Table 2 Resulting average classification accuracy together with precision, recall and F1-score for each SAILOR models tested in our approach to performing the symbolic anchoring functionalities in nuScene, MOTFront and Mix datasets and in the Leon@Home scenario.

From: SAILOR: perceptual anchoring for robotic cognitive architectures

 

Accuracy

Precision

Recall

F1-score

nuScenes dataset

   nuScenes

0.9869

0.8358

0.7624

0.7974

   MOTFront

0.9667

0.9064

0.9967

0.9494

   Mix

0.9730

0.9037

0.9858

0.9430

   Leon@Home

0.9946

0.9775

0.9695

0.9735

MOTFront dataset

   nuScenes

0.9655

0.4933

0.7211

0.5858

   MOTFront

0.9754

0.9562

0.9656

0.9609

   Mix

0.9723

0.9256

0.9542

0.9397

   Leon@Home

0.9958

0.9930

0.9658

0.9792

Mix dataset

   nuScenes

0.9864

0.8854

0.6870

0.7737

   MOTFront

0.9857

0.9688

0.9862

0.9774

   Mix

0.9859

0.9658

0.9722

0.9690

   Leon@Home

0.9949

0.9905

0.9590

0.9745

  1. Significant values are in bold.