Table 4 Resulting average classification accuracy together with precision, recall and F1-score for each KNN model tested in our approach to performing the symbolic anchoring functionalities in nuScene, MOTFront and Mix datasets and in the Leon@Home scenario.

From: SAILOR: perceptual anchoring for robotic cognitive architectures

 

Accuracy

Precision

Recall

F1-score

nuScenes dataset

   nuScenes

0.9934

0.9118

0.8899

0.9007

   MOTFront

0.9887

0.9689

0.9959

0.9822

   Mix

0.9901

0.9663

0.9909

0.9785

   Leon@Home

0.9935

0.9763

0.9599

0.9681

MOTFront dataset

   nuScenes

0.9886

1.000

0.66406

0.7981

   MOTFront

0.9983

0.9978

0.9967

0.9973

   Mix

0.9953

0.9979

0.9812

0.9895

   Leon@Home

0.9918

0.9893

0.9302

0.9588

Mix dataset

   nuScenes

0.9934

0.9196

0.8820

0.9004

   MOTFront

0.9982

0.9977

0.9965

0.9971

   Mix

0.9967

0.9942

0.9912

0.9926

   Leon@Home

0.9909

0.9764

0.9342

0.9548

  1. Significant values are in bold.