8] 0.005

Crp (mg/L) 50.5 [11.8;123] 110 [52.1;179]  < 0.001

ALT (IU/L) 22.0 [15.0;34.0] 20.0 [13.0;33.0] 0.278

AST (IU/L) 24.0 [18.0;37.0] 29.0 [22.0;51.0]  < 0.001

ALP (IU/L) 90.0 [69.0;119] 105 [78.0;160]  < 0.001

Albumin (g/dL) 3.60 [3.00;4.10] 2.90 [2.40;3.40]  < 0.001

Ca (mg/dL) 8.80 [8.30;9.30] 8.60 [8.10;9.10] 0.006

Cl (mmol/L) 101 [98.0;104] 100 [97.0;104] 0.381

K (mmol/L) 4.30 [3.90;4.70] 4.40 [3.90;4.80] 0.217

Na (mmol/L) 138 [135;141] 137 [134;141] 0.289

Mg (mmol/L) 2.00 [1.80;2.20] 2.00 [1.80;2.30] 0.076

Continued
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Construction and validation of nomogram
We incorporated the significant predictive factors from the multiple logistic regression analysis of the training 
set into the nomogram for the prognosis of severe osteomyelitis patients (Fig. 2). The nomogram includes 11 
significant predictive factors, and the model’s C-index is 0.867. The model’s effectiveness was confirmed by the 
Hosmer–Lemeshow test (P = 0.167 > 0.05). By summing the scores for each variable in the nomogram, a total 
score was obtained, corresponding to the probability of one-year mortality in the predictive model. Validation 
of the model was conducted through the drawing of ROC curves, calibration curves, Decision Curve Analysis 
(DCA), and Clinical Impact Curve (CIC). The ROC curve analysis results (Fig. 3) showed that the AUC for the 
training set and validation set were 0.872 (95% CI 0.836–0.908) and 0.826 (95% CI 0.755–0.898), respectively, 
indicating that the model has good discriminative ability.

In the calibration curve, the y-axis represents the actual occurrence probability in the study set, and the x-axis 
represents the estimated probability by the model. As shown in Fig. 4, the estimated probabilities align well with 
the actual values, demonstrating good consistency. In the Decision Curve Analysis (DCA) (Fig. 5a), the gray 
diagonal line represents the scenario where all patients receive intervention, and the gray parallel line represents 
the scenario where no patients receive intervention. In the DCA of the training set, we compared three models: 
DCA-train1 model included sepsis, RDW2, age, RDW; DCA-train2 model included sepsis, RDW2, age, RDW, 
Heart Rate, SDP, MDP; DCA-train3 model included sepsis, RDW2, age, RDW, Heart Rate, SDP, MDP, Albumin, 
Platelets, INR, Los_icu.

In the validation set’s Decision Curve Analysis (DCA), the same three models were employed, as shown 
in Fig. 5b. Our models demonstrated a substantial net benefit in both datasets. Clinical Impact Curve (CIC) 
analysis for the training set and validation set further illustrated the clinical effectiveness of the predictive model. 
When the threshold probability exceeded 70%, the predictive model identified individuals as a high-risk group, 
closely matching the actual occurrence population, confirming the extremely high clinical effectiveness of the 
predictive model (Fig. 6).

Discussion
Osteomyelitis, named in 1844, is one of the oldest known diseases in the scientific community. It is an inflammatory 
response process characterized by the destruction of bone tissue caused by infectious agents1,3. This infection 
may arise from the bloodstream, neighboring infectious foci, or even as a result of direct bacterial inoculation 
through traumatic mechanisms. Osteomyelitis can manifest in a single bone tissue or simultaneously involve 
the bone marrow, bone, periosteum, and surrounding soft tissues. In severe cases, the infection intensifies and 
spreads, leading to a worsening inflammatory response. As the infection progresses, the inflammatory lesions 
in osteomyelitis and the inflammatory response further intensify. The continuous necrosis of bones and tissues, 
along with the disturbance of inflammatory mediators and electrolyte balance, results in sepsis accompanied by 
multiple organ failure, ultimately posing a life-threatening risk10,11.

Osteomyelitis poses a significant public health challenge, primarily associated with adverse outcomes1. 
Early identification of osteomyelitis patients in the critical stage is crucial for their prognosis. Currently, there 
is no unified standard for the early identification of critically ill patients, leading to delayed management and 
potentially negative impacts on clinical outcomes. Therefore, this study establishes and validates, for the first 
time, a predictive model for the one-year mortality risk of critically ill osteomyelitis patients admitted to the 

Survival (N = 1016) Death (N = 137) p

PH 7.38 [7.33;7.44] 7.37 [7.31;7.43] 0.080

RDW (%) 14.1 [13.3;15.2] 15.5 [14.5;17.2]  < 0.001

RDW2  < 0.001

 ≧14.5% 403 (39.7%) 106 (77.4%)

  < 14.5% 613 (60.3%) 31 (22.6%)

INR 1.10 [1.00;1.30] 1.30 [1.20;1.60]  < 0.001

Anion gap (mmol/L) 15.0 [13.0;17.0] 16.0 [13.0;19.0] 0.017

Platelets, 109/L 251 [193;320] 200 [145;286]  < 0.001

Mortality 28-day  < 0.001

 No 1016 (100%) 111 (81.0%)

 Yes 0 (0.00%) 26 (19.0%)

Mortality 90-day  < 0.001

 No 1016 (100%) 84 (61.3%)

 Yes 0 (0.00%) 53 (38.7%)

Los_icu (days) 2.37 [1.58;4.24] 3.27 [2.02;8.23]  < 0.001

Table 1.  Demographic and clinical characteristics of the study population. WBC white blood cell; AKI cute 
kidney injury, COPD chronic obstructive pulmonary disease, AST aspartate aminotransferase, ALT alanine 
aminotransferase, ALP alkaline phosphatase, CRP C-reactive protein, SBP Systolic blood pressure, DBP 
Diastolic blood pressure, MBP mean blood pressure, INR intenational normalized ratio, RDW red blood cell 
distribution width, RR respire rate, Spo2 Oxygen saturation, Los_icu length of stay in ICU.
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ICU. As a visual model, the nomogram quantifies the impact of each predictive variable on the outcome. The 
nomogram model is simple, applicable, and facilitates better and more effective clinical decision-making12.

In this study, we retrospectively analyzed data from 1153 patients with osteomyelitis admitted to the ICU. 
Based on demographic information, laboratory test indicators, and complications of these patients, we employed 
univariate and multiple logistic regression to identify independent risk factors. Subsequently, a nomogram 
predicting the one-year mortality risk of critically ill osteomyelitis patients was constructed. The nomogram 
model included 11 significant predictive factors: age, heart rate, systolic blood pressure (SBP), mean blood 
pressure (MBP), albumin, red cell distribution width (RDW), platelet count (PLT), ICU duration (LOS), sepsis, 
International Normalized Ratio (INR), and RDW < 14.5%. The nomogram model based on these variables 
demonstrated an AUC greater than 0.8 in both the training set and the validation set, indicating good predictive 
accuracy.

Our results indicate that age, heart rate, systolic blood pressure (SBP), mean blood pressure (MBP), albumin, 
red cell distribution width (RDW), platelet count (PLT), ICU duration (LOS_ICU), and International Normalized 
Ratio (INR) are important predictors of one-year mortality in osteomyelitis patients in the ICU. Additionally, 
patients with osteomyelitis who also have sepsis are at a higher risk of mortality.

Age is a significant prognostic factor for severe osteomyelitis patients8,13. According to the literature, patient 
age is closely associated with higher mortality, more adverse events, and prolonged hospitalization14,15. The risk 
of mortality increases with age, with patients aged 80 and above having an odds ratio (OR) of 1.81. In this study, 
we found that age is an independent risk factor for the prognosis of severe osteomyelitis patients (OR = 1.073, 

Univariate analysis Multivariate analysis

P OR 95%CI P OR 95%CI

Age  < 0.001 1.047 1.03–1.065  < 0.001 1.073 1.05–1.097

HR 0.031 1.014 1.001–1.027 0.021 1.021 1.003–1.039

SBP 0.004 0.981 0.969–0.994 0.017 0.968 0.942–0.994

DBP 0.042 0.979 0.959–0.999 0.079 0.950 0.896–1.005

Albumin  < 0.001 0.345 0.255–0.462  < 0.001 0.359 0.241–0.528

Crp  < 0.001 1.006 1.003–1.008 0.009 1.004 1.001–1.007

RDW  < 0.001 1.440 1.31–1.589 0.039 1.183 1.008–1.388

Platelets  < 0.001 0.996 0.994–0.998  < 0.001 0.996 0.994–0.998

Los_icu 0.005 1.034 1.01–1.059 0.002 1.043 1.012–1.072

INR  < 0.001 1.811 1.443–2.278 0.046 1.345 0.999–1.796

Marital status 0.071 0.673 0.435–1.029 0.056 0.595 0.347–1.007

MBP 0.021 0.977 0.957–0.996 0.042 1.075 1.004–1.156

Mg 0.023 1.853 1.08–3.129 0.075 1.741 0.94–3.202

Weight 0.354 0.996 0.988–1.004

Ca  < 0.001 0.656 0.514–0.836

K 0.145 1.215 0.929–1.569

Cl 0.690 0.992 0.956–1.03

Sepsis 0.007 2.236 1.281–4.191 0.952 1.022 0.509–2.15

RDW < 14.5%  < 0.001 0.163 0.096–0.265 0.002 0.309 0.144–.649

RR 0.103 1.044 0.99–1.099

Lactate 0.166 1.100 0.951–1.252

Creatinine 0.075 1.090 0.985–1.194

Anion gap 0.23 1.031 0.979–1.082

Hemoglobin  < 0.001 0.693 0.621–0.771

Aki_Stage

 1 0.069 1.586 0.961–2.605

 2 0.256 1.424 0.757–2.583

 3 0.207 1.545 0.760–2.970

COPD

YES 0.897 0.953 0.430–1.885

Antibiotic

Vancomycin 0.730 0.826 0.310–2.862

ALT 0.097 1.001 1–1.001

AST 0.116 1.000 1–1.001

WBC 0.229 1.010 0.991–1.031

Table 2.  Logistic regression analysis of risk factors for 1 year mortality in ICU patients with severe 
osteomyelitis.
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95% CI 1.05–1.097, P < 0.001). As age increases, patients experience a decline in physiological function and 
immune capacity, an increase in the number of comorbidities, and reduced resilience to stress from trauma, 
anesthesia, and surgery. This results in a higher incidence of complications and an increased mortality rate 
following osteomyelitis.

When osteomyelitis infection becomes severe and leads to systemic inflammatory response syndrome (SIRS), 
changes in heart rate and blood pressure may become more pronounced. Research suggests that abnormalities in 
blood pressure indices and heart rate are independent risk factors for severe infections, significantly associated 
with patient mortality and ICU hospitalization duration. They are also important indicators for determining 
the prognosis of patients with severe infections19,20. Our study confirmed that heart rate (OR = 1.021, 95%CI 
1.003–1.039, P = 0.021), systolic blood pressure (OR = 0.968, 95%CI 0.942–0.994, P = 0.017), and mean arterial 
pressure (OR = 1.075, 95% CI 1.004–1.156, P = 0.042) are independent risk factors for the prognosis of severe 
osteomyelitis patients.

Reduced serum albumin levels are commonly observed in critically ill patients21. As a multifunctional blood 
component, albumin plays a crucial role in maintaining plasma osmotic pressure and capillary permeability. 
It serves as a carrier and ligand for both endogenous and exogenous compounds, and also exhibits anti-
inflammatory, antioxidant, and antiplatelet aggregation effects22. Numerous international studies indicate that 
hypoalbuminemia decreases disease tolerance in patients and is an independent risk factor for increased in-
hospital and post-discharge mortality, as well as poor prognosis in critically ill patients23–26. In our study, a 
statistically significant difference in albumin levels was observed between the deceased and surviving groups 
(p < 0.05). Single-factor logistic regression analysis indicated that albumin is a risk factor for the one-year 
mortality rate in severe osteomyelitis patients. After adjusting for confounding factors in the multiple logistic 

Fig. 3.  ROC curve analysis results of training set (a) and validation set (b).

 

Fig. 2.  A nomogram of 1-year mortality risk.
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regression analysis, albumin (OR = 0.359, 95% CI 0.241–0.525, P < 0.001) remained an independent risk factor. 
As the condition worsens, the synthesis of albumin by the liver significantly decreases. The longer the duration 
of low albumin levels, the more severe the condition, leading to a poorer prognosis.

In this study, we also found that red cell distribution width (RDW) (OR = 1.183, 95% CI 1.008–1.388, 
P = 0.039) is associated with the one-year mortality rate in severe osteomyelitis patients, with a lower one-year 
mortality rate observed in patients with RDW < 14.5%. Studies have indicated that a higher RDW is predictive 
of an increased risk of mortality in patients with severe infections27,28. The elevation of RDW has been linked to 
elevated inflammatory markers such as C-reactive protein, erythrocyte sedimentation rate, and interleukins29. 
Inflammatory cytokines can influence the survival of red blood cells in circulation, promoting deformability 
of red blood cell membranes, inhibiting red blood cell maturation, leading to the entry of younger and larger 
reticulocytes into the peripheral circulation, thereby increasing RDW30,31. This may be the reason for the 
elevated red cell distribution width (RDW) in severe osteomyelitis patients with systemic infections. RDW has 
also emerged as an important predictive factor for mortality in patients with severe infections.

Coagulation dysfunction is commonly present in patients with severe infections. In the early stages of 
infection, the body’s inflammatory response activates the coagulation system disparately. The inflammatory 
response and coagulation reactions are closely interconnected, mutually promoting each other, thereby initiating 

Fig. 5.  (a) The results of the decision curve analysis in the training set; (b) the results of the decision curve 
analysis in the validation set.

 

Fig. 4.  (a) The results of the calibration curve analysis in the training set; (b) the results of the calibration 
curve analysis in the validation set.
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a cascade reaction in the coagulation system, leading to coagulation dysfunction32,33. The coagulation dysfunction 
in patients with severe infections is a dynamic and continuous pathological process. The pathogenesis involves 
an imbalance driven by the upregulation of procoagulant mechanisms, downregulation of natural anticoagulant 
mechanisms, and inhibition of the fibrinolysis system. This imbalance results in microvascular fibrin deposition, 
thrombus formation, microcirculatory dysfunction, and may ultimately lead to multiple organ dysfunction 
syndrome (MODS)34,35. Multifactor logistic regression analysis in this study found statistically significant 
differences in platelet count (OR = 0.996, 95%CI 0.994–0.998, P < 0.001) and the international normalized ratio 
(INR) (OR = 1.345, 95%CI 0.999–1.796, P = 0.046) with respect to the mortality rate in patients with severe 
osteomyelitis infections. The clinical condition of patients with severe osteomyelitis infections is often complex, 
and their ICU stay is generally prolonged.

Yagdiran et al. reported a retrospective analysis of 155 patients with pyogenic vertebral osteomyelitis, finding 
that 21.9% of patients exhibited symptoms of sepsis, with a high in-hospital mortality rate of 12.9%36,37. The 1-year 
and 2-year mortality rates were 20% and 23%, respectively. They identified organ dysfunction as a risk factor 
for increased mortality. This is consistent with our study, where there was a statistically significant difference in 
the occurrence of sepsis between the survival and non-survival groups (P < 0.05). The probability of sepsis in 
severely ill osteomyelitis patients is considerable, emphasizing the critical importance of early recognition of 
sepsis in patients with severe osteomyelitis infections.

Our predictive model’s AUC is greater than 0.7, indicating good predictive capability. It fills the gap in 
predicting the one-year mortality rate of severe bone marrow infection patients admitted to the ICU. Our 
predictive model enables clinicians to identify the risk of death in severe bone marrow infection patients early 
on and develop targeted treatment plans based on risk factors, thereby reducing the occurrence of mortality and 
improving patient prognosis.

However, this study has some limitations. Firstly, our model has only been validated internally and has not yet 
been externally validated in a concentrated dataset. We plan to conduct further research in the future. Secondly, 
due to the limited types of variables in public databases, some variables of interest, such as data on procalcitonin 
and erythrocyte sedimentation rate (ESR), were not included in the study.

Conclusion
According to our study results, age, heart rate, systolic blood pressure (SBP), mean blood pressure (MBP), 
albumin, red cell distribution width (RDW), platelet count (PLT), ICU duration (Los_icu), International 
Normalized Ratio (INR), and sepsis are all significant predictors of one-year mortality in severe osteomyelitis 
patients. Based on these risk factors, we have established and validated a nomogram model. Clinicians can use 
this model to identify high-risk patients and make optimal medical decisions for treatment and recovery.

Data availability
The dataset used in this study can be found on the online website of the MIMIC-IV database. Anyone who meets 
the requirements for database usage can access the database.
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