Table 1 Quantitative comparison on three complex datasets: HKU-IS36, ECSSD37 and DUTS-TE38.

From: Salient object detection with non-local feature enhancement and edge reconstruction

Method

HKU-IS

ECSSD

DUTS-TE

\(S_{m}~\uparrow\)

\(F^{\omega }_{\beta }~\uparrow\)

\(MAE~\downarrow\)

\(F^{max}_{\beta }~\uparrow\)

\(E^{max}_{m}~\uparrow\)

\(S_{m}~\uparrow\)

\(F^{\omega }_{\beta }~\uparrow\)

\(MAE~\downarrow\)

\(F^{max}_{\beta }~\uparrow\)

\(E^{max}_{m}~\uparrow\)

\(S_{m}~\uparrow\)

\(F^{\omega }_{\beta }~\uparrow\)

\(MAE~\downarrow\)

\(F^{max}_{\beta }~\uparrow\)

\(E^{max}_{m}~\uparrow\)

PiCANet

0.904

0.840

0.043

0.919

0.950

0.917

0.867

0.047

0.935

0.952

0.869

0.756

0.051

0.860

0.920

BASNet

0.909

0.889

0.032

0.928

0.952

0.916

0.904

0.037

0.942

0.951

0.866

0.803

0.047

0.860

0.903

SCRN

0.916

0.876

0.034

0.934

0.956

0.927

0.899

0.038

0.950

0.037

0.885

0.803

0.040

0.888

0.925

LDF

0.919

0.904

0.027

0.939

0.958

0.924

0.915

0.034

0.950

0.954

0.892

0.845

0.034

0.898

0.930

U2Net

0.916

0.890

0.031

0.935

0.954

0.928

0.910

0.033

0.951

0.957

0.861

0.804

0.044

0.873

0.911

ITSD

0.917

0.894

0.031

0.934

0.960

0.925

0.911

0.035

0.947

0.959

0.885

0.824

0.041

0.883

0.929

CTDNet

0.922

0.909

0.027

0.941

0.961

0.925

0.915

0.032

0.950

0.956

0.893

0.847

0.034

0.897

0.935

VST

0.928

0.897

0.030

0.937

0.968

0.932

0.910

0.034

0.944

0.964

0.896

0.828

0.037

0.877

0.939

RCSB

0.919

0.909

0.027

0.938

0.959

0.922

0.916

0.033

0.944

0.955

0.881

0.840

0.034

0.889

0.925

EDN

0.921

0.900

0.029

0.938

0.959

0.928

0.915

0.034

0.948

0.959

0.883

0.822

0.041

0.881

0.922

ICON

0.915

0.895

0.032

0.935

0.957

0.919

0.905

0.036

0.945

0.953

0.878

0.822

0.043

0.883

0.924

OLER

0.920

0.911

0.042

0.940

0.960

0.927

0.924

0.030

0.953

0.959

0.889

0.852

0.0332

0.896

0.934

MENet

0.927

0.917

0.023

0.948

0.965

0.928

0.920

0.031

0.955

0.956

0.905

0.870

0.028

0.912

0.944

ELSANet

0.923

0.916

0.025

0.935

0.963

0.929

0.926

0.030

0.943

0.960

0.893

0.856

0.034

0.882

0.934

EMSNet

0.921

0.912

0.025

0.940

0.960

0.926

0.921

0.031

0.948

0.955

0.893

0.892

0.031

0.896

0.933

DC-Net

0.924

0.909

0.027

0.942

0.963

0.924

0.913

0.034

0.949

0.953

0.896

0.852

0.035

0.899

0.935

CANet

0.920

0.939

0.027

0.941

0.961

0.928

0.951

0.032

0.950

0.958

0.895

0.898

0.033

0.899

0.937

Ours

0.934

0.920

0.023

0.948

0.972

0.939

0.931

0.026

0.957

0.969

0.907

0.866

0.030

0.904

0.948

  1. For \(\uparrow\) and \(\downarrow\), higher and lower scores indicate better results, respectively. \(E_m^{max}\) denotes max E-measure, \(F_\beta ^{max}\) denotes max F-measure. The best and second-best results are shown in bold and italics, respectively. The symbol ’–’ indicates the results of the model are unavailable.