Table 2 Quantitative comparison on SOD39, DUT-OMRON40 and PASCAL-S41 datasets.

From: Salient object detection with non-local feature enhancement and edge reconstruction

Method

SOD

DUT-OMRON

PASCAL-S

\(S_{m}~\uparrow\)

\(F^{\omega }_{\beta }~\uparrow\)

\(MAE~\downarrow\)

\(F^{max}_{\beta }~\uparrow\)

\(E^{max}_{m}~\uparrow\)

\(S_{m}~\uparrow\)

\(F^{\omega }_{\beta }~\uparrow\)

\(MAE~\downarrow\)

\(F^{max}_{\beta }~\uparrow\)

\(E^{max}_{m}~\uparrow\)

\(S_{m}~\uparrow\)

\(F^{\omega }_{\beta }~\uparrow\)

\(MAE~\downarrow\)

\(F^{max}_{\beta }~\uparrow\)

\(E^{max}_{m}~\uparrow\)

PiCANet

0.793

0.723

0.109

0.858

0.866

0.832

0.695

0.065

0.803

0.876

0.854

0.780

0.087

0.881

0.901

BASNet

0.772

0.728

0.114

0.851

0.832

0.836

0.751

0.056

0.805

0.871

0.838

0.793

0.076

0.854

0.886

SCRN

0.792

0.734

0.104

0.867

0.863

0.836

0.720

0.056

0.812

0.875

0.869

0.807

0.064

0.882

0.910

LDF

0.800

0.765

0.093

0.873

0.866

0.839

0.752

0.051

0.820

0.869

0.863

0.822

0.060

0.874

0.908

U2Net

0.786

0.748

0.108

0.861

0.857

0.847

0.757

0.054

0.823

0.880

0.844

0.797

0.074

0.859

0.883

ITSD

0.809

0.777

0.095

0.880

0.874

0.840

0.750

0.061

0.824

0.880

0.859

0.812

0.071

0.871

0.908

CTDNet

0.844

0.762

0.052

0.826

0.881

0.863

0.822

0.061

0.878

0.906

VST

0.854

0.778

0.065

0.866

0.902

0.850

0.755

0.058

0.800

0.888

0.873

0.816

0.067

0.850

0.900

RCSB

0.750

0.730

1.536

0.846

0.813

0.835

0.752

0.045

0.809

0.866

0.860

0.816

0.058

0.876

0.906

EDN

0.798

0.767

0.252

0.868

0.864

0.838

0.746

0.057

0.805

0.871

0.860

0.815

0.066

0.875

0.903

ICON

0.814

0.784

0.089

0.872

0.866

0.833

0.743

0.065

0.817

0.879

0.861

0.820

0.064

0.878

0.911

OLER

0.845

0.775

0.054

0.826

0.891

0.858

0.827

0.063

0.877

0.906

MENet

0.809

0.777

0.087

0.878

0.864

0.850

0.771

0.045

0.834

0.879

0.872

0.838

0.054

0.890

0.915

ELSANet

0.846

0.774

0.050

0.794

0.885

0.864

0.836

0.060

0.862

0.910

EMSNet

0.798

0.819

1.962

0.863

0.852

0.838

0.759

0.048

0.807

0.870

0.868

0.848

0.054

0.892

0.915

DC-Net

0.797

0.761

0.100

0.862

0.855

0.849

0.772

0.053

0.827

0.883

0.857

0.818

0.067

0.878

0.899

CANet

0.803

0.777

0.244

0.874

0.869

0.847

0.828

0.047

0.827

0.886

0.859

0.888

0.061

0.876

0.910

Ours

0.824

0.801

0.082

0.886

0.881

0.860

0.789

0.051

0.839

0.899

0.874

0.837

0.057

0.882

0.919

  1. For \(\uparrow\) and \(\downarrow\), higher and lower scores indicate better results, respectively. \(E_m^{max}\) denotes max E-measure, \(F_\beta ^{max}\) denotes max F-measure. The best and second-best results are shown in bold and italics, respectively. The symbol ’–’ indicates the results of the model are unavailable.