Table 6 Resulting average classification accuracy together with precision, recall and F1-score for each SVM model tested in our approach to performing the symbolic anchoring functionalities in nuScene, MOTFront and Mix datasets and in the Leon@Home scenario.

From: SAILOR: perceptual anchoring for robotic cognitive architectures

 

Accuracy

Precision

Recall

F1-score

nuScenes dataset

   nuScenes

0.9999

0.9994

0.9966

0.9980

   MOTFront

0.8157

0.9034

0.4612

0.6107

   Mix

0.8731

0.9118

0.4862

0.6342

   Leon@Home

0.9280

0.9984

0.2962

0.4569

MOTFront dataset

   nuScenes

0.9788

0.9985

0.3740

0.5441

   MOTFront

0.9981

0.9980

0.9961

0.9970

   Mix

0.9921

0.9980

0.9670

0.9823

   Leon@Home

0.9893

0.9978

0.8970

0.9447

Mix dataset

   nuScenes

0.9862

0.8551

0.7127

0.7774

   MOTFront

0.9978

0.9964

0.9966

0.9965

   Mix

0.9942

0.9909

0.9834

0.9871

   Leon@Home

0.9792

0.8621

0.9482

0.9032

  1. Significant values are in bold.