Table 17 Comparison of model UBC7 and available models in the literature.

From: Prediction of time-dependent bearing capacity of concrete pile in cohesive soil using optimized relevance vector machine and long short-term memory models

S. No.

Input variables

Data

Models

Test R

Reference

1

L, D, PI, Su, qv, Qi, T

169

GEP

0.9000

18

2

D, L, S, Ed, At, Ab, SPT_NS, SPT_NB, Cs, Cb, ϕS, ϕB

95

GA_ANFIS

0.9620

19

3

LT, Clay, Silt, Sand, PT, WL, NF, D

95

ANN

0.9747

27

4

D, T1, T2, T3, PT, NGE, PTE, d, SPTS, SPTT

472

ODFP-LSSVR

0.9644

29

5

D, L, Qi, T, Su

256

GP

0.9187

31

6

D, T1, T2, T3, PT, NGE, PTE, d, SPTS, SPTT

472

GA_RF

0.9646

33

7

L, D, SPTS, SPTT, fc, fy

75

SVM

0.9580

35

8

L, D, Qc, FS

72

PSO_ANFIS_GMDH

0.9600

49

9

L, D, SPT, H, HW

125

GBT

0.9171

51

10

L, SPT, H

125

GBT

0.9033

51

11

L, D, PS, HW, H

296

GPR

0.9165

61

12

D, T1, T2, T3, PT, NGE, PTE, d, SPTS, SPTT

2314

RF

0.9306

64

13

T1, T2, NGE, SPTT

472

GA_DNN

0.9418

65

14

L, D, Qi, T, Su, PI, qv

126

GA_G_RVM

0.9727

Present Study

  1. *GA_G_SRVM is the genetic algorithm optimized Gaussian kernel-based RVM model UBC7.