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Cyber-attack brings significant threat and become a critical issue in the digital world network security. 
The conventional procedures developed to detects are centralized and often struggles with concerns 
like data privacy and communication overheads. Due to this, conventional methods are unable to 
adapt quickly for different threats. This research aims to develop a novel solution to address these 
limitations through Federated Learning. The centralized approach is developed by integrating spatio-
temporal attention network and also introduces a quantum inspired federated averaging optimization 
procedure for cyber-attack detection. The presented model utilizes a hierarchical model aggregation 
procedure which dynamically groups nodes into regions based on the network condition and data 
similarity. A robust global model is generated at the central server by aggregating intermediate models 
which are developed using weighted local models. Additionally, a multi-stage model refinement 
procedure and privacy preservation techniques are incorporated to improve overall security and 
performance. The novel STAN used in the proposed work captures the spatio-temporal patterns in 
the network traffic data. The optimization model QIFA utilizes quantum principles to enhance the 
federated learning procedure. Experimentation of the proposed model utilizes benchmark UNSW-
NB15 dataset and evaluated the proposed model performances. The proposed model attained better 
performance in detecting different types of anomalies. With maximum precision of 98.2%, recall of 
98.5%, f1-score of 98.35%, specificity of 98.2% and accuracy of 98.34%, the proposed model performs 
better than traditional CNN, LSTM, RNN and federated learning models.
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Abbreviations
K  	� Total number of nodes or clients
η 	� Learning rate
T  	� Number of iterations
ϵ 	� Privacy budget
σ 	� Noise scale
α 	� Weighting factor for combined similarity score
δ 	� Perturbation magnitude
λ 	� Quantum-inspired coefficient
Lk  	� Local loss function for node k
w 	� Model parameters
g 	� Global model parameters
Xk  	� Dataset at node kk
yk  	� Labels associated with Xk

S 	� Combined similarity score
ci 	� Cluster centroid
C  	� Total number of clusters
µ 	� Mean of Gaussian noise
|.| 	� Norm of the vector
ϕ 	� Activation function
P  	� Perturbation term
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In the modern digital world, due to technological advancements the intensity and diversification of cyber-attacks 
has reached an unexpected level. Challenges to network security has increased due to these malicious activities 
performed by attackers. Unlike network users, intruders also utilize technological advancements and perform 
various attacks to create financial losses1, operational disruptions, and data breaches2. Attack complexity and 
its frequency increases every day. Thus, it is essential to develop an adaptive and robust model to secure the 
networks. Recent studies estimate that global cybercrime costs will reach to approximately $10.5 trillion 
annually by 2025 from $3 trillion in 2015. This financial burden is coupled with severe operational disruptions, 
reputational damages, and potential national security risks. Additionally, with over 30 billion devices projected 
to connect to the Internet by 2030 the attack continues to expand. This makes traditional centralized methods as 
insufficient for detecting cyber-attacks.

Traditional approaches evolved so far are centralized which typically collects and analyze data at central 
location to detect different types of threats3. Though the centralized approaches are effective, but it has limitations 
in maintaining data privacy. Since centralized systems process huge amount of data in a central repository it leads 
to potential vulnerabilities and becomes an easy target to attackers4. Also, the data transfer process introduces 
latency and reduces the effectiveness of real time attack detection. When the network complexity and scalability 
increase, computational burden increases and the effectiveness in detecting threats becomes more critical in a 
centralized system. Centralized models face critical challenges, such as data privacy vulnerabilities, high latency, 
and limited scalability in dynamic network environments. Furthermore, as attackers adopt advanced strategies 
like distributed denial-of-service (DDoS) and advanced malware so that the conventional detection methods 
struggle to handle these attacks in real-time. These limitations necessitate the development of adaptive, robust, 
and privacy-preserving frameworks capable of addressing diverse cyber threats efficiently. Deep learning models 
are utilized in a wide range of applications5–8. Specifically for network security, numerous models are developed 
based on convolutional neural network and recurrent neural network9,10. Though the attack detection models 
developed based on CNN and RNN shows significant detection performance it has constraints in computational 
capabilities while detecting diverse attack patterns11.

To overcome this limitations, decentralized approaches are developed which utilizes the principle of federated 
learning. Multiple entities are allowed collaboratively to train a global model without sharing the local data. 
A decentralized approach provides more advantage in terms of reduced communication overhead, improved 
scalability, and enhanced data privacy. Privacy issues are reduced in decentralized approaches due to securing 
the local data while developing global model. Utilizing these benefits, an innovative approach is developed in 
this research work for detecting cyber-attacks through federated learning. The major objective of this research 
work is to create a model to address the issues of data privacy, communication efficiency and attain enhanced 
detection accuracy.

To attain this objective, a hybrid federated learning model is proposed by incorporating a novel spatio-
temporal attention network (STAN) and a quantum inspired federated averaging optimization technique. The 
proposed hybrid model is designed to detect attacks and overcomes the limitations of traditional methods. 
Specifically, the novel spatio-temporal attention network captures the complex patterns in the network traffic 
data. Unlike the traditional model the proposed STAN utilizes attention mechanisms to capture the critical 
attack patterns in the network. This enhances accuracy and reliability in detecting a wide range of cyber threats.

Another feature of the proposed work is the quantum inspired federated learning optimization technique 
which overcomes the limitation of traditional federated averaging method. The proposed QIFA utilizes quantum 
computing principles and attain better convergence in attack detection. The quantum entanglement inspired 
aggregation procedure ensures the proposed model update its parameters from different nodes and improves the 
global model overall performance. The quantum tunneling procedure effectively avoids local optimal allows the 
optimization model to find best solutions which is not obtained through conventional methods.

To improve the federated learning process effectiveness the proposed model includes a hierarchical model 
aggregation procedure that dynamically groups nodes into regions based on the network condition and data 
similarity. By using an adaptive clustering algorithm, the local models are aggregated at regional servers to create 
an intermediate model. The intermediate models are then aggregated at central server to produce global model. 
Due to this, the communication overhead reduces, and detection accuracy increases in the attack detection 
process. Additionally, a multi- stage model refinement procedure is presented to fine tune the global model using 
a subset of the most relevant local model. This ensures the final model’s robustness and accuracy. The privacy 
preserving procedure used in the proposed utilizes advanced privacy preserving technique like differential 
privacy and secure multiparty computation to ensure data confidentiality in the federated learning process.

The proposed hybrid quantum-inspired federated learning network introduces an innovative detection 
model by integrating advanced quantum principles with federated learning for decentralized model training. 
Unlike traditional methods, the proposed approach employs a hierarchical model aggregation mechanism which 
dynamically grouping nodes based on data similarity and network conditions. This enhances the scalability 
and efficiency across diverse environments. The proposed spatio-temporal attention network (STAN) allows 
for the precise extraction of complex temporal and spatial patterns, a feature adaptable to various datasets and 
applications beyond network security. Moreover, the quantum-inspired federated averaging (QIFA) technique 
utilizes quantum superposition and entanglement principles to achieve superior convergence and global model 
optimization. Also, it avoids local minima that hinder conventional optimization methods. These advancements 
collectively offer enhanced adaptability, privacy preservation, and performance efficiency, making the proposed 
methodology applicable across domains such as healthcare, IoT networks, and large-scale distributed systems, 
where data heterogeneity and privacy are critical challenges.

The contributions made in this research work are summarized as follows.

Scientific Reports |        (2024) 14:32038 2| https://doi.org/10.1038/s41598-024-83682-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 Presented a novel spatio-temporal attention network to capture complex spatio-temporal patterns in network 
traffic data for cyberattack detection.

•	 Presented a quantum inspired federated averaging optimization technique to improve the efficiency and con-
vergence of the federated learning process by incorporating quantum inspired principles.

•	 Presented a hierarchical model aggregation model that dynamically groups nodes into regions to reduce com-
munication overhead and improve detection accuracy.

•	 Presented a detailed experimental analysis to evaluate the proposed model performance through metrics like 
accuracy, precision, recall and f1-score.

The remaining discussion in the article are presented as follows. Section “Related works” presents a brief 
literature review of existing research works; Sect. “Proposed work" presents the proposed hybrid model for 
cyber-attack detection. Section “Results and discussion” presents the experimental results and discussion, and 
Section “Conclusion” highlights the conclusion section.

Related works
This section presents a brief literature review of existing works on cyber security models. A detailed analysis 
made in12–14 considered different deep learning techniques like convolutional neural network, recurrent neural 
network, deep belief network and autoencoders in detecting cyber-attacks like phishing and malware detection. 
The analysis utilizes benchmark datasets like UNSW-NB15 and CSECICIDS2018 to evaluate the deep learning 
model performances. Results summarizes that the analyzed deep learning models have high computational 
requirements and brings challenges like overfitting due to its complex architectures.

A detailed analysis of machine learning and deep learning models presented in15 for attack detection utilizes 
deep neural networks and support vector machines to detect different types of attacks. The feature from the 
benchmark KDD cup 99 dataset is extracted and classified through both deep neural network and SVM models. 
The results describes that the detection performance of deep neural network is better than SVM but both models 
require high computational cost and lags in detection performance while analyzing encrypted traffic. The attack 
detection model presented in16 utilizes graph neural network (GNN) for analyzing malicious network traffic to 
detect attack. The presented model captures the complex relationships between the network entities to detect the 
anomalies. The experimental results indicates that GNN are effective in anomaly pattern detection, but it requires 
labeled graph dataset which is challenging in real time attack detection scenarios. The deep learning-based 
attack detection model presented in17 developed a four layer deep fully connected network to detect different 
types of attacks like blackhole, DDoS, sinkhole, and wormhole attacks. The presented model demonstrates its 
detection performance through its high accuracy metric over traditional deep learning models.

The cyber-attack detect strategy presented in18 utilizes techniques like deep Q-Networks and Q-learning to 
detect different types of attacks in a network. The presented model considers the past and present traffic statistics 
while analyzing the network data to detect the attacks. Results demonstrate the presented model performance in 
various attack detection scenarios. However, it requires a precisely formulated reward functions to detect attacks 
with high accuracy which is challenging in real time attack detection. The attack detection model presented in19 
includes a deep reinforcement learning model to dynamically adjust security policies for cyber-attack detection. 
The presented model utilizes an adaptive policy management procedure that fine tunes and modifies the policies 
based on the traffic changes to detect the threats. The adaptive procedure continuously evaluates the model and 
allocates suitable reward function to detect diverse attack patterns. However, providing suitable reward function 
has significant challenges while implementing in real time attack detection scenarios.

Attack detection through Long short-term memory (LSTM) network presented in20 captures the temporal 
dependencies in network traffic to detect the threats in a network. The experimentation of the presented model 
utilizes CTU-13 dataset to evaluate the attack detection performance and summarize that LSTM requires long 
training time and high memory requirements compared to traditional methods. Similar LSTM based attack 
detection is performed in21 through federated learning concept. The presented model aggregates the LSTM 
parameters from different locations and generates a global model to ensure data confidentiality and privacy. 
The results demonstrate the presented federated concept enhances the security, but it has high tradeoff between 
privacy preservation and overall performance.

An ensemble learning based attack detection presented in22 considered techniques like gradient boosting, 
random forest, and convolutional neural network. The ensemble model classifies the extracted network data 
features and finally selects the best through voting mechanism. Experimentations of the presented model 
utilize Bot-IoT dataset to demonstrate better detection accuracy and reduced false positives. However, due to 
integration of multiple models the computational overhead and complexity increases compared to traditional 
models.

A hybrid deep learning model presented in23 utilizes techniques like recurrent neural network and 
autoencoder to detect DDoS attacks in a network. The presented model extracts the attack features from network 
traffic through autoencoder and predicts the attack patterns through RNN. The experiments utilize CICIDS2017 
dataset to evaluate the hybrid model’s better detection performance over traditional deep learning models. An 
attention based recurrent neural network is presented in24 to detect insider attack in a network. The presented 
model extracts the key features that indicate the presence of insider attack in a network through the attain 
based RNN model. Experimentation utilizes CERT insider threat dataset to evaluate the model performance and 
summarizes its better accuracy and reduced false positives. However, the presented approach has limitations in 
interpreting attention weights and requires precise tuning of models while detecting attacks.

The hybrid deep learning model presented in25 extracts the spatial features from the network traffic through 
CNN and extracts the temporal features through RNN for advanced attack detection in a network. The extracted 
features are fused and then classified through machine learning model to attain better detection performance. 
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Experimentations utilizes UNSW-NB15 dataset to evaluate the model performance and from that the model 
better accuracy and high computation cost is identified as the major merit as well the demerit. The hybrid 
model presented in26 integrates the quantum principles with machine learning technique for attack detection in 
a network. The presented quantum support vector machine utilizes quantum entanglement and superposition 
principles while extracting the features and classifies them into different attack patterns. The experimental results 
demonstrate that the performance of quantum SVM is better than the traditional machine learning models. The 
hybrid attack detection model presented in27 utilizes multi-layer perceptron and convolutional neural network 
to detect IoT specific attacks in a network. The presented model extracts the features from network traffic 
using CNN and classifies them using multilayer perceptron. However, the presented model requires further 
optimization to attain enhanced detection performance over existing hybrid models.

A cybersecurity model presented in28 considered techniques like restricted Boltzmann machine and generative 
adversarial network for spam detection and insider attack identification. However, the results indicates that 
these deep learning model requires further enhancement in attack detection to detect different types of attack 
as it is limited to specific attack detection procedure. A deep convolutional generative adversarial network-
based attack detection procedure presented in29 generates synthetic training data through GAN to increase the 
number of samples in the training process. The existing NSL-KDD dataset is augmented through the proposed 
model to demonstrate that increased training samples will simultaneously increase the accuracy and robustness 
in attack detection. Similar GAN based attack detection presented in30 generates attack patterns to improve the 
robustness of attack detection model. The experimental results highlight the enhanced performance attained due 
to the increased training samples.

A detailed evaluation of deep learning algorithms is presented in31 for cyberattack detection and multi-
class classification in IoT networks. The presented approach considers approaches like DNN, CNN, and RNN 
models and utilize benchmark dataset to evaluate the model performance. The experimental analysis exhibit that 
highest accuracy of RNN model over other deep learning models. The cyber threat detection model presented 
in32 includes ML random forest algorithm to detect anomalies from cyber network. The presented model 
experimental analysis exhibits the better accuracy of random forest model over existing KNN and Naïve Bayes 
algorithms. To overcome the limitations in traditional ML based cyber security detection process, hybrid models 
are evolved. The hybrid model presented in33 incorporates ML and optimization techniques to detect different 
types of cyber-attacks. The presented optimized ML model attains high detection performance over traditional 
approaches. However, the presented model has high computational complexity and requires high quality of data 
for processing.

The cybersecurity model presented in34 for healthcare provides a centralized multi-source transfer learning 
procedure to detect DDoS and ransomware. The presented model extracts the features using PCA and utilizes 
advanced transfer learning to classify the attacks. The experimental results validate the model better accuracy 
but it has limitation in terms of high execution time. A hybrid model presented in35 combines Deep CNN 
with BiLSTM network to provide authentication in user application. The presented security model evaluates the 
trust based on Bayes theorem and process the features through hybrid deep learning model. The experimental 
evaluations highlight the model superior performance compared to conventional deep learning models. Similar 
security module presented in36 for user application detects threats using a hybrid ensemble learning approach in 
addition to hybrid optimization algorithm. The hybrid model combines sigmoid cosine with pigeon optimization 
for feature selection and classifies them using the ensemble model. Experimentations using benchmark dataset 
validates the better accuracy of presented model over traditional ML models.

The hybrid model presented in37 for intrusion detection combines reinforcement learning with deep Q neural 
network. The presented model extracts the features using the hybrid model and obtains optimal decision using 
Markov decision process. The experimentation that includes binary and multi attack classification evaluates 
different benchmark datasets and exhibits its better performance over traditional approaches. The anomaly 
detection model presented in38 for cyber-attack detection combines CNN with gaussian mixture model. The 
presented approach estimates the anomalous and legitimate event probabilities to detect different types of 
attacks. However, the presented model is computationally intensive and requires domain specific knowledge.

A federated learning-based IDS presented in39 utilizes convolutional neural network to train the models 
across different locations. The presented model shares the parameters of CNN to different nodes and generates 
a global model without sharing the user data. This enhances data privacy against cyber-attacks in a modern 
network. However, it requires a robust aggregation algorithm while generating the global model. The federated 
learning-based attack detection model presented in40 utilizes blockchain for secure model aggregation. The 
presented model ensures secure and transparent model updates across distributed nodes using block chain. 
However, it increases the computational overhead. Additionally, the complexity increases in addition to attack 
detection due to complexity of block chain systems.

Research gaps
From the literature analysis the following research gaps are identified.

•	 Deep learning models like CNN, RNN, and autoencoder are better in detecting attacks and threats over ma-
chine learning algorithms. Various cyber-attacks are effectively detected by deep learning models. However, it 
requires more computation cost, training samples and sometimes face overfitting issues.

•	 The utilization of recurrent networks in attack detection requires precise reward function which is critical to 
provide in real time applications.

•	 The hybrid models evolved so far exhibit their better detection performance, however it requires significant 
computational resources while processing huge network traffic data.
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•	 Federated learning-based detection procedures provides enhanced data privacy and security but face issues 
while aggregating local models to generate global model. Integration of quantum principles can provide bet-
ter accuracy and robust performance in attack detection.

Thus, in this research work federated learning is incorporated with quantum computing to attain enhanced 
performance in cyber-attack detection.

Proposed work
The proposed hybrid federated learning based cyber-attack detection model includes a hierarchical model 
aggregation procedure to group the nodes into regions based on the network data similarity and network 
condition. The spatio-temporal attention network used in the proposed work effectively captures the spatio-
temporal patterns in network traffic data to detect wide range of cyber-attacks. The quantum inspired federated 
averaging model enhances the learning process through quantum inspired principles thus it improves the 
convergence and avoids local minima in finding optimal solution for the attack detection problem. Federated 
learning is a decentralized method in which multiple nodes or clients collaboratively train a model without 
sharing their local data. This method avoids the necessity of central data storage and thus enhances the privacy 
of the network. The major aim of FL is to minimize the global objective function. In general, the average of 
local objective function of all the participating nodes are formulated to obtain the global objective which is 
mathematically described as

	
F (w) = 1

K

∑K

k=1
Fk (w)� (1)

where K  indicates the total number of nodes or clients, w indicates the global model parameters, and Fk (w) 
indicates the loss function of the kth node. In the initialization of FL process, the central server initializes the 
global model parameters and distributes that as initial parameters to the remaining nodes. This is mathematically 
represented as (w0 → {w0,1, w0,2, . . . , w0,K}) in which the initial model parameter for the kth node is 
indicated as w0,k  and the global model parameter is indicated as w0. Then each node in the network receives the 
global model parameters and utilizes them to update the local model. The local model is then trained to minimize 
the local objective function. This is performed by using gradient descent or other optimization algorithms. In 
the proposed work, the optimization utilizes quantum inspired federated averaging optimization procedure to 
minimize the local objective function. Mathematically the local objective function is formulated as

	
w

(t+1)
k = w

(t)
k − η∇Fk

(
w

(t)
k

)
� (2)

where w(t)
k  are the model parameters at node k at iteration t, local loss function is indicated as ∇Fk

(
w

(t)
k

)
 and 

η indicates the learning rate. After successive local training, the nodes send its updated model parameters to the 
central server which is mathematically described as ({wk,1, wk,2, . . . , wk,K} → CentralServer). Finally in 
the global model aggregation, the central server aggregates updates from all the nodes and generates a global 
model. The global model update is mathematically formulated as

	
w(t+1) = 1

K

∑K

k=1
w

(t+1)
k

� (3)

This process is repeated till convergence and in each round the central server updates the global model and 
distributes the parameters to local nodes. Through these procedures FL performs collaborative training across 
multiple nodes and preserves the data privacy.

Hierarchical model aggregation (HMA)
In the proposed hybrid federated learning network, a novel hierarchical model aggregation (HMA) procedure 
is presented to enhance the stability, accuracy, and efficiency in a decentralized learning environment. In the 
hierarchical model aggregation procedure, each node trains its network using its own dataset. However, to 
manage the scalability and to improve the efficiency of the aggregation process, the nodes are then grouped into 
regions based on network condition and data similarity. For this an adaptive clustering algorithm is used in the 
HMA process. A complete overview of HMA is depicted in Fig. 1.

Consider  R⇕ be the set of nodes in a region m, then clustering is performed based on data similarity which 
is measured through cosine similarity. Let Dk  and Dj  be the data distributions at nodes k and j respectively, 
then cosine similarity between these two data points is mathematically expressed as

	
Simdata (k, j) = Dk · Dj

|Dk||Dj | � (4)

where Simdata indicates the data similarity, (·) indicates the dot product and (|.|) indicates the norm of the 
vector. Further the network conditions are evaluated based on the parameters like packet loss rate, bandwidth, 
and latency metrics. Consider Lkj  be the latency between the nodes, then network efficiency is measured by 
inversing the latency which is mathematically formulated as
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Simnet (k, j) = 1

Lkj
� (5)

where Simnet indicates the network conditions, Lkj  indicates the latency between nodes k and j respectively. 
Finally, to create a region, a combined similarity score is calculated considering the network condition and data 
similarity which is mathematically expressed as

	 Simcombined (k, j) = α · Simdata (k, j) + (1 − α) · Simnet (k, j)� (6)

where Simcombined indicates the combined similarity score, weighting factor is indicated as α and it is used 
to balance the data similarity and network condition. Further considering the similarity score, clustering is 
performed using k-means clustering algorithm. The clustering algorithm randomly initializes M  cluster 
centroids as ({C1, C2, . . . , CM }) and assign each node to the cluster whose centroid has highest similarity 
score. For each node, the cluster assignment is mathematically formulated as

	
rk = argmax

m
Simcombined (k, Cm)� (7)

After cluster assignment, the centroids of the clusters are recomputed based on the current cluster assignment. 
The new centroid of cluster is the mean of nodes assigned to the cluster which is mathematically formulated as

	
Cm = 1

|Rm|
∑

k∈Rm

Xk � (8)

where Rm indicates the set of nodes assigned to cluster m and Xk  indicates the feature vector of the node. This 
procedure is repeated till all the cluster assignments are done. Then the final output of the clustering algorithm 
provides a set of regions ({R1, R2, . . . , RM }), in which each region R⇕ contains a group of nodes with high 
data and network similarity. In each region, the nodes collaboratively train the local model by sharing its local 

Fig. 1.  Hierarchical model Aggregation.
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updates. The regional server aggregates the updates from local models and creates an intermediate regional 
model wm which is mathematically expressed as

	
w(t+1)

m =
∑

k∈Rm

nk∑
i∈Rm

ni
w

(t+1)
k � (9)

where nk  is the number of data samples at node k and 
∑

i∈R⇕
ni is the total number of data samples in 

region m. In the global aggregation process, the regional models are sent to the central server which is given as (
{w

(t+1)
1 , w

(t+1)
2 , . . . , w

(t+1)
M } → CentralServer

)
 and it combines the regional models to update the global 

model parameters which is mathematically formulated as

	
w(t+1) =

∑M

m=1

∑
k∈R⇕

nk

n
w(t+1)

m
� (10)

where n is the total number of data samples across all nodes. The process of local model training and global 
model aggregation is repeated for several rounds until the global model parameters converge to the solution that 
minimizes the objective function. Through the hierarchical model aggregation, the proposed model provides an 
accurate and efficient federated learning environment.

Spatio-temporal attention network (STAN)
In the proposed work, the anomalies in the network are detected by analyze the spatial and temporal patterns in 
the network traffic data using a novel spatio-temporal attention network (STAN). The proposed STAN analyzes 
the network traffic feature vectors over time. Consider X ∈ RT ×N   is the input network traffic data to the STAN 
in which N  indicates the number of features and T  indicates the time steps. At time step t, each element Xt,n 
indicates the value of nth feature. Figure 2 depicts the process overview of proposed STAN.

The temporal attention mechanism in the proposed STAN captures the temporal dependencies by calculating 
the attention score for each time step. Mathematically the process to compute temporal vector for each time step 
is formulated as

	 ht = ReLU (WtXt + bt)� (11)

where ht indicates the temporal vector, Wt ∈ Rd×N  indicates the temporal attention mechanism weight matrix, 
Xt indicates the feature vector, bt ∈ Rd indicates the bias vector and the activation function is indicated as 
ReLU . Then the attention score is calculated using a SoftMax function which is mathematically expressed as

	
αt = exp (ht)∑T

t′=1 exp (ht′)
� (12)

where αt indicates the attention score. Based on the attention score, the weighted sum of input feature is 
computed to obtain the temporal attention output. Mathematically it is expressed as

	
X̃ =

T∑
t=1

αtXt� (13)

Fig. 2.  Spatio-Temporal Attention Network (STAN).
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where X̃  indicates the temporal attention output. Similarly, the proposed STAN includes a spatial attention 
mechanism to capture the spatial dependencies over each time step. The spatial vector for each feature is 
calculated as

	 gn = ReLU (WsXn + bs)� (14)

where gn indicates the spatial vector, n indicates the feature, Ws ∈ Rd×T  indicates the spatial attention 
mechanism weight matrix, Xn indicates the sequence of features, bs ∈ Rd indicates the bias vector. Then for 
each feature, an attention score is calculated as follows.

	
βn = exp (gn)∑N

n′=1exp (gn′)
� (15)

where βn indicates the attention score. Based on the attention score, the weighted sum of input features is 
computed to obtain the spatial attention output. Mathematically it is expressed as

	
X̂ =

∑N

n=1
βnXn� (16)

where spatial attention output is indicated as X̂ . After computing the spatial and temporal features, the final 
output is obtained by combining both attention outputs which is mathematically formulated as

	 X = X̃ ⊙ X̂ � (17)

where ⊙ indicates the element-wise multiplication. The spatio-temporal attention output in Eq.  (17) is 
processed through a fully connected layers and SoftMax function to classify features as normal or anomalous. 
Mathematically the process to compute the logits using a fully connected layer is formulated as

	 z = Wf X + bf � (18)

where Wf ∈ RC×(T ·N) indicates the fully connected layer weight matrix, bf ∈ RC  indicates the bias vector 
and C  indicates the number of classes. Finally, by applying SoftMax function the probabilities of each class is 
obtained which is mathematically expressed as

	 p = softmax (z)� (19)

Thus, the novel STAN effectively captures the spatio-temporal patterns in the network traffic and enhances the 
detection accuracy in the proposed hybrid federated learning network.

Quantum-inspired federated averaging (QIFA)
In the proposed hybrid federated learning network, the learning process is enhanced by adapting a quantum 
inspired federated averaging procedure which is based on the principles of quantum computing. The major 
aim of incorporating the quantum principle is to enhance the aggregation and convergence of the federated 
learning model. The first step in the proposed QIFA is quantum inspired initialization in which the federated 
learning process is started from a different set of model parameters. To initialize the model parameters, quantum 
inspired random number generation techniques is used as it provides high randomness in initializing the model 
parameters. Then for each node in the federated learning network, updates its model parameters based on its 
local data. Further the quantum principles are incorporated in the aggregation process to enhance the federated 
averaging process. The traditional steps in the federated averaging are modified using the quantum superposition 
and entanglement concepts.

In quantum superposition-based aggregation, the systems can be considered in multiple states to create 
diverse aggregation of local models. Mathematically it is expressed as

	
w(t+1) =

∑K

k=1

nk

n
w

(t+1)
k + λQ (w)� (20)

where K  indicates the total number of nodes, nk  indicates the number of data samples at node k, n indicates 
the total number of data samples across all nodes, λ indicate the scaling factor which is used to balance the 
traditional averaging and quantum adjustment factor Q (w). This adjustment factor Q (w) incorporates the 
superposition principles in the aggregation process which is mathematically formulated as

	
Q (w) = 1

K

∑K

k=1
ϵkw

(t+1)
k

� (21)

where ϵk  is the quantum inspired coefficient that introduces diversity based on the entangled states of the 
parameters. In order to avoid local minima in the optimization process, the proposed QIFA includes quantum 
inspired perturbations. The perturbations are periodically introduced to the global model parameters to avoid 
local minima which is mathematically formulated as
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	 w(t+1) = w(t+1) + δN
(
0,σ2)

� (22)

where δ  indicates the perturbation magnitude and N
(
0,σ2)

 indicates the Gaussian noise term with mean 
0 and variance (σ2). The process from local model training to quantum inspired aggregation is repeated for 
several communication rounds. During each round, the global model parameters are updated and distributed 

them to the nodes as 
(

w(t+1) →
{

w
(t+1)
k,1 , w

(t+1)
k,2 , . . . , w

(t+1)
k,K

})
. The global model is updated by the central 

server by aggregating parameters and quantum inspired adjustment. Mathematically it is formulated as

	
w(t+1) =

∑K

k=1

nk

n
w

(t+1)
k + λQ (w) + δN

(
0,σ2)

� (23)

where w indicates the global model parameters. By updating the model parameters, the QIFA in the proposed 
model enhances the learning process of federated learning model.

Privacy-preserving techniques
In order to ensure privacy in the federated learning, the proposed work incorporated differential privacy and 
secure multiparty computation techniques. Differential privacy decides the inclusion or exclusion of data points 
while secure multiparty computation allows multiple parties to compute a function by keeping the inputs 
private. To implement differential privacy the local model updates are added with a noise factor before it shares 
the updates with central server. Mathematically the process of adding noise factor to the local model parameters 
is formulated as

	 w
(t+1)
k = w

(t+1)
k + N

(
0,σ2I

)
� (24)

where w(t+1)
k  indicates the local model parameters after training at node k, the Gaussian noise is indicated as 

N
(
0,σ2I

)
 in which I  indicates the identity matrix and variance is indicated as σ2. To measure the privacy 

level, a privacy budget ϵ is used in which the lower value of ϵ provides higher privacy and vice versa. Based on 
this privacy budget, the noise scale is determined and formulated as

	
σ = ∆f

ϵ
� (25)

where ∆f  indicates the function sensitivity which defines the changes in the output function.
While employing secure multiparty computation, each node divides its local model update into multiple 

portions and distribute them to other nodes. Consider the node k divides its model update w
(t+1)
k  as 

(sk,1, sk,2, . . . , sk,n) and sends a portion sk,i to node i. Mathematically it is expressed as

	 w
(t+1)
k = sk,1 + sk,2 + · · · + sk,n� (26)

where sk,i indicates the portions which divided from local model update. Each node in the network receives 
the divided portion from other nodes and aggregates them to obtain global model update. The central server 
combines the divided portions and obtains an aggregated model without learning the individual updates. 
Mathematically it is formulated as

	

∑K

k=1
sk,i = w

(t+1)
i � (27)

The central server reconstructs the global model update by combing all the split portions which is mathematically 
formulated as follows.

	
w(t+1) =

∑n

i=1

(∑K

k=1
sk,i

)
� (28)

Thus, by integrating differential privacy and secure multiparty computation the proposed model ensures robust 
privacy in the federated learning process. The integration ensures that individual data remains private while 
enabling collaborative model training the federated learning process.

The summarized pseudocode of the proposed hybrid federated learning network is presented as follows.
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Results and discussion
The proposed hybrid federated learning network performance is evaluated using python tool. The implementation 
includes essential library functions to implement the federated learning model. The simulation hyperparameters 
used in the proposed model experimentation is listed in Table 1. The experimentation utilizes benchmark 
UNSW-NB15 dataset to evaluate the proposed model performance. The dataset has diverse features that 
describes network traffic and suitable for anomaly detection and cyber security. Details like packet counts, byte 
counts, protocol details, connection states, etc., are provided in the dataset as labeled instances of normal and 
attack traffic. A total of 2,540,044 samples in the dataset is divided in the ratio of 80:20 for training and testing. 
A total of 2,032,035 samples are used for the training and 508,009 samples are used for testing. Complete details 
of the dataset used in the training and testing process is presented in Table 2.

The proposed model utilizes metrics like accuracy, precision, recall, f1-score, Specificity, and Matthews 
Correlation Coefficient (MCC) for performance evaluation. Mathematical formulations for the evaluation 
metrics are presented as follows.
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Accuracy = T P + T N

T P + T N + F P + F N
� (29)

	
Log − Loss = − 1

N

∑N

i=1
[yilog (pi) + (1 − yi) log (1 − pi)]� (30)

	
P recision = T P

T P + F P
� (31)

	
Recall = T P

T P + F N
� (32)

	
F 1 − Score = 2 × P recision × Recall

P recision + Recall
� (33)

	
Specificity = T N

T N + F P
� (34)

	
MCC = T P × T N − F P × F N√

(T P + F P ) (T P + F N) (T N + F P ) (T N + F N) � (35)

where N  indicates the number of samples, yi indicates the actual label, and pi indicates the predicted probability. 
Figure 3 depicts the accuracy and loss curves of the proposed HFLN for the training and validation process. The 
accuracy graphs clearly presents that the proposed model training and validation accuracy increases gradually in 
the initial epochs. This indicates the proposed model significantly learns the features and the model aggregation 

Attack Category Total Samples Training Samples (80%) Testing Samples (20%)

Normal 2,218,761 1,775,009 443,752

Fuzzers 24,246 19,397 4,849

Analysis 2,677 2,142 535

Backdoor 2,329 1,863 466

DoS 16,353 13,082 3,271

Exploits 44,525 35,620 8,905

Generic 215,481 172,385 43,096

Reconnaissance 13,987 11,190 2,797

Shellcode 1,511 1,209 302

Worms 174 139 35

Total 2,540,044 2,032,035 508,009

Table 2.  UNSW-NB15 Dataset description.

 

S.No Description Value/Range

1 Number of nodes (K) 50

2 Number of regions (M) 5

3 Learning rate (η) 0.01

4 Number of iterations (T) 100

5 Privacy budget (ε) 1.0

6 Noise scale (σ) 0.1

7 Weighting factor (α) 0.5

8 Perturbation interval 10

9 Perturbation magnitude (δ) 0.01

10 Number of eigenvectors 5

11 K-means clustering max Iterations 300

12 Convergence threshold 1e-5

13 Initial model range [-0.1, 0.1]

14 Quantum-inspired coefficient (λ) 0.1

15 Batch size 32

16 Communication bandwidth 10 Mbps

17 Latency 100 ms

Table 1.  Simulation hyperparameters.
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continuously adjusts the parameters to become optimal. After crossing 20 epochs, the accuracy of the proposed 
model saturates to its maximum of 98.3% which indicates the model proficiency in classifying the anomalies. 
The validation accuracy follows the training accuracy with slight difference which indicates the proposed 
model generalization ability. Similarly in the loss curve, the training and validation curves gradually decreases 
and reaches a minimum when epochs are increased. In the last, the loss values stabilize which confirms that 
the model reached its optimal state. The accuracy and loss curves clearly present the proposed model’s high 
performance and stability in detecting anomalies in the network.

Figure 4 presents the ROC curve of proposed model training and validation process. The plot considered the 
false positive and true positive values. From the graph it can be observed that AUC are high for both training 
and validation process. In the training process, the obtained AUC is 0.9869 and for validation AUC is obtained 
as 0.9808. This high AUC value indicates that the proposed model is highly effective in detecting anomalies 
with minimum false positives. The confusion matrix obtained for the training and testing process is depicted in 
Fig. 5. The proposed model correctly predicted the attack and normal instances in training as well as the testing 
process. In the training process, the proposed model correctly classified 1,377,432 instances as non-anomalous 
and 397,157 instances as anomalous. Similarly in the testing process, the proposed model correctly classified 
344,518 instances as non-anomalous and 99,172 instances as anomalous.

From the confusion matrix elements, the other metrics like precision, recall, f1-score, specificity and Mathew 
correlation coefficient are obtained for both training and testing process. The overall performance of the 
proposed model for all the metrics in the training and testing process is presented in Table 3. It can be observed 
that the proposed model exhibited maximum accuracy of 98.34% in the training process and 98.31% in the test 
process. similarly, the precision obtained during training is 98.20% and the test precision is 98.15%. The recall 
during the training is 98.45% and for the test process the recall is obtained as 98.50%. From the results the better 
detection performance of the proposed HFLN is observed.

Fig. 3.  Accuracy and loss analysis.
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Further to evaluate the proposed model performance, some traditional machine learning and deep learning 
models are considered. Models like random forest, convolutional neural network (CNN), Long Short-Term 
Memory (LSTM), Recurrent Neural Network (RNN), Federated Learning (FL), Semi-supervised Spatio-
Temporal Deep Learning (SSTDL) and Spatio-Temporal Graph Neural Network (STGNN)41,42 models are 
considered for comparative analysis. The comparative analysis utilizes the same dataset and evaluation metrics. 
For each model, the experimentation is performed with standard hyperparameters, and the results are finally 
summarized to perform this comparative analysis. The simulation hyperparameters of the traditional models 
are listed in Table 4.

Figure 6 depicts the precision comparative analysis of proposed model with existing techniques. The results 
clearly present the proposed HFLN model consistent performance over other algorithms. The precision improves 
gradually and reaches maximum of 0.98 by 160th epoch which indicates that the proposed model learns the 

Fig. 5.  Confusion matrix obtained for the training and test data.

 

Fig. 4.  ROC curve for training and validation.
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S.No Model Parameter Range/Type

1

Random forest

Number of trees 200

2 Max depth 30

3 Min samples split 2

4 Min samples leaf 1

5

CNN

Convolutional layers 4

6 Filter size (3, 3)

7 Pooling size (2, 2)

8 Activation ReLU

9 Optimizer Adam

10 Learning rate 0.001

11

LSTM

Number of layers 3

12 Units per layer 128

13 Dropout 0.2

14 Activation Tanh

15 Optimizer RMSprop

16 Learning rate 0.001

17

RNN

Number of layers 3

18 Units per layer 64

19 Dropout 0.3

20 Activation Sigmoid

21 Optimizer Adam

22 Learning rate 0.0005

23

FL

Nodes 10

24 Communication rounds 200

25 Optimizer SGD

26 Learning rate 0.01

27

SSTDL

Convolutional layers 3

28 Activation ReLU

29 Optimizer Adam

30 Learning rate 0.001

31 Dropout 0.3

32

STGNN

Graph layers 3

33 Attention heads 8

34 Node embedding size 128

35 Aggregation method Mean

36 Optimizer RMSprop

37 Learning rate 0.0005

38 Dropout rate 0.2

Table 4.  Simulation hyperparameters of traditional models used for comparative analysis.

 

S.No Metric Train Test

1 Accuracy 0.9834 0.9831

2 Precision 0.9820 0.9815

3 Recall 0.9845 0.9850

4 F1-Score 0.9832 0.9832

5 Specificity 0.9823 0.9817

6 AUC-ROC 0.9960 0.9955

7 Log-loss 0.060 0.065

8 MCC 0.9671 0.9665

Table 3.  Performance metrics of proposed model.
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features more effectively and maintains high accuracy in differentiating different classes. The precision of SSTDL 
and STGNN are 0.970 and 0.969 which is lesser than the proposed model. The federated learning model shows 
a better precision of 0.96 which is closer but lesser than the proposed HFLN. The LSTM shows a maximum 
precision of 0.95 while CNN and RNN exhibit precisions as 0.94 and 0.935 respectively which is lesser than the 
proposed HFLN. The least performance is exhibited by the random forest model with 0.935 as precision. This 
indicates that the existing models are not efficient in managing the data complexities while detecting anomalies 
compared to the proposed HFLN model.

The recall metric is comparatively analyzed in Fig. 7 for all the algorithms and the results highlights the 
proposed model’s better performance with maximum recall of 0.9815. The proposed HFLN model superior 
performance demonstrates its ability in correctly identifying the positive instances which is essential for 
intrusion detection application. The recall of SSTDL and STGNN are 0.973 and 0.971 which is lesser than the 
proposed model. Similarly existing federated learning exhibit recall as 0.96, LSTM as 0.955, RNN as 0.935, CNN 
as 0.94 and random forest as 0.935 which is lesser than the proposed HFLN model.

Fig. 7.  Recall comparative analysis.

 

Fig. 6.  Precision comparative analysis.
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Since the performance of the proposed model is better in terms of precision and recall, it is reflected in the f1-
score comparative analysis given in Fig. 8. The proposed model exhibits a maximum f1-score of 0.9832 whereas 
existing SSTDL exhibit 0.971, STGNN exhibit 0.970, federated learning exhibit 0.970, LSTM exhibit 0.965, CNN 
exhibit 0.965, RNN exhibit 0.955, and random forest exhibit 0.950, as f1-score which is lesser than the proposed 
HFLN model. Overall, the f1-score comparative analysis highlights the proposed model better performance and 
its accurate predictions in the anomaly classification process.

The specificity analysis of proposed model with other algorithms presented in Fig. 9 highlights the superior 
performance of proposed HFLN model. The proposed model exhibits a maximum specificity of 0.9817 whereas 
existing SSTDL exhibit 0.969, STGNN exhibit 0.968, federated learning exhibits 0.969 as its specificity which 
is lesser than the proposed model. Similarly, the specificity of LSTM is 0.963 which is approximately 2% lesser 
than the proposed. The specificity of CNN and RNN are 0.958 and 0.953 which is approximately 3% lesser than 
the proposed model. The specificity of random forest model is 0.945 which is approximately 4% lesser than the 
proposed model.

Fig. 9.  Specificity comparative analysis.

 

Fig. 8.  F1-score comparative analysis.
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The MCC analysis of proposed model with other algorithms is presented in Fig. 10. The proposed model 
exhibits a maximum MCC of 0.9665 whereas existing SSTDL and federated learning exhibits 0.940 as its MCC 
which is 2% lesser than the proposed model. STGNN exhibit 0.938 as MCC which is 4% lesser than the proposed. 
Similarly, the MCC of LSTM is 0.930 which is approximately 3% lesser than the proposed. The MCC of CNN 
and RNN are 0.920 and 0.910 which is approximately 4% and 5% lesser than the proposed model. The MCC of 
random forest model is 0.90 which is approximately 6% lesser than the proposed model.

Figure 11 presents the accuracy comparative analysis of proposed model with existing algorithms. The figure 
clearly presents the superior accuracy of the proposed model over existing techniques. The proposed model 
exhibits a maximum accuracy of 0.983 which is 2% better than SSTDL and STGNN model, 3% better than 
RNN and random forest and 2% better than LSTM and CNN models. Table 5 presents the overall performance 
comparative analysis considering all the metrics for proposed and existing algorithms. The proposed model 
exhibits its superior performance for all the metrics and provides enhanced protection against attacks in the 
network.

Fig. 11.  Accuracy comparative analysis.

 

Fig. 10.  MCC comparative analysis.
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Conclusion
A novel hybrid quantum spired federated learning network is presented in this research work for cyber-attack 
detection in a network. The proposed model incorporates techniques like spatio-temporal attention network 
and quantum inspired federated averaging to attain superior performance in attack detection. The proposed 
model experimentation utilizes benchmark UNSW-NB15 to evaluate the performance of detection model. The 
proposed model attains maximum accuracy of 98.34% which is much better than the traditional models like 
Federated learning, long short-term memory, recurrent neural network, convolutional neural network, and 
random forest algorithms. The proposed model reached this maximum performance due to its ability in grouping 
nodes, hierarchical model aggregation, and effective utilization of spatial and temporal features. Though the 
proposed model attained better performance in attack detection, the model computational complexity increases 
due to multiple techniques. However, this minor limitation can be neglected as the proposed model provides 
superior accuracy over existing techniques in attack detection. In future, this research work can be extended by 
considering adaptive learning mechanisms to enhance the detection ability, reliability, and overall performances.

Data availability
The data used to support the findings of this research are provided within this manuscript.
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