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The perturbed Korteweg-de Vries (PKdV) equation is essential for describing ion-acoustic waves in 
plasma physics, accounting for higher-order effects such as electron temperature variations and 
magnetic field influences, which impact their propagation and stability. This work looks at the 
generalized PKdV (gPKdV) equation with an M-fractional operator. It uses bifurcation theory to 
look at critical points and phase portraits, showing system changes such as shifts in stability and 
the start of chaos. Figures 1, 2 and 3 provide detailed analyses of static soliton formation through 
saddle-node bifurcation. We also use the modified simple equation (MSE) method to look for ion-
acoustic wave solutions directly, without having to first define them. This lets us find shapes like 
hyperbolic, exponential, and trigonometric waves. These solutions reveal complex phenomena, 
including double periodic waves, periodic lump waves, bright bell-shaped waves, and singular soliton 
waves. Additionally, we analyze modulation instability in the gPKdV equation, which signifies chaotic 
transitions and is crucial for understanding nonlinear wave dynamics. Those methods demonstrate 
their value in generating precise soliton solutions relevant to nonlinear science and mathematical 
physics. This research illustrates how theoretical mathematics and physics can support solutions to 
practical world issues, especially in energy and technological advancement.

Keywords  Modified simple equation technique, Generalized perturbed Korteweg-de Vries equation, 
Bifurcation theory, Phase portrait, Soliton solution, Clean energy technologies

Nonlinear evolution equations are pivotal in capturing the dynamics of complex systems across various scientific 
and engineering fields. Unlike linear equations, nonlinear ones can model phenomena where interactions lead to 
unpredictable and rich behaviors, such as turbulence in fluid dynamics1, chemical reaction pattern formation2, 
soliton of telecommunication systems3,4, quantum physics5,6, etc. These equations represent critical thresholds, 
bifurcations, and chaotic regimes, making them indispensable for understanding and predicting real-world 
phenomena. Their applications extend to physics, where they describe wave propagation and quantum mechanics, 
finance for modeling market fluctuations7, and ecology for ecosystem dynamics8. The study and solutions of 
nonlinear evolution equations deepen our theoretical understanding and drive advancements in technology and 
practical problem-solving across disciplines1–10. Numerous methods are continually being discovered to explore 
exact solutions of NLEEs such as multi exp-function technique11, Hirota bilinear process12,13, JEFE scheme14, 
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variational technique15, enhanced MSE technique16, NK and improved F-expansion technique17, extended direct 
algebraic scheme18, MSSE technique19, new mapping scheme20, modified extended tanh and NMK techniques21, 
unified method22,23, exp-expansion and NMK schemes24, extended tanh expansion technique25, and so on26–29.

The generalized perturbed Korteweg-de Vries (gPKdV) equation is a mathematical model that describes 
the evolution of waves in a nonlinear and dispersive medium. The gPKdV equation30 can be written as follows:

	 Pt + a1P Px + a2Pxxx + a3Px = 0.� (1)

where P  is the wave function, t is the time variable, x is the spatial variable, and a1, a2, and a3 are constants 
that characterize the nonlinear, dispersive, and perturbative effects, respectively. The term a1P Px represents the 

Fig. 3.  The two-dimensional phase portraits of the system (9) for ϵ = a3K .

 

Fig. 2.  The two-dimensional phase portraits of the system (5) for 2Ka1 (ϵ − a3K) < 0.

 

Fig. 1.  The phase portraits of the system (5) for 2Ka1 (ϵ − a3K) > 0.
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nonlinear interaction in the wave. Nonlinearity often leads to wave steepening, which can cause the formation 
of shock waves or solitons. The constant a1 determines the strength of this nonlinear effect. The term a2Pxxx 
accounts for the dispersion in the medium. Dispersion leads to the spreading of the wave packet over time and 
space. The constant a2 controls the degree of dispersion, balancing the nonlinear steepening effect. The term 
a3Px represents a perturbative effect, which could arise from various physical mechanisms such as damping, 
external forces, or higher-order corrections. The constant a3 quantifies the magnitude of this perturbation. 
The coefficient of perturbation a3 plays an acute role in articulating the influence of the Coriolis parameter in 
the horizontal module. The model in Eq. (1) is employed to illustrate particular events in theoretical physics 
associated with quantum mechanics. This model is applicable for representing phenomena such as the formation 
of shock waves, solitons, turbulence, boundary layer dynamics, and mass transport, particularly within the areas 
of fluid dynamics, aerodynamics, and continuum mechanics33–35.

In Eq. (1), the parameter a3 represents the Coriolis effect, which is the deflection of moving objects like air 
and water caused by Earth’s rotation. Equation (1) provides a generalized version of both the geophysical and 
classical KdV equations. The geophysical KdV equation36–38 can be reconstructed by setting a2 = 3

2 , a3 = 1
6  

and a1 = w0. The perturbed-KdV model is commonly used in fields such as acoustics, aerodynamics, and 
medical engineering to explain sound propagation in fluids. Various significant characteristics and applications 
of the gPKdV equation have been thoroughly discussed in the literature30–32.

The primary objective of this work is to apply bifurcation theory to examine the critical points and phase 
portraits of the gPKdV model, where systems transition to new behaviors, such as changes in stability or the onset 
of chaos. To explore ion-acoustic wave solutions and the influence of fractional derivatives, we utilize a direct 
approach known as the modified simple equation technique on the M-fractional gPKdV model. Additionally, we 
illustrate some complex behaviors of the obtained solutions through three-dimensional, two-dimensional, and 
density diagrams, highlighting the impact of the fractional parameter in a two-dimensional diagram. Finally, we 
assess the modulation instability of the M-fractional gPKdV model.

The article is arranged as follows: Section two discusses the significance and features of the M-fractional 
derivative; Section three explores the working principles of the modified simple equation method; Section four 
applies bifurcation theory to Eq.  (1) and presents the effect of parameters on equilibrium points and phase 
portraits. We execute orbits such as homoclinic, periodic, and heteroclinic, and obtain their corresponding 
phenomena, including periodic waves and kink waves. Section five implements the MSE technique to integrate 
the M-fractional gPKdV model. Section six discusses the numerical form of the obtained solutions with three-
dimensional diagrams, density plots, and two-dimensional plots. Section seven presents the modulation 
instability of the M-fractional gPKdV model. Section eight provides the comparison, advantages, and limitations 
of this work and methodology. Finally, Section nine provides a summary of this work.

Fractional derivative
Fractional derivatives are crucial in the study of nonlinear evolution equations (NLEEs) due to their ability to 
model complex phenomena with greater accuracy than integer-order derivatives. They provide a more flexible 
framework for capturing the memory and hereditary properties inherent in many physical, biological, and 
engineering systems. By using fractional derivatives, NLEEs can describe unusual diffusion and wave propagation 
in various types of media. This lets us make more accurate predictions and find better solutions. This improved 
modeling capability is essential in fields such as viscoelasticity, fluid dynamics, and signal processing. Using 
fractional derivatives in NLEEs also makes it easier to come up with new numerical and analytical methods 
that help us understand and solve difficult nonlinear problems. The growing interest in fractional calculus 
underscores its significance in advancing theoretical and applied research across various scientific disciplines 
such as39–42.

Definition and some features of M -fractional derivative
Definition:  The mapping φ : [0, ∞) → R and an order χ, M -fractional operator is described as:

	
Dχ,ψ

M,tφ = lim
ϵ→0

φ
(
tϕψ

(
ϵt−χ

))
− φ (t)

ϵ
, t > 0, ψ > 0.

Here, ϕψ(x) is Mittag–Leffler function in one parameter clear as41, and taking belong to (0,1) :

	
ϕψ (x) =

k∑
n=0

xn

Γ(ϕn + 1) .

Features. Let l, m → R, 1 ≥ χ > 0. Let R, H  be functions. Then.

Dχ,ψ
M,t (lR + mH) = lDχ,ψ

M,t (R) + mDχ,ψ
M,t (H) .

Dχ,ψ
M,t (RH) = RDχ,ψ

M,t (H) + HDχ,ψ
M,t (R) .

Dχ,ψ
M,t

(
R
H

)
=

HD
χ,ψ
M,t

(R)−RD
χ,ψ
M,t

(H)
H2

Dχ,ψ
M,t (tϖ) = ϖtϖ−χ, ϖϵR.

Dχ,ψ
M,t (P ) = 0, P ϵR.

Dχ,ψ
M,t (R ◦ H) = R′(H)Dχ,ψ

M,tH (t), for F  is differentiable at G.
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Dχ,ψ
M,tR (t) = t1−χ

Γ(ψ+1)
dR
dt , for F  is differentiable.

Methodology of MSE technique
In this point, the working rule of the MSE technique43,44 is useful to solve any nonlinear PDEs problem. The 
main advantage of the MSE method is its ability to directly investigate traveling wave solutions for nonlinear 
partial differential equations (NLPDEs). This method does not use any auxiliary equation to find the solution 
such as an extended direct algebraic scheme18, MSSE technique19, new mapping scheme20, modified extended 
tanh and NMK techniques21, unified method22,23 and so on. For this purpose, we study nonlinear PDEs in the 
succeeding form:

	 L (Gt, Gx, Gxxx, Gtx) = 0.� (2)

Using the relation ζ = Ξ − Θt; G (x, t) = G (ζ) in Eq. (2) then we attain,

	 L
(
−ΘGζ , Ξ2Gζ , Ξ3Gζζζ , −ΘΞGζζ

)
= 0.� (3)

The proposed trial solution is:

	
G (ζ) =

s∑
q=0

(
pq

(
H′ (ζ)
H (ζ)

)q)
.� (4)

Here, q is a balanced number that can be calculated using the following formula,

	
dpG

dξp
= q + p and GN dpG

dξp
= Nq + (q + p) .

Now we use the proposed trial solution Eq.  (4) in Eq.  (3), then we get 
P (H (ζ)) = C0 + C1H (ζ)−1 + C2H (ζ)−2 + C3H (ζ)−3 + · · · + CnH (ζ)−n. If we set the coefficient 
Ck = 0; k = 0, 1, 2, 3, . . . , n, then we get a system of equations. To get the values of pq, Ξ,H (ζ) , H′ (ζ) , Θ, we 
solve the obtained system of equations. Substituting these parameters into Eq. (4) yields the required solutions.

Bifurcation analysis and phase portrait
In this section, we apply the bifurcation theory for analysis of the phase portrait of the time M-fractional 
generalized perturbed KdV (tMf-gPKdV) equation. To fully grasp the dynamics of nonlinear wave propagation, 
especially in the context of solitons and other wave phenomena, bifurcation analysis of the gPKdV equation is 
essential. The gPKdV equation models the evolution of shallow water waves and other physical systems with 
dispersive nonlinearity. Bifurcation analysis identifies critical parameter values at which the system undergoes 
qualitative changes, such as the creation or destruction of solitons. This analysis reveals how system behavior 
transitions between stable and unstable states, offering insights into wave stability and the formation of complex 
patterns. Phase portraits, which represent the state space of the system, provide a visual method for studying 
the stability and dynamics of solutions. By analyzing fixed points, limit cycles, and the system’s behavior near 
bifurcation points, one can predict the system’s long-term behavior. Fluid dynamics, optical fibers, and nonlinear 
media widely apply this approach for wave stability analysis and pattern formation.

The time M-fractional generalized perturbed KdV (tMf-gPKdV) equation is considered in the subsequent 
arrangement:

	 Dσ,n
M,tP + a1P Px + a2Pxxx + a3Px = 0.� (5)

Using the relation φ = Kx − ϵ Γ(n+1)tσ

σ
; P (x, t) = P (φ) in Eq. (5) and we attain,

	 −ϵP ′ + Ka1P P ′ + K3a2H ′′′ + a3KP ′ = 0.� (6)

Integrating one time and setting integrating constant to zero.

	
Ka1

P2

2 + K3a2P ′′ + (a3K − ϵ) P = 0.� (7)

From Eq. (7), we develop as,

	
d2P
dφ2 = − (a3K − ϵ)

K3a2
P + −Ka1

2K3a2
P2.� (8)

According to the bifurcation theory, the Eq. (8) is as,

	

{
dP
dφ

= H,

dH
dφ

= −(a3K−ϵ)P− Ka1
2 P2

K3a2
,

� (9)
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H (H, P ) = H2

2 − 1
K3a2

(
(ϵ − a3K) P2

2 − Ka1

6 P3
)

= L.� (10)

Here, L is the Hamiltonian constant.
The charge of L, Eq.  (10) generates a phase portrait of Eq.  (9). When L varies, numerous types of orbits 

emerge in Eq. (10), resulting in diverse dynamical behaviors as explained for Eq. (10). According to bifurcation 
theory39, the periodic heteroclinic, and homoclinic orbit are identified by using phase portrait diagram. From 
Eq. (9), we attain the point of equilibrium as follows:

	

b∑
a

{
H = 0,
−(a3K−ϵ)P− Ka1

2 P2

K3a2
= 0.

� (11)

From the Eq.  (11), we get the E0 = (0,0) and E1 =
( 2(ϵ−a3K)

Ka1
, 0

)
. The stability of equilibrium points is 

checked now. The Jacobian matrix of the linearized Eq. (9) is now shown to be:

	
JE =

( 0 1
−(a3K−ϵ)− Ka1

2 PE

K3a2
0

)
,

	
D (E) = −

− (a3K − ϵ) − Ka1
2 PE

K3a2
.

According to the theory of planar, the observations are: if D(E) < 0, then E is the saddle point. If D(E) > 0 
and T (E) = 0, then the point E is the center point. If D(E) = 0, then E is the cusp point.

Therefore, we get.

	(a)	 The point E0 is saddle and E1 is the center and when 2Ka1 (ϵ − a3K) > 0, and D(E1) > 0, 
D(E0) < 0, T (E1) = 0.

	(b)	 The point E1 is saddle and E0 is the center and when 2Ka1 (ϵ − a3K) < 0, and D(E1) > 0, 
D(E0) < 0, T (E1) = 0.

According to the equilibrium point, the values of L are:

	 L0 = H (E0) = 0,

	
L1 = H (E1) = − 2 (a3K − ϵ)3

3(Ka1)2K3a2
.

The behavior of Figure 1, 2, and 3 , as follows:
When 2Ka1 (ϵ − a3K) > 0, we obtain.

	(i)	 Eq. (1) has the bell-type solitary wave if L = L0, and the orbit of the homoclinic is obtained.
	(ii)	 Eq. (1) has the periodic solitary wave if L < L0, and the orbit of the heteroclinic is obtained.

When 2Ka1 (ϵ − a3K) < 0, we obtain.

	(i)	 Eq. (1) has the bell-type solitary wave if L = L0, and the orbit of the homoclinic is obtained.
	(ii)	 Eq. (1) has the periodic solitary wave if L < L0, and the orbit of the heteroclinic is obtained.

When ϵ = a3K.
If L = 0, then the Eq. (10) developed as:

	
H = 2

√
1

K3a2

(
(ϵ − a3K) P2

2 − Ka1

6 P3
)

.

When 2Ka1 (ϵ − a3K) > 0, the heteroclinic orbit is obtained in (P, H)–plane from Eq.  (10). If we set the 
value of H  into dP/dξ = H , then we attain,

	
P (x, t) = 3 (ϵ − a3K)

Ka1
sech2

(
1
2

√
(ϵ − a3K)

K3a2
φ

)
� (12)

Figure  4 for the values ϵ = 2, K = 1, a1 = 1.5, a2 = 1, a3 = −0.2, n = 1.5, and Figure  5 for the values 
ϵ = 2, K = 1, a1 = 1.5, a2 = −1, a3 = −0.2, n = 1.5.

When 2Ka1 (ϵ − a3K) < 0, the heteroclinic orbit is obtained in (P, H)–plane from Eq.  (10). Then 
similar to Eq. (12) we attain,  The solitary periodic wave solution is shown in Fig.  6. for parametric values 
ϵ = 1, K = 1, a1 = 1.5, a2 = 1, a3 = 2, n = 1.5
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P (x, t) = 3 (ϵ − a3K)

Ka1
sec2

(
1
2

√
(ϵ − a3K)

K3a2
φ

)
.� (13)

Application of modified simple equation technique
In this section, we solve the gPKdV model by using the MSE technique analytically. Under specific conditions 
on the free parameters, we expressed the obtained solution in terms of trigonometric and hyperbolic function 

Fig. 6.  Visualization of the periodic wave of the solution Eq. (13) for specific parametric values 
ϵ = 1, K = 1, a1 = 1.5, a2 = 1, a3 = 2, n = 1.5.

 

Fig. 5.  Visualization of dark bell shape wave of the solution Eq. (12) for specific parametric values 
ϵ = 2, K = 1, a1 = 1.5, a2 = −1, a3 = −0.2, n = 1.5.

 

Fig. 4.  Visualization of the bright bell wave of the solution Eq. (12) for specific parametric values 
ϵ = 2, K = 1, a1 = 1.5, a2 = 1, a3 = −0.2, n = 1.5.
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forms. The main advantage of the proposed method is to solve all NLEEs directly. To solve the NLEEs, the 
MSE method doesn’t use any auxiliary equation or any predefined solutions like as tanh–coth method1, (G′/G) 
-expansion technique2, Sardar sub-equation method3 and others4–10, it derives the exact solitary wave solution 
directly.

According to the MSE technique the balance number s = 2. So, the solution of the Eq. (7) is:

	
P = β0 + β1

(
d
dφ

ψ(φ)
ψ(φ)

)
+ β2

(
d
dφ

ψ(φ)
ψ(φ)

)2

.� (14)

If we use the trial solution in Eq. (14) into Eq. (7), then the algebraic equations are obtained below:

	
−ϵβ0 + 1

2Ka1β2
0 + a3Kβ0 = 0,

	
K3a2β1

(
d3

dφ3 ψ(φ)
)

+ Ka1β1

(
d
dφ

ψ(φ)
)

β0 + a3Kβ1

(
d
dφ

ψ(φ)
)

− ϵβ1

(
d
dφ

ψ (φ)
)

= 0,

	
−ϵβ2

(
d
dφ

ψ (φ)
)2

+ 1
2Ka1

(
2β2

(
d
dφ

ψ (φ)
)2

β0 + β2
1

(
d
dφ

ψ (φ)
)2

)
+ K3a2

(
2β2

(
d
dφ

ψ (φ)
) (

d3

dφ3 ψ (φ)
)

− 3β1

(
d2

dφ2 ψ (φ)
) (

d
dφ

ψ (φ)
)

+2β2

(
d2

dφ2 ψ (φ)
)2

)
+ a3Kβ2

(
d
dφ

ψ (φ)
)2

= 0,

	
Ka1β2

(
d
dφ

ψ(φ)
)3

β1 + K3a2

(
2β1

(
d
dφ

ψ(φ)
)3

− 10β2

(
d

dφ
ψ (φ)

)2 (
d2

dφ2 ψ (φ)
)

= 0,

	

1
2Ka1β2

2

(
d
dφ

ψ(φ)
)4

+ 6K3a2β2

(
d
dφ

ψ(φ)
)4

= 0.

Using the Maple software, we get the following solution sets.

Set 01: K =
√

−a1β2
12a2

,β0 = −2(a3K−ϵ)
Ka1

,ϵ = − 1
72β2

√
−3a1β2

a2

(
a1β2

1 + 2a3β2
)

, 

ψ(φ) = h1 + h2e− β1φ
β2 .

	

P (x, t) = −2 (a3K − ϵ)
Ka1

− β2
1h2e

− β1φ
β2

β2

(
h1 + h2e

− β1φ
β2

) +
β2

1

(
h2e

− β1φ
β2

)2

β2

(
h1 + h2e

− β1φ
β2

)2 .� (15)

Here, θ = − β1φ
β2

, φ =
√

−a1β2
12a2

x + 1
72β2

√
−3a1β2

a2

(
a1β2

1 + 2a3β2
) Γ(n+1)tσ

σ .

If a1β2a2 > 0 then the following forms are derived.
If h1 ̸= h2, then Eq. (15) becomes,

	
P (x, t) = −2 (a3K − ϵ)

Ka1
− β2

1

β2

[
h1h2

coshθ (h2
1 + h2

2) + 2h1h2 + sinhθ (h2
1 − h2

2)

]
.� (16)

If h1 = h2, then Eq. (15) becomes,

	
P (x, t) = −2 (a3K − ϵ)

Ka1
− β2

1

β2

[1
2sech

(
θ

2

)]
.� (17)

If h1 = ±ih2, then Eq. (15) becomes,

	
P (x, t) = −2 (a3K − ϵ)

Ka1
− β2

1

β2

[ 1
1 ∓ isinhθ

]
.� (18)

If a2
1a2a3β2

1 + 36ϵ2a2
2 > 0 then the following forms are derived.

If h1 ̸= h2, then Eq. (15) becomes,

	
P (x, t) = −2 (a3K − ϵ)

Ka1
− β2

1

β2

[
h1h2

cosθ (h2
1 + h2

2) + 2h1h2 + isinθ (h2
1 − h2

2)

]
.� (19)

If h1 = h2, then Eq. (15) becomes,

	
P (x, t) = −2 (a3K − ϵ)

Ka1
− β2

1

β2

[1
2sec

(
θ

2

)]
.� (20)
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If h1 = ±ih2, then Eq. (15) becomes,

	
P (x, t) = −2 (a3K − ϵ)

Ka1
− β2

1

β2

[ 1
1 ± sinθ

]
.� (21)

Here, θ = − β1φ
β2

, φ =
√

−a1β2
12a2

x + 1
72β2

√
−3a1β2

a2

(
a1β2

1 + 2a3β2
) Γ(n+1)tσ

σ .

Set 02: K =
√

−a1β2
12a2

,β0 = 0,ϵ = − 1
72β2

√
−3a1β2

a2

(
a1β2

1 + 2a3β2
)

, 

ψ(φ) = h1 + h2e− β1φ
β2 .

	

P (x, t) = − β2
1h2e

− β1φ
β2

β2

(
h1 + h2e

− β1φ
β2

) +
β2

1

(
h2e

− β1φ
β2

)2

β2

(
h1 + h2e

− β1φ
β2

)2 .� (22)

Here, φ =
√

−a1β2
12a2

x − 1
2

√
−a1β2
12a2

(a1β0 + 2a3) Γ(n+1)tσ

σ
.

If β0β2 > 0 and a2a1β2 < 0 then the following forms are derived.
If h1 ̸= h2, then Eq. (22) becomes,

	
P (x, t) = −β2

1

β2

[
h1h2

coshθ (h2
1 + h2

2) + 2h1h2 + sinhθ (h2
1 − h2

2)

]
.� (23)

If h1 = h2, then Eq. (22) becomes,

	
P (x, t) = −β2

1

β2

[1
2sech

(
θ

2

)]
.� (24)

If h1 = ±ih2, then Eq. (22) becomes,

	
P (x, t) = −β2

1

β2

[ 1
1 ∓ isinhθ

]
.� (25)

If β0β2 < 0 or a2a1β2 > 0 then the following forms are derived.
If h1 ̸= h2, then Eq. (22) becomes,

	
P (x, t) = −β2

1

β2

[
h1h2

cosθ (h2
1 + h2

2) + 2h1h2 + isinθ (h2
1 − h2

2)

]
.� (26)

If h1 = h2, then Eq. (22) becomes,

	
P (x, t) = −β2

1

β2

[1
2sec

(
θ

2

)]
.� (27)

If h1 = ±ih2, then Eq. (22) becomes,

	
P (x, t) = −β2

1

β2

[ 1
1 ± sinθ

]
.� (28)

Here θ = β1φ
β2

, φ =
√

−a1β2
12a2

x + 1
72β2

√
−3a1β2

a2

(
a1β2

1 + 2a3β2
) Γ(n+1)tσ

σ .

Set 03: β0 = 0, β2 = −12K2a2
a1

, β1 = 12
a1

√
Kϵa2 − K2a3a2, 

ψ(φ) = h1 + h2e

√
Kϵa2−K2a3a2

K2a2
φ

.

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

(
h2eθ

(h1 + h2eθ) −
(
h2eθ

)2

(h1 + h2eθ)2

)
.� (29)

Here, θ =
√

Kϵa2−K2a3a2
K2a2

φ, φ = Kx − ϵ Γ(n+1)tσ

σ .
If Kϵa2 − K2a3a2 > 0 then the following forms are derived.
If h1 ̸= h2, Then Eq. (29) becomes,
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P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[
h1h2

coshθ (h2
1 + h2

2) + 2h1h2 + sinhθ (h2
1 − h2

2)

]
.� (30)

If h1 = h2, then Eq. (29) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[1
2sech

(
θ

2

)]
.� (31)

If h1 = ±ih2, then Eq. (29) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[ 1
1 ∓ isinhθ

]
.� (32)

If Kϵa2 − K2a3a2 > 0 then the following forms are derived.
If h1 ̸= h2, then Eq. (29) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[
h1h2

cosθ (h2
1 + h2

2) + 2h1h2 + isinθ (h2
1 − h2

2)

]
.� (33)

If h1 = h2, then Eq. (29) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[1
2sec

(
θ

2

)]
.� (34)

If h1 = ±ih2, then Eq. (29) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[ 1
1 ± sinθ

]
.� (35)

Here, θ =
√

Kϵa2−K2a3a2
K2a2

φ, φ = Kx − ϵ Γ(n+1)tσ

σ .

Set 04: β0 = −2(Ka3−ϵ)
Ka1

, β2 = −12K2a2
a1

,K = 144a2ϵ+24
√

a2
1a2a3β2

1+36ϵ2a2
2

288a2a3
, 

ψ(φ) = h1 + h2eθ.

	
P (x, t) = −

576
(

L
288a2

− ϵ
)

a2a3

La1
+ 6912a1a2a2

3β2
1

L2

(
h2eθ

(h1 + h2eθ) −
(
h2eθ

)2

(h1 + h2eθ)2

)
.� (36)

Here, θ = 6912a1β1a2a2
3

L2 φ, φ = 144a2ϵ+24
√

a2
1a2a3β2

1 +36ϵ2a2
2

288a2a3
x − ϵ Γ(n+1)tσ

σ .

If a2
1a2a3β2

1 + 36ϵ2a2
2 > 0 then the following forms are derived.

If h1 ̸= h2, then Eq. (36) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[
h1h2

coshθ (h2
1 + h2

2) + 2h1h2 + sinhθ (h2
1 − h2

2)

]
.� (37)

If h1 = h2, then Eq. (36) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[1
2sech

(
θ

2

)]
.� (38)

If h1 = ±ih2, then Eq. (36) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[ 1
1 ∓ isinhθ

]
.� (39)

If a2
1a2a3β2

1 + 36ϵ2a2
2 > 0 then the following forms are derived.

If h1 ̸= h2, then Eq. (36) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[
h1h2

cosθ (h2
1 + h2

2) + 2h1h2 + isinθ (h2
1 − h2

2)

]
.� (40)

If h1 = h2, then Eq. (36) becomes,

Scientific Reports |        (2025) 15:11923 9| https://doi.org/10.1038/s41598-024-84941-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[1
2sec

(
θ

2

)]
.� (41)

If h1 = ±ih2, then Eq. (36) becomes,

	
P (x, t) =

12
(
Kϵa2 − K2a3a2

)
K2a2a1

[ 1
1 ± sinθ

]
.� (42)

Here, θ =
√

Kϵa2−K2a3a2
K2a2

φ, φ = Kx − ϵ Γ(n+1)tσ

σ
.

Set 05: 

K =
√

−a1β2
12a2

, ϵ = 1
2

√
−a1β2
12a2

(a1β0 + 2a3) , β1 =
√

6β0β2, ψ(φ) = h1 + h2e−
√

6β0β2φ

β2 .

	

P (x, t) = β0 − 6β0h2e
−

√
6β0β2φ

β2

h1 + h2e
−

√
6β0β2φ

β2

+
6β0

(
h2e

−
√

6β0β2φ
β2

)2

(
h1 + h2e

−
√

6β0β2φ
β2

)2 .� (43)

Here, φ =
√

−a1β2
12a2

x − 1
2

√
−a1β2
12a2

(a1β0 + 2a3) Γ(n+1)tσ

σ
.

If β0β2 > 0 and a2a1β2 < 0 then the following forms are derived.
If h1 ̸= h2, then Eq. (43) becomes,

	
P (x, t) = β0 − 6β0

[
h1h2

coshθ (h2
1 + h2

2) + 2h1h2 + sinhθ (h2
1 − h2

2)

]
.� (44)

If h1 = h2, then Eq. (43) becomes,

	
P (x, t) = β0 − 6β0

[1
2sech

(
θ

2

)]
.� (45)

If h1 = ±ih2, then Eq. (43) becomes,

	
P (x, t) = β0 − 6β0

[ 1
1 ∓ isinhθ

]
.� (46)

If β0β2 < 0 or a2a1β2 > 0 then the following forms are derived.
If h1 ̸= h2, then Eq. (43) becomes,

	
P (x, t) = β0 − 6β0

[
h1h2

cosθ (h2
1 + h2

2) + 2h1h2 + isinθ (h2
1 − h2

2)

]
.� (47)

If h1 = h2, then Eq. (43) becomes,

	
P (x, t) = β0 − 6β0

[1
2sec

(
θ

2

)]
.� (48)

If h1 = ±ih2, then Eq. (43) becomes,

	
P (x, t) = β0 − 6β0

[ 1
1 ± sinθ

]
.� (49)

Here, θ = −
√

6β0β2φ

β2
, φ =

√
−a1β2
12a2

x − 1
2

√
−a1β2
12a2

(a1β0 + 2a3) Γ(n+1)tσ

σ .

Figure analysis
This section provides an in-depth examination of the graphical representation of solutions derived from the 
M-fractional generalized perturbed Korteweg–de Vries (gPKdV) equations, focusing on their waveforms 
and unique characteristics. The analysis highlights the importance of ion acoustic waves within the gPKdV 
framework due to their stability and persistence, making them essential for modeling nonlinear wave phenomena 
in environments like shallow water and plasma systems. The gPKdV equation integrates perturbation terms 
that account for real-world complexities, including higher-order dispersion and nonlinear effects, allowing it 
to model a wide range of wave behaviors. Solitary wave solutions arise from the balance between nonlinearity, 
which steepens the wave, and dispersion, which spreads it. This balance leads to stable, localized waveforms that 
travel without changing shape. Numerical simulations illustrate diverse wave patterns using 3D density plots 
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and 2D representations. These include double periodic waves, interactions between kink and periodic lump 
waves, periodic rogue waves, bell-shaped bright and dark waves, singular soliton waves, and V-shaped periodic 
rogue waves. Different waveforms serve distinct purposes in modeling physical phenomena. Kink waves, which 
describe transitions between states, are crucial for systems with topological structures and phase interfaces. Bell 
waves, balancing nonlinearity and dispersion, are useful for studying localized energy transport in optical fibers 
and water waves. Periodic waves capture oscillatory behavior and pattern formation, aiding in the study of fluids 
and plasmas. Rogue waves, characterized by extreme amplitudes and sudden energy localization, are critical for 
understanding rare events in fields like oceanography and nonlinear optics.

The gPKdV equation effectively models nonlinear wave phenomena across diverse systems, enhancing insights 
into wave stability, energy transport, and the emergence of complex patterns. This comprehensive approach 
reveals the equation’s versatility in capturing the intricate dynamics of nonlinear interactions. The effect of 
M-fractional parameters is shown in two-dimensional plots, here the red color is used for σ = 0.1; the red color 
is used for σ = 0.5; the red color is used for σ = 0.9. Figure 7 represents the double periodic wave of Eq. (19) 
for specific parametric values a1 = 0.2, a2 = 0.5, a3 = 0.2, h1 = 2, h2 = −0.2, β1 = 3, β2 = 1, n = 1.5
. Figure  8 represents the periodic lump-type wave of the solution Eq.  (20) for specific parametric values 
a1 = 0.2, a3 = 0.2, h1 = 2, a2 = 0.5, h2 = −2, β1 = 3, β2 = 1, n = 1.5. The real portion of this solution 
provides an interaction of periodic lump wave and kink wave and the imaginary portion characterizes 
the episodic lump wave. Figure  9 represents the bell shape wave of Eq.  (25) for specific parametric 
values h1 = 1, a3 = 0.1, β2 = 0.5, a1 = 1, h2 = −i, β1 = 0.5, a2 = −0.1, n = 1.5. The real portion 
characterizes a bright bell shape wave and the imaginary portion provides a singular soliton wave. Figure 10 
visualizes the wave of the interaction of periodic wave and kink of Eq.  (32) for specific parametric values 
ϵ = 1, a1 = 1, a2 = −0.1, a3 = 0.1, h1 = 1, h2 = −i, K = 0.5, β2 = 0.5, n = 1.5. Figure 11, Visualizes the 
wave of double periodic wave periodic lump type wave interaction of periodic lump wave and kink wave episodic 
lump wave bright bell shape wave singular soliton wave interaction of periodic wave and kink wave of Eq. (33) for 
specific parametric values ϵ = −1, a1 = 1, a2 = 3, a3 = 0.5, h1 = 0.5, h2 = 1, K = 0.5, β2 = 0.5, n = 1.5. 
Figure 12, visualizes the diagram of the V-shape periodic rogue wave of Eq. (41) for specific parametric values 
ϵ = 3, a1 = 3, a2 = 0.5, a3 = −3, h1 = 1, h2 = 1, β1 = 3, n = 1.5. Figure  13, visualizes the diagram of 
Eq. (47) for specific parametric values a1 = 1h1 = 1, a2 = 1, β0 = −0.5, a3 = 2, β2 = 0.5, n = 1.5, h2 = −2
. The real portion provides a linked rogue wave with a dark bell shape and the imaginary part 
provides an episodic rogue wave. Figure  14, visualizes the diagram of Eq.  (48) for the values 
a1 = 1, a2 = 1, a3 = 2, h1 = 1, h2 = 1, β0 = 0.5, β2 = 0.5, n = 1.5. The real portion provides the 
interaction of periodic wave and kink and the imaginary portion characterizes periodic lump wave.

Modulation instability
Modulation instability (MI)45–48 refers to the exponential growth of small perturbations in a continuous wave or 
a uniform background, leading to the formation of localized structures or patterns. This phenomenon arises in 
nonlinear and dispersive media and plays a crucial role in various physical systems, including optical fibers, fluid 
dynamics, and plasma physics. The underlying mechanism of MI involves a balance between nonlinearity and 
dispersion (or diffraction), where a small initial disturbance can draw energy from the continuous background. 
This process amplifies specific frequencies, causing the system to evolve into localized wave packets or soliton-
like structures. In this section, we investigate the modulation instability of traveling waves for M -fractional 
perturbed Korteweg-de Vries. Modulation instability in the gPKdV equations is significant because it describes 
the exponential growth of small perturbations in a wave train, leading to the formation of localized, high-
amplitude structures. Nonlinear and dispersive effects drive this instability, which is crucial in generating rogue 
waves and other extreme events in fluids, plasmas, and optical systems. By analyzing modulation instability, 
researchers can better understand wave-breaking mechanisms, pattern formation, and the transition from 
regular wave patterns to chaotic states, enhancing the predictive power and real-world applicability of the 
gPKdV model in diverse nonlinear wave phenomena.

Fig. 7.  Periodic wave of the solution Eq. (19).
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Fig. 9.  Double bell waves the solution Eq. (25).

 

Fig. 8.  Periodic wave of the solution Eq. (20).
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	 Dσ,n
M,tP + a1P Px + a2Pxxx + a3Px = 0.� (50)

An MI analysis is performed by looking for perturbed solutions of the following form:

	 P (x, t) = g + EH (x, t) .� (51)

Inserting Eq. (51) into Eq. (50), then we get.

	 EDσ,n
M,tH + Ea1 (g + EH) Hx + Ea2Hxxx + Ea3Hx = 0.

And linearizing in E,

	 EDσ,n
M,tH + Ega1Hx + Ea2Hxxx + Ea3Hx = 0.� (52)

Let us consider the solution of Eq. (52) as:

Fig. 11.  Kinky periodic wave of the solution Eq. (33).

 

Fig. 10.  Kinky periodic of the solution Eq. (32).
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	 P (x, t) = ei(θx+ϵ
Γ(n+1)

σ
tσ).� (53)

Inserting Eq. (53) into Eq. (52) and divide the entire equation by ei(θx+ϵ
Γ(n+1)

λ
tλ), then we get,

	 iEϵ + iEga1θ − iEa2θ3 + iEa3θ = 0.

This equation defines the dispersion relation:

	 ϵ = −
(
ga1θ − a2θ3 + a3θ

)
.� (54)

It is evident from Eq. (54) that the dispersion is stable and that, for negative values of ϵ, any superposition of the 
solutions will seem to decay. Figure 15 depicts the 3-D and 2-D diagram of the Eq. (54).

Fig. 13.  Rogue wave of the solution Eq. (47).

 

Fig. 12.  Linked periodic rogue wave of the solution Eq. (41).
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Comparison, advantages and limitations
In this section, we perform both analytical and graphical comparisons between our work and the published 
results42. Additionally, we highlight some advantages and limitations of our applied method.

Comparison with extended Tanh-method
In this subsection, we compare the solutions obtained in our study with those presented in32, which were derived 
using the extended tanh method and the generalized Kudryashov (GK) method. Using these methods, Sayed 
Saifullah et al.36 investigated the fractional gPKdV equation and identified eight analytical soliton solutions. 
Their work revealed known phenomena, including bright and dark solitons, singular solutions, hyperbolic 
traveling wave solutions, and singular periodic solutions under specific parameter conditions. In contrast, our 
research employed the modified simple equation method to address the fractional gPKdV equation, yielding 

Fig. 15.  The 3-D and 2-D diagram of the Eq. (54) (a) 3-D diagram for a1 = 1, a2 = 0.1, a3 = 1
. (b) red[a1 = 1, a2 = 0.1, a3 = 1, g = 0.5], blue[a1 = 1.3, a2 = 0.5, a3 = 1.5, g = 0.7]
,orage[a1 = 1.5, a2 = 0.9, a3 = 2, g = 0.9, (c) red[a1 = 1, a2 = 0.1, a3 = 1, θ = 0.5], 
blue[a1 = 1.3, a2 = 0.5, a3 = 1.5, θ = 0.7],orage[a1 = 1.5, a2 = 0.9, a3 = 2, θ = 0.9.

 

Fig. 14.  Interaction of periodic wave and kink wave of the solution Eq. (48).
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thirty-four analytical soliton solutions. For selected parameter values, we uncovered phenomena such as double 
periodic waves, periodic lump-type waves, interactions between periodic lump and kink waves, bright bell-
shaped waves, singular soliton waves, and V-shaped periodic rogue waves. Our approach proves effective and 
straightforward for identifying unique solitary wave solutions, introducing new phenomena for the M-fractional 
gPKdV equation.

Advantages and limitation of the MSE technique
The primary advantage of the MSE (Modified Simple Equation) technique lies in its ability to derive soliton 
solutions for nonlinear partial differential equations (NLPDEs) in various forms, including hyperbolic, 
trigonometric, or exponential functions. Unlike other methods, this technique does not require auxiliary 
differential equations or predefined solutions. In contrast, methods such as the NK and improved F-expansion 
technique17, the extended direct algebraic approach18, the MSSE method19, the new mapping approach20, the 
modified extended tanh and NMK methods21, the unified approach22,23, and the exp-expansion and NMK 
techniques24 rely on predefined auxiliary differential equations and predetermined solutions. Consequently, the 
MSE method uniquely allows for the direct resolution of NLPDEs. However, the scope of the MSE approach is 
limited; it cannot handle all types of NLPDEs, particularly when the balance number of an NLPDE exceeds two, 
making the solution process significantly more complex.

Conclusion
This work applies the modified simple equation (MSE) method to the gPKdV equation with an M-fractional 
derivative, elucidating key properties of the M-fractional operator. By using the MSE technique, we explored 
ion-acoustic wave solutions in hyperbolic, exponential, and trigonometric forms. These solutions manifested as 
double periodic waves, periodic lump-type waves, interactions between periodic lump and kink waves, bright 
bell-shaped waves, singular soliton waves, V-shaped periodic rogue waves, and more for specific constraint 
values. We further analyzed the system’s dynamic behavior through bifurcation and phase portrait studies. 
Additionally, we conducted a detailed modulation instability analysis, confirming the stability of the derived 
solutions in Fig. 15. To our knowledge, this approach to fractional nonlinear PDEs is novel. Consequently, our 
methods provide valuable tools for generating unique and precise soliton solutions, relevant for applications in 
nonlinear science and mathematical physics. In future work, we plan to investigate the chaotic dynamics and 
sensitivity analysis of the gPKdV equation and explore the efficacy of various fractional derivatives using a novel 
generalized approach.

Data availability
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