Table 3 Optimal weighted feature selection performance of the implemented scheme in aquaponic Fish Ponds among conventional algorithms.

From: IoT-based prediction model for aquaponic fish pond water quality using multiscale feature fusion with convolutional autoencoder and GRU networks

Metrics

RNN24

LSTM23

CA27

GRU28

MSCA-GRU

Accuracy

90.03539

88.54764

91.46837

91.73136

94.03911

Recall

90.04911

88.54544

91.46623

91.73221

94.03606

Specificity

90.01266

88.5513

91.47193

91.72994

94.04417

Precision

93.72837

92.76384

94.67448

94.84149

96.31954

FPR

9.987336

11.4487

8.528069

8.270056

5.955828

FNR

9.950892

11.45456

8.533775

8.267788

5.963941

NPV

84.51375

82.34455

86.60729

87.00222

90.48837

FDR

6.271634

7.236163

5.325523

5.158512

3.680456

F1-Score

91.85191

90.60557

93.0427

93.26094

95.16411

MCC

0.791467

0.760961

0.821058

0.82649

0.874418

Accuracy

90.03539

88.54764

91.46837

91.73136

94.03911