Table 3 Resulting average classification accuracy together with precision, recall and F1-score for each Bayes model tested in our approach to performing the symbolic anchoring functionalities in nuScene, MOTFront and Mix datasets and in the Leon@Home scenario.

From: SAILOR: perceptual anchoring for robotic cognitive architectures

 

Accuracy

Precision

Recall

F1-score

nuScenes dataset

   nuScenes

0.9999

0.9994

0.9994

0.9994

   MOTFront

0.8105

0.8809

0.4568

0.6017

   Mix

0.8695

0.8911

0.4821

0.6257

   Leon@Home

0.9143

0.9971

0.1628

0.2799

MOTFront dataset

   nuScenes

0.9770

0.9965

0.3220

0.4867

   MOTFront

0.9904

0.9716

0.9986

0.9849

   Mix

0.9862

0.9720

0.9671

0.9695

   Leon@Home

0.9930

0.9957

0.9363

0.9652

Mix dataset

   nuScenes

0.9884

0.9933

0.6629

0.7952

   MOTFront

0.9915

0.9750

0.9983

0.9865

   Mix

0.9859

0.9658

0.9722

0.9690

   Leon@Home

0.9905

0.9755

0.9827

0.9791

  1. Significant values are in bold.