Table 5 Resulting average classification accuracy together with precision, recall and F1-score for each MLP model tested in our approach to performing the symbolic anchoring functionalities in nuScene, MOTFront and Mix datasets and in the Leon@Home scenario.

From: SAILOR: perceptual anchoring for robotic cognitive architectures

 

Accuracy

Precision

Recall

F1-score

nuScenes dataset

   nuScenes

0.9918

1.0000

0.7574

0.8619

   MOTFront

0.8697

0.9987

0.5849

0.7377

   Mix

0.9077

0.9988

0.5930

0.7441

   Leon@Home

0.9627

0.9923

0.6400

0.7781

MOTFront dataset

   nuScenes

0.9873

1.0000

0.6260

0.7700

   MOTFront

0.9982

0.9976

0.9966

0.9971

   Mix

0.9948

0.9976

0.9793

0.9884

   Leon@Home

0.9914

0.9953

0.9200

0.9562

Mix dataset

   nuScenes

0.9882

0.8776

0.7574

0.8131

   MOTFront

0.9966

0.9916

0.9977

0.9946

   Mix

0.9940

0.9870

0.9865

0.9867

   Leon@Home

0.9927

0.9832

0.9453

0.9639

  1. Significant values are in bold.