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Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the 
pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-
related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 
105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping 
the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory 
related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways 
by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 
key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and 
selection operator regression analysis and converted them into human genes. The ROC curve indicated 
that Alox5ap expression presented a high accuracy in distinguishing between different groups. By 
CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 
immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared 
to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play 
a role in the development of ARHL, providing a deeper understanding of the underlying causes of this 
disease.

Age-related hearing loss (ARHL), also referred to as presbycusis, is the most common chronic sensory deficit 
among older individuals. It is described as a gradual, bilateral, symmetrical sensorineural hearing loss that 
occurs with age, particularly affecting higher frequencies1. Emerging evidence suggests that individuals with 
ARHL have more chance to experience social isolation, depression, and cognitive decline2,3. Besides the health 
and social burden, ARHL also causes a remarkable economic cost. Due to the projected rise in life expectancy, 
the yearly expenses linked to ARHL are expected to reach approximately $60 billion by the year 20304. Given 
the enormous economic and social burden resulting from ARHL, there is a pressing requirement for successful 
interventions to alleviate auditory decline associated with aging.

By 2017, it was estimated that age-related and other acquired hearing loss affected approximately 1.3 billion 
humans worldwide, while the population with hearing loss due to other congenital anomalies reached 25 million5. 
However, compared with hereditary hearing loss, there is no clear explanation for the etiology and pathogenesis 
of ARHL. Knowledge of the potential molecular mechanisms of this condition could help explore promising 
therapeutic interventions. Genetic and environmental factors usually jointly participate in the occurrence and 
development of this disease. Many studies of the pathophysiological mechanisms underlying ARHL focused 
on mitochondrial dysfunction6, oxidative stress7, and apoptosis8–10, while there has been little attention paid 
to inflammation and immune responses in aging inner ear. Consequently, our research primarily aimed to 
thoroughly identify inflammation-related genes associated with ARHL and comprehensively understand the 
relevant biological processes and pathways.
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For an extended period of time, the cochlea was considered an “immune-privileged” organ because of 
the presence of the blood-labyrinth barrier (BLB)11. Recent studies have uncovered the existence of resident 
macrophages in various parts of the cochlea, such as the lateral wall, basilar membrane, and spiral limbus12. 
These macrophages can respond to various harmful stimuli, such as mitochondrial damage, ischemia, noise 
exposure, and surgical stress13–15. Evidence suggests that chronic, low-level inflammation may be associated 
with age-related hearing issues16. Throughout the aging process, there is a persistent, non-infectious, low-grade 
inflammation that contributes to the development of age-related illnesses17. ARHL has been linked to plenty 
comorbid conditions, including frailty, dementia, Alzheimer’s disease, and type II diabetes1,18–21. A common 
characteristic of these conditions is the presence of chronic inflammation in the affected organs22. Several 
recent reviews evaluate the possible link between inflammation and ARHL systematically, suggesting that 
the immune response and inflammation are significant factors in the onset and development of ARHL23,24. 
Cheng et al. performed comprehensive bioinformatic and machine learning methods to identify the critical 
genes of ARHL and found that these genes were mainly associated with inflammation, immune response, and 
infection25. Increasing evidence indicates that inflammaging serves as a crucial pathophysiological mechanism 
underlying ARHL26. Recent studies reveal the effectiveness of anti-inflammatory treatment in mouse model of 
presbycusis27–29. However, Inflammatory related genes (IRGs) of ARHL remain largely unknown and require 
additional investigation, which would identify potential biomarkers for ARHL treatment.

In this study, we acquired data from the Gene Expression Omnibus (GEO) database, specifically GSE49522, 
GSE49543, and GSE6045. Subsequently, we identified the Inflammatory related differentially expressed genes 
(IRDEGs) linked to ARHL and performed enrichment analysis on IRDEGs using Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, we utilized Least absolute shrinkage and 
selection operator (LASSO) regression analysis to pinpoint key IRDEGs and converted them into human genes. 
We then used CIBERSORT to assess changes in immune infiltration between ARHL group and controls. The 
MCPcounter algorithm was applied to evaluate the relationship between our identified humanized key genes 
and immune infiltration levels. Additionally, we conducted Gene Set Enrichment Analysis (GSEA) and Gene 
Set Variation Analysis (GSVA) on both high and low-risk groups and established interaction networks for 
mRNA-miRNA, mRNA-transcription factor (TF), and mRNA-RNA-binding protein (RBP). Finally, the clinical 
diagnostic significance of IRDEGs in ARHL was studied using Logistic regression analysis. Therefore, this 
comprehensive bioinformatics investigation sheds light on potential IRGs, offering insights into the underlying 
mechanisms of ARHL and proposing new therapeutic targets for this condition.

Methods
Data download
We obtained datasets related to ARHL from GSE49522, GSE4954330 and GSE604531 in the GEO database using 
the GEOquery32 package. These datasets, characterized by their large sample sizes and reliable experimental 
designs, effectively reflect the expression of genes associated with ARHL, thereby providing a solid foundation 
for our research.

GSE49522 is derived from Mus musculus, with the data platform file being GPL339 [MOE430A] Affymetrix 
Mouse Expression 430A Array. We used the expression profile data of 5 cases of severe presbycusis samples 
(group: ARHL) and 8 cases of normal samples (group: Normal) in this study.

The dataset GSE49543 comes from Mus musculus, and the data platform file is GPL339 [MOE430A] 
Affymetrix Mouse Expression 430A Array. We included the expression profile data of 6 cases of severe presbycusis 
samples (group: ARHL) and 9 cases of normal samples (group: Normal) in this study.

The dataset GSE6045 comes from Mus musculus, and the data platform file is GPL339 [MOE430A] Affymetrix 
Mouse Expression 430A Array. This study included the expression profile data of 3 samples categorized as having 
moderate presbycusis (grouping: Moderate presbycusis) and 3 samples categorized as having severe presbycusis 
(grouping: Severe presbycusis).

IRGs were obtained from the GeneCards database33, a resource that offers thorough details on human genes. 
A search utilizing the keyword “Inflammatory” yielded 732 IRGs that met the criteria of being “Protein Coding” 
with a Relevance score > 5. In addition, we used “Inflammatory” as the search keyword to collect 200 IRGs in the 
published literature on PubMed website34,35. After merging and deduplication, we finally obtained 768 IRGs. See 
Supplementary Table S1 for specific information.

Differentially expressed genes related to presbycusis
When identifying differentially expressed genes, standard differential expression analysis methods were used 
to accurately find IRDEGs and lay the foundation for subsequent enrichment analysis. To uncover the intrinsic 
mechanisms of distinct genes in ARHL and the associated biological features and pathways, we combined the 
ARHL data from GSE49522 and GSE49543, followed by batch effect removal using the R package (sva package). 
The limma package standardized the merged dataset to create the presbycusis dataset.

After merging the dataset, differential analysis was conducted using the limma package36 to identify 
differentially expressed genes (DEGs) between the Normal and ARHL groups, with | logFC | > 0 and P < 0.05 
as the criteria. Our study primarily aimed to identify inflammation-related genes associated with ARHL, so the 
choice to use a threshold of | logFC | > 0 in the initial step was to include as many relevant genes as possible to 
suit the specific objectives and context of our study. Moreover, | logFC | > 0 was also employed as the screening 
criterion in relevant literature37 to identify differentially expressed genes with biological significance. First, this 
threshold allows us to capture genes that may be important in presbycusis research but whose expression does 
not change much. Secondly, considering the diversity of samples, we believe that the inclusion of these genes 
will help to comprehensively understand the molecular mechanism of ARHL. The genes identified through 
this method were designated as DEGs for subsequent investigation. Specifically, genes with logFC > 0 and 
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P < 0.05 were classified as up-regulated DEGs (up regulated genes), while those with logFC < 0 and P < 0.05 were 
categorized as down-regulated DEGs (down regulated genes).

To acquire the IRDEGs linked to ARHL, we calculated the intersection of the merged dataset’s DEGs and 
IRGs and visualized the results using a Venn diagram. The outcomes from the differential analysis were generated 
using the R package ggplot2, showcasing a volcano plot. A heat map depicting IRDEGs was crafted utilizing the 
R package pheatmap.

Functional enrichment analysis (GO) and pathway enrichment analysis (KEGG) of differential 
expressed genes
GO and KEGG enrichment analysis help us understand the biological functions of IRDEGs and their role in 
specific biological processes. Analyzing GO38 is a commonly used technique for extensive investigation into 
functional enrichment, encompassing biological process (BP), molecular function (MF) and cellular components 
(CC). KEGG39 stands out as a popular repository housing data on genomes, biological pathways, ailments, 
pharmaceuticals, among others. Utilizing the R package clusterProfiler40, we conducted GO annotation analysis 
on IRDEGs. Criteria employed for entry screening included P.value < 0.05 and FDR value (q.value) < 0.05, with 
Benjamini-Hochberg (BH) serving as the correction method for P values.

GSEA
GSEA41 aims to assess the pattern of gene distribution within a predefined gene set listed in the gene table 
arranged by their correlation with the phenotype, in order to determine their impact on the phenotype. In 
this investigation, the logFC metric serves as the marker for molecules ranking to assess potential significant 
enrichment within the predefined gene set. Subsequently, the clusterProfiler toolkit is utilized to conduct 
enrichment analysis on all genes associated with the phenotype. The parameters utilized in the GSEA enrichment 
analysis encompass: the initial seed set at 2020, conducting 1000 calculations, a gene set size ranging from a 
minimum of 10 to a maximum of 500 genes, and employing BH as the method for P value correction. The gene 
set “c2.cp.v7.2.symbols.gmt” from the Molecular Signatures Database (MSigDB) was acquired for GSEA analysis 
on the expression of genes within the combined dataset. The standard for significant enrichment classification 
was defined as P.value < 0.05 and FDR value (q.value) < 0.25.

GSVA
GSVA42 is a non-parametric and unsupervised method that is used to analyze gene expression differences between 
samples by converting the expression matrix of genes into the expression matrix of gene sets. Quantitative matrix 
was taken to evaluate the enrichment of gene sets in the microarray nuclear transcriptome. In order to assess 
the enrichment of various pathways across samples, we utilized the gene set “m2.all.v2022.1.Mm.symbols.gmt” 
from the MSigDB database. By conducting GSVA on the combined dataset, we were able to calculate differences 
in functional enrichment between groups.

The use of GSEA and GSVA allows us to evaluate the differences in biological pathways between high- and 
low-risk groups.

LASSO regression analysis to screen IRDEGs
LASSO regression analysis can be used to perform variable selection and regularization at the same time to 
identify the most critical IRDEGs, reduce model complexity, and avoid overfitting. To identify IRDEGs, we 
initially utilized the glmnet package for conducting LASSO regression43 on IRDEGs by using the “binomial” 
as the parameter family and a ten-fold cross-validation method ADDIN EN. CITE. We performed 1000 iterations 
to avoid overfitting. LASSO regression is a popular machine learning algorithm for model development by 
incorporating a penalty term (lambda × absolute slope) and using regularization within linear regression to 
address overfitting and enhance the model generalization.

	
riskScore =

∑
iCoefficient (genei) ∗ mRNA Expression (genei)

We then determined the penalty coefficient (lambda) for the identified IRDEGs in the LASSO regression 
diagnostic model and computed the risk score of the diagnostic model based on these IRDEGs. Furthermore, we 
utilized the R package RCircos to map the identified IRDEGs to human genes, with annotations of the positions 
of human chromosomes. Subsequently, we focused on analyzing the IRDEGs that were identified through the 
LASSO regression analysis.

Immune infiltration assay (CIBERSORT)
CIBERSORT is a tool available on the website (https://cibersortx.stanford.edu/)(44) that utilizes linear support 
vector regression to analyze the expression matrix of human immune cell subtypes. By assessing gene expression 
signatures of 22 known immune cell subtypes, this tool can determine the infiltration status of immune cells in 
sequencing samples. In our research, we utilized the CIBERSORT algorithm to assess immune cell infiltration in 
a combined dataset. Initially, we compared the infiltration patterns of 22 immune cell types in both the ARHL 
and Normal groups, creating a visual representation of the differences. Subsequently, we selected the immune 
cells with significant infiltration differences to draw cell maps which presented correlations among immune cells.

Immune infiltration analysis (MCPcounter)
The presence of immune and other stromal cells within the cochlea was assessed using MCPcounter45. This tool 
provides estimates of the quantities of eight immune cell types, specifically CD4+ T cells, CD8+ T cells, natural 
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killer (NK) cells, B lymphocytes, monocytes, dendritic cells, neutrophils, and Toxic lymphocytes (comprising 
CD8+ T cells and cytotoxic innate lymphoid NK cells). Additionally, MCPcounter also calculated the quantities 
of two types of non-immune stromal cells-fibroblasts and endothelial cells. A Spearman correlation analysis was 
conducted according to MCPcounter abundance estimation and the expression of antigen genes, with statistical 
significance defined as p < 0.05.

The application of CIBERSORT and MCPcounter algorithms allows us to quantitatively analyze the 
infiltration of different immune cells in the ARHL group and control group, thereby exploring the relationship 
between immune response and ARHL, which is crucial for understanding the underlying mechanism of ARHL.

Clinical evaluation of IRDEGs
In order to investigate the diagnostic significance of IRDEGs for ARHL, a Logistic regression analysis was 
conducted on the IRDEGs expression in the merged dataset to develop a Logistic regression model. Subsequently, 
the R package rms was utilized to create a nomogram based on the outcomes of the Logistic regression analysis. 
The nomogram consists of a series of disconnected line segments plotted on a Cartesian coordinate system to 
represent the functions between multiple independent variables. Through the multi-factor regression analysis, 
each variable in the model was assigned a score and described using a specific scale. By summing the scores, the 
probability of event occurrence could be estimated.

The calibration plot is used to assess how well the model’s predictions align with the actual results by displaying 
the relationship between the predicted and observed probabilities in various scenarios. This graph is primarily 
utilized to evaluate models created using Logistic regression and to analyze how well they fit the observed data.

DCA, or decision curve analysis, is a straightforward approach to assess the performance of clinical prediction 
models, diagnostic tests, and molecular markers. Finally, the R package ggDCA was utilized for creating DCA 
plots to evaluate the accuracy and resolution of the Logistic regression model.

Construction of mRNA-miRNA, mRNA-TF, mRNA-RBP interaction network
The construction of mRNA-miRNA, mRNA-TF, and mRNA-RBP interaction networks further reveals the 
regulatory relationships between key genes, thereby providing important clues for the biological mechanisms 
and potential therapeutic targets of ARHL.

The ENCORI46 database (https://starbase.sysu.edu.cn/) represents the upgraded version 3.0 of the starBase 
database, which showcases various interactions including miRNA-ncRNA, miRNA-mRNA, ncRNA-RNA, 
RNA-RNA, RBP-ncRNA, and RBP-mRNA. These interactions are derived from data mining analyses of CLIP-
seq and degradome sequencing (specifically for plants), which provides diverse visual interfaces for exploring 
microRNA targets. For predicting miRNA target genes and facilitating functional annotation, researchers rely on 
the miRDB47 database. By utilizing the ENCORI and miRDB databases, we were able to forecast miRNAs that 
interact with IRDEGs (mRNA). Subsequently, we compared the results from both databases and constructed the 
mRNA-miRNA interaction network based on the intersecting outcomes.

We also used the ENCORI database to predict RBPs interacting with IRDEGs (mRNA), and then used the 
results to draw the mRNA-RBP interaction network.

Utilizing the ENCORI database, we conducted predictions for RBPs that interact with IRDEGs (mRNA) and 
constructed the mRNA-RBP interaction network.

Within the CHIPBase database (version 3.0) (https://rna.sysu.edu.cn/chipbase/)(48), we identified numerous 
binding motif matrices and their corresponding binding sites based on ChIP-seq data of DNA-binding proteins. 
This database also contains information on the transcriptional regulatory relationships between millions of TFs 
and genes. By exploring the CHIPBase database (version 3.0), we were able to identify TFs that are bound to 
IRDEGs (mRNA).

Functional similarity analysis
Comparing GO annotations semantically provides a quantitative approach to calculate the similarity between 
genes and genomes, serving as a crucial foundation for numerous bioinformatics analysis techniques. The 
GOSemSim package is utilized to calculate the GO semantic similarity of IRDEGs, followed by assessing their 
geometric average at the BP, CC and MF levels to derive the final score. Subsequently, the results of the functional 
similarity analysis are visually represented using the ggplot package.

Spatial structures of protein
AlphaFold Protein Structure Database (https://www.alphafold.ebi.ac.uk/) is based on artificial intelligence 
computing models, combines physical and biological data of proteins, and uses multiple sequence alignments to 
design deep learning algorithms. The spatial model of the protein can be regularly predicted based on the amino 
acid sequence of a protein in this database. We used the AlphaFold Protein Structure Database to predict and 
display the protein spatial structure of IRDEGs.

Receiver operating characteristic (ROC) curve
The ROC curve serves as a valuable tool in analyzing data, aiding in the selection of the most optimal model, 
discarding alternatives, or identifying the ideal threshold within a given model. This graphical representation 
offers a comprehensive evaluation of continuous variables’ sensitivity and specificity while showcasing the 
nuanced relationship between the two. The area under the ROC curve typically ranges from 0.5 to 1, with values 
closer to 1 indicating superior diagnostic efficacy. AUC values falling between 0.5 and 0.7 signify lower accuracy, 
while those ranging from 0.7 to 0.9 indicate a certain level of accuracy. AUC values exceeding 0.9 reflect a 
relatively high level of accuracy. To assess the diagnostic potential of IRDEGs expression in disease classification, 
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we utilized the pROC package to construct ROC curves for distinct groups (Normal/ ARHL) within the merged 
dataset and calculated corresponding AUC values.

Statistical analysis
To compare continuous variables between two groups, the independent Student t test is employed for normally 
distributed data, while the Mann-Whitney U test (i.e. Wilcoxon rank sum test) is utilized for non-normally 
distributed data. For comparing and analyzing categorical variables between two groups, either the Chi-square 
test or Fisher’s exact test was conducted. The Spearman correlation analysis was utilized to compute correlation 
coefficients among various molecules. Unless stated otherwise, all P values are considered statistically significant 
if P < 0.05, and all tests are two-sided.

Result
Technology roadmap
It was shown in Fig. 1.

Data set merge correction
The batch effect was eliminated from the two ARHL datasets (GSE49522 and GSE49543) using the Sva package, 
followed by standardization of the merged dataset using the limma package (Fig. 2A-B). The results indicate that 
the batch effect of samples from various sources is basically eliminated after the process of removing batch. The 
merged dataset includes 11 samples from mice with severe presbycusis (grouping: ARHL) and 17 samples of 
normal controls (grouping: Normal). The principal component analysis (PCA) on the expression matrix of the 
merged dataset also indicates the removal of the batch effect originating from various sample sources (Fig. 2C-
D).

Fig. 1.  ARHL: age-related hearing loss; GSEA: Gene Set Enrichment Analysis; GSVA: Gene Set Variation 
Analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; ROC: receiver operating 
characteristic curve; PCA: Principal Component Analysis; IRDEGs: Inflammatory related differentially 
expressed genes; DEGs: differentially expressed genes; IRGs: Inflammatory related genes; TF: transcription 
factor; RBP: RNA-binding protein.
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Fig. 2.  A–B. The boxplot graph before (A) and after (B) normalization of the merged dataset. C–D. The PCA 
graph of merged dataset before (C) and after (D) the process of removing the batch effect. (E) Distribution 
box plot of gene expression among samples in the GSE6045 data set before correction. (F) Box plot of the 
distribution of gene expression among samples in the corrected dataset GSE6045. PCA: Principal Component 
Analysis.
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Afterwards, the data set GSE6045 (Fig. 2E-F) was standardized. Data cleaning operations, including probe 
annotations, were carried out, resulting in the creation of a boxplot to visualize the distribution of the data pre 
and post normalization. Upon standardizing the data, the patterns of expression among various samples within 
the dataset appeared to align.

Analysis of differentially expressed genes related to presbycusis
Differential analysis was conducted on the combined dataset utilizing the limma package to identify genes that 
were expressed differently between the ARHL group and the Normal group. We found a total of 1067 genes that 
met the criteria of |logFC| > 0 and P.value < 0.05. Out of these genes, 525 showed high expression in the ARHL 
group (indicating low expression in the normal group, with a logFC greater than 0), while 542 genes exhibited 
low expression in the ARHL group (indicating high expression in the normal group, with a logFC less than 0). A 
volcano map was generated to visualize the results of the differential analysis (Fig. 3A).

By intersecting the total differentially expressed genes with IRGs, we identified 105 IRDEGs. A Venn diagram 
was constructed to represent the overlap of these genes (Fig. 3B).

Subsequently, we analyzed the expression differences of the 105 IRDEGs across different groups within the 
merged dataset (Fig. 3C) and utilized the R package pheatmap to create a heat map illustrating the results. The 
findings from the heat map indicate a clear clustering pattern of the 105 IRDEGs across different groups in the 
merged dataset.

Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis of IRDEGs
To investigate the molecular functions, cellular components, biological processes, biological pathways, and their 
connection to presbycusis in 105 IRDEGs, we initially conducted GO (Supplementary Table S2) and KEGG 
(Supplementary Table S3) enrichment analyses. The significance criteria for the enrichment items were defined 
as a P.value < 0.05 and an FDR value (q.value) < 0.05, making them statistically significant. The results of the 
analyses were visually presented through bubble diagrams (Fig. 4A-B) and ring network diagrams (Fig. 4C-D), 
followed by a bar graph displaying the GO functional enrichment analysis of IRDEGs alongside logFC (Fig. 4E-
F).

It was shown that 105 IRDEGs were mainly enriched in biological processes (biological process, BP) including 
I-kappaB kinase/NF-kappaB signaling (GO: 0007249), receptor signaling pathway via JAK-STAT (GO: 0007259), 
negative regulation of MAPK cascade (GO: 0043409), and autophagy (GO: 0006914), in cell components 
(cellular component, CC) including extracellular exosome (GO: 0070062), membrane microdomain (GO: 
0098857), membrane raft (GO: 0045121), and receptor complex (GO: 0043235), and in molecular functions 
(molecular function, MF) including immune receptor activity (GO: 0140375), cytokine receptor binding (GO: 
0005126), cytokine binding (GO: 0019955), cytokine receptor activity (GO: 0004896).

The KEGG enrichment analysis predominantly highlighted pathways such as NF-kappa B signaling pathway 
(mmu04064), PI3K-Akt signaling pathway (mmu04151), JAK-STAT signaling pathway (mmu04630), MAPK 
signaling pathway (mmu04010), Hippo signaling pathway (mmu04390), Necroptosis (mmu04217), and 
Apoptosis-multiple species (mmu04215).

The pathway map generated using the R package Pathview illustrated the outcomes of the KEGG enrichment 
analysis, specifically focusing on pathways like the MAPK signaling pathway, PI3K-Akt signaling pathway, 
Hippo signaling pathway, and JAK-STAT signaling pathway (Supplementary Figure S1).

GSEA and GSVA enrichment analysis of merged dataset
To explore the impact of gene expression levels on presbycusis, we conducted a thorough analysis of the correlation 
between gene expression and relevant biological processes, affected cell components and molecular functions 
between different groups (Normal/ARHL) through GSEA enrichment analysis. Our findings (Supplementary 

Fig. 3.  (A) Volcano map of the differentially expressed genes in merged dataset. (B) Venn diagram of DEGs 
and IRGs in the merged dataset. (C) Heat map of 105 IRDEGs in different groups. DEGs: differentially 
expressed genes. IRGs: Inflammatory related genes. IRDEGs: Inflammatory related differentially expressed 
genes.
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Fig. 4.  A–B. Results of GO functional enrichment analysis (A) and KEGG pathway enrichment analysis (B) of 
IRDEGs are displayed in bubble diagrams. C–D. Results of GO function enrichment analysis (C) and KEGG 
pathway enrichment analysis (D) of IRDEGs are displayed in a circular network diagram. E–F. Results of 
GO functional enrichment analysis (E) and KEGG pathway enrichment analysis (F) of IRDEGs are shown in 
histograms. GO: Gene Ontology. KEGG: Kyoto Encyclopedia of Genes and Genomes. IRDEGs: Inflammatory 
related differentially expressed genes. BP: biological process. CC: cellular component. MF: molecular function. 
The screening criteria for GO and KEGG enrichment items were P.value < 0.05 and FDR value (q.value) < 0.05.
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Figure S2A) revealed that all genes in the combined dataset exhibited notable enrichment in Lair Pathway 
(Supplementary Figure S2B), Mhc Pathway (Supplementary Figure S2C), Local Acute Inflammatory Response 
Pathway involving Cells and Molecules (Supplementary Figure S2D), Il23 Pathway (Supplementary Figure S2E), 
and Inflammatory Bowel Disease Signaling Pathway (Supplementary Figure S2F) (Supplementary Table S4).

Furthermore, the results from the GSVA analysis indicated significant disparities in the PTC1 pathway and 
other gene sets between the ARHL and normal groups within the combined dataset (Supplementary Figure S2G, 
Supplementary Table S5).

LASSO regression analysis to screen IRDEGs
LASSO regression analysis was used to obtain key IRDEGs from 105 IRDEGs in the merged dataset 
(Supplementary Figure S3A). Subsequently, we illustrated the expression patterns of these key IRDEGs in 
different groups (ARHL/Normal) using a forest plot (Supplementary Figure S3B). The screened 10 key genes 
are Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, Fgf1, H2-K1, Il10ra, Rgs1, and Tnnt2 as shown in Supplementary Figure 
S3B. The outcomes of the LASSO regression model were visually represented through a locus plot of the LASSO 
variables (Supplementary Figure S3C).

Expression analysis of key genes in merged dataset
In the merged dataset, we illustrated the differential expression of 10 key genes (Alox5ap, Chil1, Clec7a, Dysf, 
Fcgr3, Fgf1, H2-K1, Il10ra, Rgs1, and Tnnt2) within distinct groups (Normal/ARHL) through grouped violin plot 
(Supplementary Figure S4A). Our statistical analysis indicated that 9 out of the 10 key genes showed significant 
differences in expression levels between the two groups (p value < 0.05). Among them, the expression levels 
of Alox5ap, Chil1, Clec7a, Fcgr3, H2 − K1, and Tnnt2 were extremely significantly different (p value < 0.001) 
between different groups (Normal/ARHL), and the expression levels of Il10ra and Rgs1 showed highly significant 
discrepancies (p value < 0.01). The expression level of Dysf was statistically significantly different between the 
Normal and ARHL groups (p value < 0.05).

Correlation analysis was conducted according to the full expression matrix of the 10 key genes within 
the combined dataset, yielding a correlation heat map (Supplementary Figure S4B). The findings indicated 
significantly positive correlations between key genes Clec7a and Fcgr3, Clec7a and H2 − K1, H2 − K1 and Fcgr3, 
etc. The key genes Fgf1 and Alox5ap, H2 − K1 and Dysf, Rgs1 and Fgf1 have significantly negative correlations.

We then converted 10 key genes into human genes and annotated their positions on the human chromosome 
in a circle diagram (Supplementary Figure S4C). The illustration reveals that the key genes―FCGR2A, RGS1, 
TNNT2, and CHI3L1―are located on chromosome 1, while DYSF and FGF1 are located on chromosome 2 
and 5, respectively.

Functional similarity analysis was carried out on the 10 key genes. By computing the semantic similarity 
among GO terms, sets of GO terms, gene products, and gene clusters using the GOSemSim package, we 
visualized the results of the analysis through a boxplot (Supplementary Figure S4D). The data revealed that Fgf1 
exhibited the highest functional similarity values with the other critical genes.

Subsequently, ROC curves were plotted for the 10 key genes in the merged dataset, and the findings were 
depicted in Supplementary Figure S5. The ROC curve indicated that the expression level of Alox5ap in the 
merged dataset presented a high accuracy between different groups (AUC > 0.9). The expression levels of key 
genes―Chil1, Tnnt2, Rgs1, Il10ra, Dysf, and Fgf1―in the integrated merged dataset displayed a certain 
accuracy (0.7 < AUC < 0.9) between different groups (Normal/ARHL).

Expression analysis of key genes in dataset GSE6045
The expression levels of the 10 key genes were analyzed between different groups (Moderate presbycusis/Severe 
Presbycusis) in GSE6045, as shown in Supplementary Figure S6.

Utilizing the comprehensive expression matrix of these key genes within the dataset, a correlation analysis 
was conducted, resulting in the creation of a correlation heat map (Supplementary Figure S7A). The findings 
indicated a significantly positive correlation between Chil1 and Clec7a, as well as Chil1 and Fcgr3. Conversely, 
there was a notably negative correlation between Chil1 and Tnnt2.

Next, the ROC curves were generated for the key genes in the dataset GSE6045, and the results were 
displayed in Supplementary Figure S7B-D. The ROC curve analysis demonstrated that the expression levels of 
the Dysf, Rgs1, and Fgf1 genes possess a certain accuracy (0.7 < AUC < 0.9) in distinguishing between Moderate 
presbycusis and Severe Presbycusis groups.

Immune infiltration analysis (CIBERSORT and MCPcounter)
Based on the findings from the immune infiltration analysis by CIBERSORT algorithm, a histogram 
(Supplementary Figure S8A) was created to visualize the infiltration patterns of 22 immune cells present in each 
sample within the combined dataset.

A comparative analysis of the abundance of immune cell infiltration between different groups (Normal/
ARHL) within the merged dataset was performed, revealing statistically significant differences (P < 0.05) in the 
infiltration levels of 3 immune cell types (Dendritic cells resting, Macrophages M1, and T cells follicular helper) 
(Supplementary Figure S8B).

To further explore the relationship between the 10 humanized key genes and the infiltration abundance of the 
3 identified immune cell types, a correlation heat map was generated (Supplementary Figure S8C). This analysis 
highlighted correlations between 8 key genes (ALOX5AP, CHI3L1, CLEC7A, DYSF, FCGR2A, HLA − A, IL10RA, 
and RGS1) and the infiltration levels of the 3 aforementioned immune cell types. The results showed that there 
was a positive correlation between Dendritic cells resting and CLEC7A, Macrophages M1 and RGS1, T cells 
follicular help and FCGR2A, etc.
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Using the MCPcounter algorithm, the correlation between the 10 humanized key genes and the immune cell 
infiltration levels in the combined dataset was calculated (Supplementary Figure S8D). This analysis revealed 
varied correlations between the key genes and different immune cell types, including positive correlations 
between CD8 T cells and IL10RA, as well as Neutrophils and CLEC7A. Conversely, negative correlations were 
observed between Fibroblasts and CHI3L1, Fibroblasts and FCGR2A, Fibroblasts and HLA − A, etc.

GSEA and GSVA enrichment analysis of high and low risk groups
To evaluate the impact of gene expression on presbycusis, we initially categorized the disease group from the 
combined dataset into high and low risk groups based on the median riskScore value derived from the LASSO 
regression model. Subsequently, we conducted an analysis of the correlation between gene expression and relevant 
biological processes, cellular components, and molecular functions in the high and low risk groups using GSEA 
enrichment analysis. The results indicated that the genes in both the high and low risk groups were significantly 
enriched in Classic Pathway (Supplementary Figure S9B), Neutrophil Degranulation (Supplementary Figure 
S9C), Mitochondrial Translation (Supplementary Figure S9D), Ribosome (Supplementary Figure S9E), 
Translation (Supplementary Figure S9F) and other pathways.

The outcomes of the GSVA enrichment analysis performed on the combined dataset (Supplementary Figure 
S9G) revealed distinctions in the AKAP13 pathway and other gene sets between the high and low risk groups.

Construction of mRNA-miRNA, mRNA-TF, and mRNA-RBP interaction network
Using the mRNA-miRNA data in the ENCORI database and the miRDB database, the prediction was made for 
the miRNAs that interacted with the 10 key genes (Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, Fgf1, H2-K1, Il10ra, Rgs1, 
and Tnnt2). To visualize the overlapping outcomes from both databases, the mRNA-miRNA interaction network 
was illustrated using Cytoscape software (Supplementary Figure S10A). The network comprised 7 key genes 
(mRNA) (Alox5ap, Chil1, Fcgr3, Fgf1, H2-K1, Il10ra, and Rgs1), along with 67 miRNA molecules, forming a 
total of 74 mRNA-miRNA pairs (Supplementary Table S6).

TFs were identified by querying the CHIPBase database (version 3.0) for binding to key genes. The Cytoscape 
software was utilized to generate a visual representation of the mRNA-TF interaction network (Supplementary 
Figure S10B). We finally obtained 6 key genes (mRNA) (Tnnt2, Alox5ap, Dysf, Fcgr3, H2-K1, and Rgs1) and 94 
TFs, resulting in a total of 111 unique pairs of mRNA-TF interactions (Supplementary Table S7).

Predicted interactions between RBPs and 10 key genes (Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, Fgf1, H2-K1, 
Il10ra, Rgs1, and Tnnt2) were identified using mRNA-RBP data within the ENCORI database. The resulting 
mRNA-RBP network was visualized using Cytoscape software (Supplementary Figure S10C). Our network 
includes 7 key genes (mRNA) (Alox5ap, Dysf, Fcgr3, Fgf1, H2-K1, Il10ra, and Tnnt2) connected to 28 different 
RBP molecules, resulting in a total of 45 unique mRNA-RBP pairs (Supplementary Table S8).

Protein spatial structure
We used the AlphaFold Fold Protein Structure Database to forecast the spatial structure of proteins for 10 key 
genes (Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, Fgf1, H2-K1, Il10ra, Rgs1, and Tnnt2) and finally obtained the spatial 
structure diagram of proteins.

Clinical evaluation of key genes
The Logistic regression analysis was performed on the expression of 10 key genes (Alox5ap, Chil1, Clec7a, 
Dysf, Fcgr3, Fgf1, H2-K1, Il10ra, Rgs1, and Tnnt2) in order to build a Logistic regression model. The genes that 
demonstrated statistical significance with p-values less than 0.05 are illustrated in a forest plot, as shown in 
Supplementary Figure S12A.

Subsequently, a nomogram was developed to assess the diagnostic potential of the model through nomogram 
analysis (Supplementary Figure S12B). The findings indicated that the expression of the model gene Alox5ap 
was significantly more effective than that of other variables in the diagnostic model of ARHL. The gene Fgf1 
exhibited markedly poorer performance in the diagnostic model for ARHL compared to other variables.

We presented the ROC curve analyzing the linear predictors from the Logistic regression model across 
diverse groups (Normal/ARHL) within the combined dataset (Supplementary Figure S12C). The visualization 
highlights the strong diagnostic performance of the Logistic regression model in the merged dataset.

It was displayed in Supplementary Figure S12D that the ROC curve of the linear predictors between different 
groups (Moderate presbycusis/Severe Presbycusis) in the dataset GSE6045. The graphic demonstrates the 
effective diagnostic capabilities of the Logistic regression model within GSE6045.

To assess the precision and effectiveness of the Logistic regression model, we constructed a Calibration 
Curve. The predictive accuracy of the model is assessed by comparing the actual probabilities in the fitting 
situation with the model’s predicted probabilities in various situations (Supplementary Figure S13).

The clinical utility of the Logistic regression model was evaluated through DCA based on the model genes in 
the integrated merged dataset, as depicted in Supplementary Figure S14.

Discussion
ARHL is the predominant type of sensorineural hearing impairment in adults and significantly affects quality of 
life, economic participation and overall well-being in older adults, yet its pathophysiological mechanisms remain 
poorly understood and require further investigation49. Inflammation plays a crucial role in various age-related 
illnesses. Few studies have investigated its possible effect in the pathogenesis of ARHL. Therefore, exploring 
the specific role of the key inflammatory molecules and immune cells in the pathogenesis of ARHL will help to 
provide potential therapeutic options for this condition. For the first time, we adopted comprehensive, value-
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free, and effective bioinformatics methods to prospectively explore the connections between inflammation and 
ARHL.

Inflammation is considered as a key indicator of aging and is strongly associated with various age-related 
diseases, such as cardiovascular disease, diabetes, arthritis, chronic kidney disease, Parkinson’s disease, and 
Alzheimer’s disease50–52. Many pro-inflammatory biomarkers play important roles in this process, such as IL-1, 
IL-6, IL-8, IL-17, 5-LOX, etc. To our best knowledge, inflammation has been shown to be a major cause of noise-
induced hearing loss53. TNF-α is significantly elevated in patients with sudden sensorineural hearing loss54. As 
for the association to ARHL, TNF-α and IL-6 were detected an increase in the cochlea of aging mouse55. Elevated 
levels of IL-6 have also been seen in elderly individuals56. These studies indicate that inflammation might be one 
of the pathogeneses of ARHL.

We intersected the DEGs of the merged dataset and IRGs to obtain the IRDEGs associated with ARHL. 
A total of 105 genes were identified as IRDEGs and enriched for multiple processes related to inflammation, 
including NF-kappa B signaling, PI3K-Akt signaling, JAK-STAT signaling, MAPK signaling, Hippo signaling, 
Necroptosis, and Apoptosis - multiple species pathways. Further analysis revealed that the effects of these 
IRDEGs were closely linked to immune cells. Through LASSO regression analysis, ten key genes (Alox5ap, Chil1, 
Clec7a, Dysf, Fcgr3, Fgf1, H2-K1, Il10ra, Rgs1, and Tnnt2) were screened. Compared with normal group, the 
expression levels of nine key genes except for the Fgf1 gene were significantly higher in ARHL group. Although 
some of these key genes were detected to be associated with age-related diseases, they have not yet been reported 
in ARHL.

The Arachidonate 5-lipoxygenase activating protein (ALOX5AP) gene is responsible for producing the 
protein 5-lipoxygenase activating protein (FLAP), which promotes the first step in the leukotriene signaling 
pathway involving 5-lipoxygenase (5LOX)57. Leukotriene B4 (LTB4) is the most important product of this 
pathway and powerfully promotes the production of monocyte chemoattractant protein 1 (MCP1) in human 
monocytes58. Both MCP1 and 5LOX products recruit white blood cells to sites of inflammation59. They partake 
in the pathogenesis of obesity, atherosclerotic cardiovascular disease and coronary heart disease. This might 
establish a connection among fatty tissue, inflammation, and insulin resistance60,61. 5-LOX, expressed in the 
central nervous system, might contribute to neurodegenerative diseases. LTB4, one of the downstream products 
of 5-LOX, might be a pathogenic factor of Parkinson’s disease62. It has been reported that the expression of 
5-LOX and FLAP is elevated in the brains of aged rats, with the highest expression levels detected in animals 
with cognitive impairment63.

CHI3L1 belongs to the glycoside hydrolase family 18 and is regulated by changes in the cytokines, growth 
factors, extracellular matrix, drugs, and stress64. CHI3L1 is synthesized and secreted by a variety of cells including 
synoviocytes, chondrocytes, neutrophils, macrophages, fibroblast-like cells, smooth muscle cells and tumor cells. 
It is crucial in the inflammatory and remodeling processes as it promotes the formation of endothelial tubules 
and the migration and adhesion of vascular smooth muscle cells. CHI3L1 is closely associated with diseases 
such as arthritis, asthma, diabetes, sepsis, liver fibrosis, and coronary artery disease64,65. CHI3L1 profoundly 
affects the differentiation of macrophages, the accumulation of DCs, and the balance between Th1 and Th2 
cells66. CHI3L1 promotes the recruitment of macrophage through the MAPK signaling pathway and secretes 
inflammatory chemokines, mainly IL-8 and CCL267. CHI3L1 could encode YKL-40, which can prevent the 
activation of microglial phagocytes. This condition increases with age and the onset of Alzheimer’s disease68–70. 
The expression of CHI3L1 is also significantly increased in aging liver tissue71.

DYSF encodes Dysferlin, a seven-C2 β-sheet domain-rich protein that plays an important role in the 
regeneration and maintenance of calcium-dependent cell membrane72. DYSF was discovered to promote 
phagocytosis, migration, and adhesion of THP1 cells. Supportive studies indicate that DYSF is specifically 
overexpressed in Alzheimer disease and might be involved in the pathogenesis of AD73.

IL-10RA specifically binds IL-1 and mediates IL-10 function. Previous research has shown that IL-10RA could 
reduce inflammation74. IL-10RA is thought to influence macrophage infiltration and function in inflammatory 
responses75. It is also important in forming the intestinal epithelial barrier to prevent inflammation76.

HLA−A, a gene within the HLA gene complex located on the short arm of the chromosome 677, presents 
antigens to CD8+ T cells as the main arm of cellular immunity78. It was reported that HLA was associated 
with chronic infection by Herpes zoste79 and positively correlated with cytolytic activity80. Future in-depth 
experimental researches are warranted to explore the potential effects of these key genes on the pathogenesis 
of ARHL.

The KEGG enrichment analysis in our study revealed several significant signaling pathways, mainly 
including NF-kappa B, PI3K-Akt, JAK-STAT, MAPK, Hippo, Necroptosis, and Apoptosis-multiple species. It 
has been confirmed previously that the involvements of some of these signaling pathways contributes to various 
inflammation, which is associated with some age-related diseases. For instance, by inhibiting the NF-kappa B 
pathway, it is possible to reduce the associated inflammation and oxidative stress, alleviate damage to cochlear 
hair cell, and thus prevent the development of ARHL81. Several studies have shown that inhibiting the activity 
of the PI3K/Akt pathway could decrease the level of anti-apoptotic protein Bcl-2, thereby promoting the death 
of aging cells82,83. The classic MAPK signaling pathway involves in the pathogenesis of autoimmune disorders, 
inflammatory conditions, and cancer84,85. Hearing loss caused by neomycin or gentamicin can be prevented 
by blocking MAPK cell death signaling86–88. The Hippo pathway, consisting of a series of kinases, regulates 
cell proliferation, differentiation, and apoptosis89. Yes-associated protein (YAP), a crucial element of the Hippo 
pathway, impairs the polarization of M2 macrophage and alleviates inflammation90. Recent clinical research 
indicates that the Hippo pathway is related to tissue inflammation and associated immunopathology91. YAP 
overexpression decreased ROS accumulation and then reduced neomycin-induced cochlear hair cell loss in a 
Hippo pathway92. Inflammation is closely associated with apoptosis process93, while apoptosis contributes to 
several age-related degenerative diseases, including ARHL94. Aging in the cochlea is associated with increased 
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expression of apoptosis-related genes such as Bak, Bax, and Bim from the Bcl-2 family10. The deletion of the gene 
Bak could prevent ARHL in mice.

Traditionally, the inner ear was thought to be devoid of immune cells due to the barrier between the cochlea 
and the circulation known as the BLB. However, emerging evidence indicates the presence of immune cells such 
as resident macrophages in the cochlea14,95–98 and the involvement of the inner ear in immune responses98–102. 
Previous researches have shown that plasma cells, NK cells, activated CD4+ T cells, and regulatory T cells are 
important in the development of presbycusis103–105. Our bioinformatics analysis revealed that the infiltration 
abundance of Macrophages M1, Dendritic cells resting, and T follicular helper (Tfh) cells was statistically 
significantly higher in ARHL group than in Normal group, which indicates that the 3 immune cells might 
involve in the development of ARHL. Macrophages are essential for tissue homeostasis and inflammation and 
for defending against pathogens. It has been demonstrated that cochlea-resident macrophages play a significant 
role in inner ear immunity106,107. Macrophages were categorized into naive or non-activated macrophages (M0), 
pro-inflammatory macrophages (M1) promoting inflammation, and anti-inflammatory macrophages (M2) 
supporting tissue repair108,109. Covarrubias et al. demonstrated the accumulation of pro-inflammatory M1-like 
macrophages in metabolic tissues such as liver and visceral white adipose tissue during ageing and responses 
to acute inflammation110. As the heart ages, inflammaging occurs resulting from the type transformation of 
macrophage to a proinflammatory subtype (M1)111, which is a process of a raise in the basic inflammatory 
response during aging112,113.

Similarly, it has been proposed that dysfunction of Tfh cells may play a role in specific pathological 
conditions associated with senescence such as reduced responses to vaccination114 and increased vulnerability 
to atherosclerosis115, cancer116, and autoimmunity117. The main function of Tfh cells, a subtype of CD4+ T cells, 
is to support B cells and regulate antibody production118,119. Zhou and colleagues showed that the frequencies of 
blood CXCR5+ CD4+ Tfh cells increased in the aged population compared with younger subjects120. Dendritic 
cells also play a role in inflammaging121 and were reported to be relevant to sudden sensorineural hearing loss54. 
Dendritic cells resting produce proinflammatory cytokines to regulate immune homeostasis. Related cytokines 
they secreted include IL-1, IL-6, IL-12, TNF-α, NF-κB, etc., which are associated with various inflammatory and 
autoimmune diseases in humans122,123.

Given the close association between immune cells and inflammatory cytokines, the relationship between 
the 10 key genes converted to human genes and the infiltration abundance of the three immune cells was 
further investigated. A certain positive correlation was observed between Dendritic cells resting and CLEC7A, 
Macrophages M1 and RGS1, T cells follicular help and FCGR2A, etc. CLEC7A is the gene encoding the dectin-1 
receptor and is inversely correlated with the expression of dendritic cells. CLEC7A induces the expression of 
the chemokines CXCL10 and CCL20, both of which powerfully attract lymphocytes and other inflammatory 
cells124–126. It serves as a diagnostic and prognostic biomarker for many inflammatory conditions, including 
psoriasis, multiple sclerosis, and lupus127,128. RGS1, a regulatory component of the G protein signaling family, 
links G protein-coupled receptors and calcium signaling129. Previous studies have demonstrated that RGS1 could 
enhance the production of inflammatory molecules and the chemotaxis of macrophages130,131. Fc fragment of 
IgG receptor IIa (FCGR2A) has been reported to be overexpressed in the colonic mucosa of patients with active 
ulcerative colitis in comparison with non-inflammatory controls132. These newly identified immune cells and 
cytokines may offer novel directions for treating ARHL.

Although it has been manifested in our work that inflammation might involve in the development of ARHL, 
this study does have limitations. Initially, we conducted bioinformatics analysis and developed a theoretical 
diagnostic model, which based on secondary mining of public database. A preliminary investigation was 
conducted to study the expression levels of hub genes and pathway-related genes. The primary limitation of this 
study is the absence of an external validation cohort to substantiate our findings, despite our comprehensive 
analyses conducted across multiple datasets. Furthermore, the datasets utilized in this study may have limitations 
regarding sample representativeness, potentially impacting the generalizability of the results. To establish a 
specific regulatory relationship, further validation with a larger clinical sample size is necessary to enhance the 
clinical relevance of our diagnostic and prognostic model. Additionally, further in vitro and in vivo experiments, 
including RT-qPCR, western blotting, and immunohistochemical analysis, are needed to elucidate the detailed 
mechanisms of inflammation associated with ARHL. Resource and time constraints also prevent us from 
performing additional experiments for further validation of our model. Therefore, future research should aim 
to incorporate more diverse datasets and experimental verification to improve the reliability and generalizability 
of the findings.

In recent years, there has been progress in our knowledge of the molecular mechanisms associated with 
the degeneration of cochlear cells and hearing loss that comes with age. This study enhances comprehension 
of the pathogenesis of ARHL and offers fresh perspectives on potential therapeutic targets for presbycusis. 
Inflammation is now known to be associated with serious degenerative diseases in older adults133. Despite the 
unclear causes of the pro-inflammatory characteristics associated with aging and age-related diseases, several 
hub genes and molecular pathways have been identified. The results of this study will offer prospective guidance 
for the management of ARHL.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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