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Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in 
soils pose significant environmental and health risks due to their persistence, toxicity, and potential 
for bioaccumulation. These metals often originate from anthropogenic activities such as industrial 
emissions, agricultural practices, and improper waste disposal. Once introduced into the soil, they 
can bind to soil particles, making them difficult to remove, while potentially entering the food 
chain through plant uptake or water contamination. Rapid access to reliable data on HM viscosity 
in soils is necessary to efficiently monitor remediated soils. Visible and near-infrared reflectance 
spectroscopy (350–2500 nm) is an economical and zero-pollution method that can evaluate multiple 
HM concentrations in soil simultaneously. Black soil is a valuable agricultural resource that helps 
guarantee food security worldwide and can serve as a soil carbon reservoir, but its protection faces 
several challenges. Due to long-term high-intensity development and utilization and the severe 
over-exploitation of groundwater, the arable land in China’s black soil area has been degraded. Using 
hyperspectral inversion of heavy metal content in soil can reduce the destructive sample collection 
and chemical pollution of soil, better protect black land resources, and steadily restore and improve 
the basic fertility of black land. Focusing on the black area region of Jilin Province, this study explored 
the correlation between three HMs, namely copper, zinc, and cadmium, and organic substances, 
clay minerals, and ferromanganese oxides through an in-depth analysis of soil samples using soil 
reflectance spectrometry. The spectra were transformed using first-and second-order derivatives, 
multiple scattering corrections, autoscales, and Savitzky–Golay smoothing. The successive projection 
algorithm was used to screen characteristic bands (Table S1) to establish the link between HM content 
in soil and soil spectra. By employing the support vector machine (SVM), random forest (RF), and 
partial least squares (PLS) models, feature band-based soil HM inversion modeling was established. 
Moreover, the optimal combinations of spectral transforms and inversion models were also examined. 
The findings indicate that the RF model (R2 > 0.8, RPIQ > 0) outperformed the SVM and PLS models 
in anticipating the three soil HMs, thus demonstrating superior accuracy. Understanding the behavior 
of heavy metals in soils and developing effective management strategies are essential for ensuring 
sustainable land use and protecting public health. This study contributes to the development of large-
scale monitoring systems for the HM content of soil and assessments of HM contamination.
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SVM	� Support vector machine
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DT	� Derivative transformation
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FD	� First-order derivative
SD	� Second-order derivative
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Soil is a material necessary for life on Earth, representing the basis for biological survival and plant growth 
and serving as a valuable resource for human development1. Soil chemistry, soil quality, and environmental 
status are influenced by a range of biological, physical, and structural factors2,3. Northeast black soil is China’s 
valuable land resources; the Northeast black soil area, known as the “golden corn belt” and “home of soybeans”, 
is China’s most important grain producing area and the largest high-quality commodity grain production base. 
Among different soil types, black soil has the highest fertility, is the most suitable for farming, and has the most 
productive potential; thus, it is known as the “giant panda of arable land.”4,5 As one of the only three black soil 
areas in the Northern Hemisphere, the northeastern region of China is an important area for grain production 
and the largest commercial grain production base in China6,7.

Increases in mineral development, pesticide use, and industrial waste discharge in the past decade have caused 
large amounts of heavy metal (HM) elements to be discharged into the soil. HMs have harmful compounds that 
negatively affect human and wildlife health, with potentially long-lasting effects8–10. For humans, exposure to 
such HMs can result in the development of neurological and immune system imbalance, allergies, osteoporosis, 
asthma, and an increased lifetime risk of cancer11–13. Common methods of human exposure to HM include 
contaminated food and drinking water (especially from foods such as vegetables, meat, and milk), skin contact, 
and inhalation through the respiratory tract14. HMs are slow to break down and migrate in agricultural fields, 
where they negatively impact soil health conditions. HM ions in agricultural soils are highly susceptible to crop 
uptake and enrichment and thus pose a serious threat to human health. In addition, methane in agricultural 
land may accumulate and move higher up the food chain, further aggravating the global crises in human health 
and food safety15. The toxicity, abundance, and persistence of HMs make them a global concern16. Therefore, 
developing a method that can rapidly and accurately determine soil HM contents and reveal the changes in the soil 
environment is important for safeguarding its ecosystems and ensuring sustainable agriculture development17.

The spatial distribution of HMs is generally determined through chemical analysis, which is environmentally 
polluting, costly and time-consuming18. In contrast, hyperspectral remote sensing technology utilizes the 
electromagnetic wave reflections of different wavelengths for analysis, producing images that provide spectral 
and spatial information in the visible and infrared realms. The spectral continuity of the sampling interval 
ensures that the reflectance reflects the features of different objects. High-resolution image data can be 
promptly monitored using hyperspectral remote sensing technology, which is already widely used in various 
fields. However, using hyperspectral data over sample measurements in the inversion of HM concentrations 
in the visible and infrared bands is highly challenging, and the integration of data from different hyperspectral 
sources becomes critically important. Nevertheless, given the richness of spectral information, hyperspectral 
remote sensing techniques have been progressively used to monitor the chemical and physical causalities of 
soils19,20. Recently, several studies have successfully applied deep learning techniques such as Convolutional 
Neural Networks (CNN)21 Long Short-Term Memory Networks (LSTM)22, migration learning23 and other deep 
learning24 in hyperspectral soil properties prediction.

Currently, many studies have estimated HMs in soil. Due to the lack of a clear mechanism for HM estimation, 
many studies have resorted to statistical methods or organic matter correlation analyses, which increases 
the difficulty of revealing the characteristics and mechanisms of soil HM uptake. Meanwhile, due to factors 
such as the scarcity of HM content in soils, the complexity of environmental imaging, and the redundancy of 
spectroscopic data, HM estimation is ineffective and cannot effectively outline the trend of their distribution.The 
close relationship between heavy metals and spectrally active components25 and several other studies explored 
the combination of concentration information with spectral features related to spectrally active components to 
improve the estimation accuracy of soil heavy metals. Kästner et al.26 proposed that the addition of a laboratory 
soil preparation step and a further spectral pre-processing step can improve the performance of PTE estimation 
for non-homogeneous soil samples. In soil spectral measurements, various factors such as light scattering and 
different distributions of particle size and density within the soil may lead to the appearance of noise in the 
spectral data, thereby requiring adequate preprocessing of the spectral data prior to spectral estimation27. The 
commonly used preprocessing methods include derivative transform (DT), smoothing, standard normal variate 
correction, multiplicative scatter correction (MSC), baseline correction, normalization, wavelet transform, and 
continuum removal28,29. Several recent studies24 have shown that combining spectral preprocessing techniques 
gives better training results than using a single preprocessing technique. Therefore, we apply a combination of 
spectral preprocessing methods to find the best combination of features.

An important method for determining the HM content of soils, based on the characterization of HM 
contamination, is hyperspectral soil analysis30. The influence of HMs on spectral reflectance is considered a 
nonlinear process; therefore, nonlinear models exhibit better inverse performance31. As nonlinear models, deep 
learning algorithms have been widely used in hyperspectral technology. Various studies have been conducted on 
deep learning-based hyperspectral inversion32,33, and the results show that deep learning can provide an effective 
method for realizing HM concentration inversion using hyperspectral reflectance. Two types of inversion 
models have been used for hyperspectral inversion: linear inversion models and nonlinear inversion models, 
such as random forests and gradient-enhanced decision trees34–36.
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In this study, the northeastern black earth region in Jilin Province was chosen as the research area and the 
inversion and adsorption mechanisms of HMs in the soil were explored using laboratory hyperspectral data. An 
inversion model was established to accurately determine the HM content in the research area. The objectives of 
this study are as follows:

(i) Develop a rapid method for estimating HM content based on the hyperspectral correlation of soil fractions; 
(ii) Examine the Zn, Cu, and Cd contents in the black earth region; and (iii) Create a model that can accurately 
determine the Zn, Cu, and Cd contents using hyperspectral data.

Traditional soil heavy metal detection methods usually require complex chemical analysis or sampling, 
while hyperspectral technology can provide a faster and non-invasive method, so the innovativeness of this 
paper is reflected in the application of cutting-edge remote sensing technology for soil heavy metal monitoring. 
By combining the hyperspectral inversion technique, the distribution characteristics of soil heavy metals 
under conservation tillage can be quantitatively analyzed, revealing the complex relationship between soil 
environmental management measures and heavy metal pollution.

Materials and methods
Research area
The research area is situated in the black soil zone of Jilin Province, with a geographic location of 123°23’-127°38′E 
and 41°58′-45°22′ N, covering four cities and six counties (Fig. 1). This area is part of the continental temperate 
monsoonal climate zone, with an annual average temperature of 5.2 °C and annual average rainfall quantity of 
612.2 mm. The terrain is mainly characterized by mountains, hills, terraces and plains, and the soil types are 
black soil, black calcium soil, meadow soil, and brown soil. The Jilin black soil area is the most important cereal 
production base in China due to its favorable geographic location, suitable climatic conditions, and organic 
matter-rich soil. However, simultaneously with the fast economic development and increased anthropogenicity, 
the HM content of the soil is on the rise, seriously threatening the local ecological environment and human 
health. Therefore, the accurate assessment and effective supervision of changes in HM content in the black soil 
areas is vital.

Fig. 1.  Overview of the black soil area in Jilin Province (from ArcGIS Vision 10.8; ​h​t​t​p​s​:​/​/​w​w​w​.​e​s​r​i​.​c​o​m​/​e​n​-​u​s​
/​a​r​c​g​i​s​/​​​​ products/arcgis-desktop/overview).
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Soil sample collection and preparation
A total of 119 soil samples were collected for this study. All sampling points were located at distances greater than 
100 m from other features. The topsoil was sampled at depths between 10 and 20 cm using tools such as shovels. 
For each soil sample, the temperature, humidity, pH, and other relevant soil properties were recorded. In this 
study, the five-point sampling method of O, A, B, C, and D was selected, and five soil samples of 500 g each with 
a surface thickness of 5 cm were collected. These five samples were mixed homogeneously and put in a sealed 
plastic bag. Subsequently, the sampling sites were numbered. All the samples were then taken to a laboratory 
for natural drying to remove excess moisture. Large particles were removed by filtering through a 2 mm sieve, 
followed by appropriate polishing to achieve the desired fineness. During this process, strict control of each step 
was required to ensure that the samples were not contaminated and to guarantee their purity.

Soil spectrum laboratory test
Using an ASD fieldspec4 spectrometer (Fieldspec 4 Hi-Res, Malvern Panalytical), visible to near-infrared (-NIR) 
spectra in the 350–2500 nm wavelength realm were measured to ascertain the spectral reflectance. Near-sunlight 
from the incident light source probe was used as the light source in the darkroom, the instrument was warmed 
up for 30 min, the spectrometer probe was standardized at 10 cm directly above the reference white board, and 
the spectral reflectance of the soil samples was measured vertically downward using the spectrometer probe at 
an angle of no more than ± 10° from the normal vector of the horizontal plane. To avoid measurement errors, 5 
spectral measurements were averaged for each soil sample. The final spectrum for each sample was calculated by 
averaging the remaining spectra after removing the anomalous spectra37. To mitigate the errors that originated 
from equipment, we calibrated the instrument after measuring 10 specimens using the white panel38. Out of the 
119 soil samples, 84 were chosen as the training set (computing), and 35 were the validation set39.

Soil spectral pretreatment
Noise distorts the raw spectral curves of indoor data, which somewhat reduces the accuracy of the spectral 
estimation model. Thus, the original spectral curves need to be preprocessed, including data conversion and 
denoising, before building the spectral estimation model. Using the splicing correction tool of the ViewSpec 
software, the five spectral curves of each soil sample were processed by arithmetic averaging to acquire the real 
reflectance spectra before calibrating the soil reflectance spectra. To minimize the changes in the laboratory 
light environment and sample grinding, the spectral data were also preprocessed using multiple scattering 
corrections, standard normal variables, normalization, autoscales, and multiplicative scattering correlation.

Spectral differential transform is a method widely used in spectral preprocessing. Its main role is to eliminate 
background interference and resolve overlapping spectral information, greatly minimizing the impact of 
external differences imposed by the drift of the original spectral baseline, thereby effectively improving the 
precision of spectral analysis. According to Shi et al.40, first-order derivatives (FDs) and second-order derivatives 
(SDs) are frequently used in MATLAB preprocessing methods. First-order differentiation is primarily used 
to remove the effects of particular spectral problems and external factors while better highlighting the high 
frequency spectrum messages and reflecting the fluctuating specificities of raw spectra, whereas second-order 
differentiation primarily removes context signals and base line offset, improving the response performance of 
the spectra, which is frequently one of the reasons why spectral waveforms are more complex41. To remove 
multiplicative interference in particle size and scattering, multiplicative scattering correction was used to linearly 
transform the average spectral match of the entire set of spectra. This requires close linear relationships between 
the spectra and component concentrations. The standardization algorithm converts the data to a standard 
normal distribution with mean 0 and variance 1 by subtracting the mean and dividing by the standard deviation 
of each spectral point, thus eliminating the differences in magnitude between different spectra and facilitating 
subsequent data processing and analysis. SG smoothing is a digital filtering method for noise reduction that 
smoothes the data by polynomial fitting and preserves the main features of the spectrum. The method not only 
effectively removes high-frequency noise (e.g., instrument noise, sensor errors, etc.), but also minimizes the loss 
of spectral information, which contributes to the improvement of the signal-to-noise ratio, which is especially 
important when analyzing heavy metals at low concentrations in soils. The process of normalization exposes the 
spectrum variety, removes superfluous information, and streamlines the calibration model.

The goal of all these data preprocessing techniques is to improve the quality of hyperspectral data and the 
robustness of inversion models. By removing noise, reducing background interference, correcting for scattering 
effects and standardizing the data, spectral features associated with soil heavy metal content can be captured 
more accurately, thereby improving inversion accuracy and model prediction.

Inversion method
The equilibrium of HM distribution and adsorption is greatly influenced by soil pH, texture and organic matter 
content. Certain ground elements, such as organic substances and clay minerals, have a great ability to adsorb 
particular metals. The carboxyl and phenolic functional groups in organic matter can form strong complexes with 
Cu, and the adsorption capacity of clay minerals for copper is also stronger, especially under acidic conditions, 
the surface of the clay minerals has a higher negative charge. As there are more oxygen-containing functional 
groups (such as carboxyl groups and phenolic hydroxyl groups) in organic matter, their adsorption of cadmium 
ions is more significant. Zinc ions have strong water solubility, but are also easily adsorbed with organic matter 
and clay minerals. Compared with copper and cadmium, the adsorption capacity of zinc varies less in organic 
matter and clay minerals. One method of evaluating the HM concentrations in soil using spectral reflectance is 
to analyze the sorption process of HMs by soil composition. Because soil organic matter has the ability to adsorb 
and retain Zn, Cu, and Cd, these three metals were utilized as examples in this investigation.
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RF
RF is a category of integrated learning arithmetic that utilizes multiple weak classifiers to increase the accuracy 
and generalization of the overall model. Random forest is constructed by selecting n data from the training data 
as training data input, after selecting the input training data, the decision tree is constructed, and the splitting 
attribute is determined according to the strategy of Gini exponential reduction until it cannot be split or reaches 
the set threshold, at which time 1 decision tree is established, and each decision tree grows as much as it can, 
without pruning process42,43. The formula for the Gini index is as follows:

	
Gini (T ) = 1 −

∑
K
k p2

k � (1)

where T is the number of samples; K is the number of categories in the sample; pk is the frequency of the 
category, k is appearing in sample T. Repeat the above steps until a predetermined number of trees is reached. All 
the generated decision trees are formed into a random forest, which is then used to predict the new input data.

The flowchart of the random forest model used in this study is shown in Fig.  2. Figure  2 was produced 
by Visio. It operates by combining the outputs of these weak classifiers through either voting or averaging. 
This approach is a significant enhancement of the decision tree algorithm, as suggested by Breiman44. The RF 
arithmetic extends the parallel integration algorithm, which combines weak classifiers and randomly selects 
attributes. Therefore, it shows better advantages in accuracy, generalization performance, and model stability. 
RF can achieve good results, mainly due to the “random” and “forest” components, with one making it resistant 
to overfitting ability and the other making it more accurate. RF is an algorithm that integrates multiple models 
to improve accuracy. This integration results in a higher level of accuracy than most individual algorithms. 
In addition, RF improves the performance of the test set because the two randomization methods reduce the 
likelihood of overfitting (random samples and random features). RF is capable of handling high dimensional 
data without the need for a feature selector. It also fits different datasets, handles continuous and discrete data, 
and does not require dataset normalization. Owing to the implementation simplicity, high accuracy, and high 
resistance to overfitting, RF is suitable for use as a baseline model when confronted with nonlinear data. In this 
study, the hyperparameters of the random forest were set, the number of decision trees was 500, the minimum 
number of leaf nodes per tree was set to 1, and OBB prediction and feature importance calculation were enabled.

Fig. 2.  The RF regression model.
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Partial least squares (PLS) regression
The PLS methodology is commonly utilized for the inversion of soil spectroscopic data. To enhance the accuracy 
of inversion in the soil spectroscopy field, researchers have attempted to integrate nonlinear methods of 
mathematical analysis, including neural network techniques, genetic algorithms, and support vector machines 
(SVMs)45–47. In previous studies, PLS has been employed as a benchmark model, and findings suggest that the 
machine language inversion model can notably enhance its inversion precision48,49. Moreover, linear regression 
employs least squares as its primary technique for connecting dependent and independent variables. PLS, as 
described by Leone et al.50, constructs a linear model by isolating the latent variables or main components 
in both the dependent and independent variables. Conversely, ridge regression is a modified version of least 
squares estimation that is primarily utilized to address non-full rank coefficient matrices.PLS regression is a 
multi-variate demographic methodology that addresses the problem of covariates and enables the synthesis and 
analysis of multiple dependent Y variables while also accounting for the impact of small samples in relational 
studies. PLS regression integrates main component analysis, multiple linear regression, and typical correlation 
analysis is performed by compressing multiple X and Y variables into principal components through the principle 
of principal component analysis. In this method, X corresponds to the main component U, and Y corresponds 
to the main component V. The connection between X and V is analyzed by combining the principles of multiple 
linear regression, which facilitates the study of the association between X and Y. The hyperparameter of PLS 
mainly selects the number of principal components, and the complexity and prediction effect of the model 
can be controlled by adjusting this parameter. In this study, the optimal number of principal components was 
selected for regression through cross-validation and standardized and normalized before the data were input 
into the PLS model to ensure that the scales of individual features were consistent, which improved the stability 
and prediction accuracy of the model.

SVM
SVM is a demographics learning approach based on the theory of structural risk minimization (SRM)51, which 
is able to effectively deal with small samples, nonlinear and high-dimensional data compared to the local 
minimization problem of neural networks. In remote sensing applications, SVM can be successfully applied 
to small-sample training sets and reduces the limit of the model generalization errors while reducing the 
sampling error, which in turn improves the generalization model capacity and accuracy52. In various disciplines, 
SVMs, as a widely adopted binary classification model, are basically constructed on interval-maximizing linear 
classifiers in the feature space with unique interval-maximizing properties, which are significantly different from 
other classifiers such as perceptual machines. An important class of SVMs, the kernel SVMs, are essentially 
nonlinear classifiers. SVM formalizes problems as convex quadratic programming solution problems, i.e., the 
problem of minimizing a regularized hinge loss function, by employing an interval maximization learning 
strategy. Optimization algorithms for solving convex quadratic programming problems are mainly involved in 
SVM learning algorithms. In this study, the RBF-kernel was chosen for the SVM regression process because it 
provides a reasonable trade-off between the number of kernel parameters to be optimized and the adaptability 
and flexibility of the nonlinear data53. The support vector machine RBF-kernel has two hyperparameters related 
to the regularization parameter C and the kernel width γ. In this paper, we use grid search and cross-validation 
to tune C and γ.

Model evaluation and optimization
To assess the forecasting capabilities and robustness of the models, the three key indicators, the root mean square 
error (RMSE), the coefficient of determination (R2) and the the ratio of performance to interquartile (RPIQ), 
were used in this study for reliability analysis. The formulae are as follows:

	
R2 = 1 −

∑
n
i=1(yi − Yi)2/

∑
n
i=1(yi−

−
y)2� (2)

	
RMSE =

√∑
n
i=1(yi − Yi)2/n� (3)

	
RPIQ = RMSEbaseline − RMSEimproved

RMSEbaseline
� (4)

Uncertainty analysis
The random forest model constructed on the basis of the bagging method can effectively reduce the variance of 
a single model and improve the accuracy and stability of prediction by integrating multiple decision trees for 
prediction. However, although the random forest shows strong robustness in many applications, its prediction 
results still have some uncertainty54. Random forests consist of multiple decision trees, and the training data 
for each tree is generated by self-sampling, so the training set for each tree is different. Although the trees are 
generated randomly, they are not completely independent because their training sets are drawn from the same 
dataset. In addition, the tree structure, depth, and splitting criteria may also affect the final model performance. 
Cross-validation is a commonly used method to assess model stability and generalization ability. By dividing the 
dataset into multiple subsets and performing multiple training and testing, cross-validation can effectively assess 
the performance and stability of the model on different datasets, thus quantifying the uncertainty of the model.
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Results and analysis
Description of the soil samples
The successive projection algorithm (SPA) was applied to select the feature band selection. 70% of the dataset 
was classified as training samples (n = 84) and the remaining data were used for testing. (n = 35). Statistical 
information on the Zn, Cu, and Cd content is given in Table 1. Notably, the average Zn content was above the 
average background values in Jilin Province, and the maximum value was higher than the national standard, 
suggesting potential contamination. In contrast, the Cu and Cd levels did not exceed the secondary national 
environmental quality standard (GB 15618 − 1995). However, the HM contents in the soil were both higher than 
the background values in the black soil area of Jilin Province. The pollution coefficient (CF) of Cu ranged from 1 
to 2, indicating slight pollution. The CFs of Zn and Cd were > 2, indicating moderate pollution. The investigation 
and dynamic monitoring of the soil quality in the research zone should be strengthened to promptly detect and 
control soil HM pollution. Figure 3 shows the descriptive statistics of the Zn, Cu, and Cd concentrations by 
Origin 2022.

Soil spectral characterization
As shown in Fig. 4, the reflectance spectra of the soil samples from the black soil zone in Jilin Province show 
a similar trend, indicating relatively stable reflectance in the visible band and roughly the same location of the 
features in the absorption bands. (In this study, the pre-processing of the spectra and the modeling were done 
in MATLAB R2023b.) The spectroscopy reflectance increases monotonically with wavelength in the ranges of 
400–787, 1000–1238, 1323–1474, 1801–1881, and 1912–1990 nm and decreases with wavelength in the ranges 
of 787–1000, 1238–1323, 1474–1801, 1881–1912, and 1990–2500 nm. In general, the absorption features of soil 
spectra in the visible and NIR bands are principally influenced by the electron-leaping processes of the metal 
ions Mn3+, Fe2+, and Fe3+, whereas in the NIR band they are mainly influenced by the octave and harmonic 
flexural vibrations of molecules such as CO3

2−, OH−, Fe-OH-, and NH4+55,56.
Iron oxides, organic substances, clay minerals and manganese oxides in soil play powerful adsorption roles 

in the detection of HM content and are some of the indispensable factors in the enrichment process of HMs. 
By evaluating the coefficients of correlation among the organic substance content, iron and clay minerals, and 
manganese oxides in soil and HMs, their central supportive roles in soil element accumulation and synergistic 
effects during the determination of HM content can be revealed, thereby providing a rationale for indirectly 
determining the content of soil HMs. The required bands were obtained by various means to acquire the 
spectral properties of the soil elements, the required bands were obtained by various means such as FD, SD, 
normalization, mean centering, and MSC. The band information is shown in Fig. 5.

Different soil samples exhibited similar trends under the same spectral transformation form. According to 
previous studies, spectral absorption near 1238 nm and 1881 nm has a clear valley known to be due to the 
absorption caused by the residual moisture in the soil as well as metal OH binding to soil clay minerals. In the 
vicinity of 1990 nm, a decreasing trend was observed along the longwave direction. The spectra changed from 
aggregation to divergence from the short-wave to long-wave direction, indicating that different soil organic 
matter contents may affect the spectra in the NIR band.

Figure 6 shows a two-by-two correlation plot of the spectroscopic curves and reflectance spectral bands of 
the soil samples under different spectral transformation forms. This provides accurate results and is thus suitable 
for modeling. In the reflectance spectral correlation plots under different transformed forms, the correlation 

Fig. 3.  Descriptive statistics of the soil heavy metal concentrations in the research area. Note: Black dots 
indicate mean values.

 

Metal Mean Std Max Min CV CF Jilin Province National

Zn 157.11 184.85 579 17 1.18 2.34 67.14 300

Cu 31.87 14.02 63.5 7.75 0.44 1.69 18.88 100

Cd 0.25 0.15 0.91 0.05 0.59 2.27 0.11 1.0

Table 1.  Statistical results of the soil heavy metal contents (unit: mg/kg).
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coefficients of neighboring bands were larger and the correlation coefficients of the short-wave bands, such as at 
350–400 nm, were lower because of the effect of the spectral noise generated by the spectrometer. After the first-
order and second-order differentiation processes, the covariance between the spectra was partially eliminated. 
Moreover, bands with small relative coefficients can represent more information about the dependent variable 
when constructing the regression model and can be used as a basis for further modeling. Analysis of variance 
(ANOVA) was used to access the variance between means of analyzed pollutants57. We used ANOVA in Table S2 
to understand the variation of parameters associated with soil heavy metal concentrations.

Model building and evaluation
Spectral feature selection
The SPA can effectively reduce and minimize the covariance of high-dimensional spectral data due to its 
forward variable selection property, and its undeniable advantage is that it can extract only a few representative 
characteristic wavelengths of the whole band from the original spectral matrix, thus eliminating the numerous 
bands attached to the matrix. In this paper, the SPA was used in the MATLAB environment to successfully extract 
the characteristic wavelength bands of the three HMs Zn, Cu, and Cd from the spectroscopic data (Fig. 7), and 
the inversion of the soil samples was performed using the RF model.

Modeling evaluation
Specific spectral bands and HM content were selected as model input data, the model parameters were 
constructed and tuned, and the validation set was used to assess the accuracy and generalization ability of the 
model. The three machine learning models, SVM, PLS and RF, were used in the study to build the HM prediction 
model. We have performed hyperparameter optimization to improve the accuracy, efficiency and applicability of 
the model, so that it performs more stably and efficiently in the face of complex and variable data. The estimation 
results of the RF model are shown in Fig. 8.

Model accuracy analysis
The FD spectral variable is suitable for modeling HMs with hyperspectral remote sensing, mainly because the 
processed spectra exclude the context noise, which helps to highlight the spectroscopic information of soil HMs. 

Fig. 4.  Reflectance spectra of soil samples from the black soil area of Jilin Province, China.
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In addition, spectral and RF modeling after FD processing improved the inversion accuracy of Zn, Cu, and Cd. 
Accordingly, a scatter diagram of the measured and forecasted HM contents based on the peak combination of 
RF modeling and spectral transformation was plotted in Fig. 9.

Comparison and discussion
Model performance comparison
Comparative results (Table  2) indicate that the RF model has better inversion accuracy than SVM and PLS 
and the best inversion results for all HMs ( R2

RF  >0.8). This indicates that the RF model is highly stable and 
can effectively invert the HM quantity contained in the black soil area of Jilin Province. The differences in the 
simulation accuracy of Zn ( R2

RF  = 0.93, R2
SV M  = 0.04, R2

P LS  = 0.06) and Cu ( R2
RF = 0.96, R2

SV M  = 0.07, 
R2

P LS  = 0.25) were the most significant. In addition, the inversion results for Cd show that the RMSE of the RF 
model (0.07) was significantly smaller than that of SVM (0.09) and PLS (29.71).

Discussion
In the black soil area in Jilin Province, HM pollutants such as Cu, Zn, and Cd have been successfully identified. 
However, given the low content of HMs in the soil, spectroscopic information is relatively scarce, making it 
challenging to directly utilize the characteristic spectral analysis for the determination of HM content in the soil. 
Nevertheless, the mechanism of HM enrichment in soils can be determined and has been found to be closely 
related to the adsorption of different minerals, such as clays, Fe-Mn oxides, and organics58. These not only 
influence the morphology and reflectance of soil spectra but also exhibit particular absorption features, thus 
providing a theoretical basis for extracting hyperspectral soil contamination information59.

It is urgent to improve the blackland management model and formulate corresponding protection measures 
to strengthen the quality of blackland. There is an urgent need to follow the laws of nature, adhere to ecological 

Fig. 5.  Spectral transformation curves of soil.
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Fig. 7.  (a) Characteristic bands of Zn (b) characteristic bands of Cu (c) characteristic bands of Cd.

 

 Fig. 6.   (a) Correlation analysis of first-order differentials with raw spectra; (b) Correlation analysis of second-
order differentials with raw spectra; (c) Correlation analysis of SG smoothing with raw spectra.
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priorities, combine the use of nutrients, strengthen the management mechanism and science and technology, 
focus on the development of low-carbon sustainable agriculture, promote carbon sequestration and sinks in the 
northeastern black soil, and realize the win-win goal of carbon neutrality and food security. Therefore, the use of 
hyperspectral technology to estimate the content of heavy metals in soil is crucial for the protection of black soil 
farming, without the need for large-scale destructive collection of soil samples, which greatly reduces the impact 
of chemical substances on the environment. With low-carbon development as the goal-oriented, coordinated 

Fig. 8.  Plot of the inversion results for Cu, Zn, and Cd.
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delineation of permanent basic farmland, strictly abide by the red line of arable land protection to reduce blind 
reclamation and overuse of arable land, so as to reduce the increase in the source of carbon.

Currently, studies on the inversion of HMs rely on the intrinsic correlations between HM adsorbents and 
different HMs. The indirect inversion approach for HM content in soils is based on the spectral properties of HM 
adsorbents, which are mainly related to various absorption features in soils, including iron oxides, clay minerals, 

RF PLS SVM

Model Test Model Test Model Test

Cu
R2 0.96 0.87 R2 0.25 0.36 R2 0.07 0.01

RMSE 6.08 6.88 RMSE 9.71 9.13 RMSE 13.78 15.63

Zn
R2 0.93 0.90 R2 0.06 -1.22 R2 0.04 0.09

RMSE 53.44 57.92 RMSE 270.84 424.91 RMSE 194.78 261.09

Cd
R2 0.91 0.87 R2 -0.29 0.017 R2 0.71 0.003

RMSE 0.07 0.05 RMSE 29.71 35.40 RMSE 0.09 0.14

Table 2.  Model validation and accuracy statistics for all samples.

 

Fig. 9.  Scatterplot showing the measured and predicted heavy metal content.
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water, and organic substances60–62. These absorption features are mainly reflected in the visible/ NIR spectral 
region of 350–2500  nm, and their formation mechanism originates from the transfer of vibrational energy 
of major molecular bonds. Specifically, in soils, most of the iron oxide molecules in soils exhibit absorption 
characteristics in the visible (350–780 nm) and short-wave NIR (780–1100 nm) regions of the spectrum63. In 
addition, the absorption properties of clay minerals in the long wave NIR (1100–2500 nm) region are primarily 
because of the overtones and combined vibrations of OH, H2O and CO3. Water shows strong absorption 
properties in the visible/NIR region, with peaks occurring near 1400 and 1900 nm and relatively weak absorption 
properties in other frequency bands64.

The application of hyperspectral technology can effectively help obtain spectral information of chemical 
indicators and conduct real-time monitoring; however, factors such as external interference and instrument noise 
may affect the spectral quality65,66. These interfering factors may present a prominent “burr jump” phenomenon 
in the raw soil spectral data, and the preprocessing of the primary spectrum are indispensable to improve the 
validity, sensitivity, and resolution of the spectral information and accurately estimate the follow-up analytical 
models67–69. In this study, the “step jump” and whiskers phenomenon can be eliminated completely by applying 
Savitzky-Golay (SG) smoothing (Fig.  5) to the spectral data, which is a method that processes high-order 
polynomials by weighted filtering and least squares fitting techniques. Filtering and smoothing are intended 
to improve the processing effect by effectively retaining the variation information of the signal, eliminating the 
effect of noise, and maintaining the feature of the raw data. In addition, the nature of spectroscopic information 
can be significantly improved by using the differential processing method in the processing relative to the 
multiple scattering correction processing method.

Applicable soil spectral processing can improve the effectiveness of hyperspectral simulation accuracy. Using 
suitable pre-processing methods, the feature spectral wave bands of the soil can be highlighted more effectively, 
and the reflected wave peaks and absorbed troughs in the spectroscopic curves can be enhanced. In this study, 
various soil HM hyperspectral remote sensing quantitative models were established for nondestructive soil HM 
concentration monitoring and HM contamination assessment. Different mathematical correction methods were 
used in the study to analyze the connection between the spectroscopic data and the HM content measured70, and 
effective bands were identified to extract HM using SPA. The results of the research revealed that the developed 
model using differential preprocessing could accurately predict Zn and Cu concentrations (Fig. 9). Multiple linear 
regression of the spectral reflectivity of SG-FD processed soils was able to accurately forecast the Cd content in 
the research area (Fig.  9). This contrasts significantly with the use of different pre-processing techniques to 
improve the spectral characteristics that increased the prediction accuracy rate of the retrieval model.

The results of this research advance the applications of hyperspectral remote sensing technology in the area 
of integrated surveillance and evaluation of ecosystems and furnish foundational support for the management 
and early warning of soil HM contamination. This research further provides technological support for the 
nondestructive monitoring and pollution assessment of soil HMs and promotes the application of hyperspectral 
remote sensing in the field of ecological environmental monitoring and assessment. This study is conducive to 
the effective implementation of conservation tillage technology to protect the resource utilization of black soil 
from the perspective of reducing damage and chemical pollution. For the conservation and utilization of black 
soil, the integration and research and development of advanced technology should be strengthened to improve 
the core of conservation tillage technology. However, the accuracy of the established quantitative hyperspectral 
remote sensing model for soil HMs needs to be further validated because it is limited by the sampling location 
setup, sample collection and measurements, and the number of samples, which may have an impact on accuracy.

 Conclusions
The average value of Zn exceeded the mean background values for Jilin Province and national standards, 
suggesting contamination. The CF of Cu ranged from 1 to 2, indicating slight pollution, and the CFs for Zn and 
Cd were >2, indicating moderate pollution. Spectral conversion was achieved using FD, SD, mean centering, 
normalization and MSC and the relationship between soil HM content and soil spectra was further validated. 
Based on the correlation coefficients, the characteristic spectral bands of the three HMs differed in location and 
number. These bands effectively reflect the spectral properties of organics, iron, clay minerals and manganese 
oxides in the soil. The associations between the three HMs and the spectral variables were modeled and analyzed 
using PLS regression, SVM, and RF models. The results indicate that among the three models, RF had the highest 
accuracy in HM inversion, with RRF

2 values >0.8, demonstrating high stability and the ability to effectively invert 
the HM content.

Data availability
The data underlying this article will be shared on reasonable request to the corresponding author.
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