Table 6 Closeness coefficient of each alternative under different values of paremeter \(\lambda\).

From: Some complex probabilistic hesitant fuzzy aggregation operators and their applications to multi-attribute decision making

\(\lambda\)

\({A_1}\)

\({A_2}\)

\({A_3}\)

\({A_4}\)

\({A_5}\)

Ranking

\(\lambda =1\)

0.6191

0.6571

0.5074

0.4571

0.6191

\({A_4\succ A_3\succ A_5= A_1\succ A_2}\)

\(\lambda =2\)

0.7234

0.7813

0.5128

0.4351

0.7234

\({A_4\succ A_3\succ A_5=A_1\succ A_2}\)

\(\lambda =3\)

0.8058

0.8660

0.5177

0.4278

0.8058

\({A_4\succ A_3\succ A_5=A_1\succ A_2}\)

\(\lambda =4\)

0.8668

0.9196

0.5225

0.4292

0.8668

\({A_4\succ A_3\succ A_5=A_1\succ A_2}\)

\(\lambda =5\)

0.9101

0.9523

0.5270

0.4350

0.9101

\({A_4\succ A_3\succ A_5=A_1\succ A_2}\)